2,376
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Fructose promotes ampicillin killing of antibiotic-resistant Streptococcus agalactiae

, , , &
Article: 2180938 | Received 22 Oct 2022, Accepted 12 Feb 2023, Published online: 26 Feb 2023

References

  • Rigvava S, Karumidze N, Kusradze I, et al. Biological characterization of bacteriophages against Streptococcus Agalactiae. Georgian Med News. 2021;310:182–16.
  • Zhang Z. Research advances on Tilapia Streptococcosis. Pathogens. 2021;10:558.
  • Raabe VN, Shane AL. Group B Streptococcus (Streptococcus agalactiae). Microbiol Spectr. 2019;7. DOI:10.1128/microbiolspec.GPP3-0007-2018
  • Amal MN, Zamri-Saad M, Iftikhar AR, et al. An outbreak of Streptococcus agalactiae infection in cage-cultured golden pompano, Trachinotus blochii (Lacepede), in Malaysia. J Fish Dis. 2012;35:849–852.
  • Bowater RO, Forbes-Faulkner J, Anderson IG, et al. Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia. J Fish Dis. 2012;35:173–186.
  • Faikoh EN, Hong YH, Hu SY. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae. Fish Shellfish Immunol. 2014;38:15–24.
  • Haenni M, Lupo A, Madec JY. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr. 2018;6:6.
  • Dahesh S, Hensler ME, Van Sorge NM, et al. Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother. 2008;52:2915–2918.
  • Gaudreau C, Lecours R, Ismail J, et al. Prosthetic hip joint infection with a Streptococcus agalactiae isolate not susceptible to penicillin G and ceftriaxone. J Antimicrob Chemother. 2010;65:594–595.
  • Longtin J, Vermeiren C, Shahinas D, et al. Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppressive therapy. Antimicrob Agents Chemother. 2011;55:2983–2985.
  • Morozumi M, Wajima T, Takata M, et al. Molecular characteristics of Group B Streptococci isolated from adults with invasive infections in Japan. J Clin Microbiol. 2016;54:2695–2700.
  • Metcalf BJ, Chochua S, Gertz RE Jr., et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin Microbiol Infect. 2017;23:7–14.
  • Yi A, Kim CK, Kimura K, et al. First case in Korea of Group B Streptococcus with reduced penicillin susceptibility harboring amino acid substitutions in penicillin-binding protein 2X. Ann Lab Med. 2019;39:414–416.
  • Kimura K, Nishiyama Y, Shimizu S, et al. Screening for group B streptococci with reduced penicillin susceptibility in clinical isolates obtained between 1977 and 2005. Jpn J Infect Dis. 2013;66:222–225.
  • Seki T, Kimura K, Reid ME, et al. High isolation rate of MDR group B streptococci with reduced penicillin susceptibility in Japan. J Antimicrob Chemother. 2015;70:2725–2728.
  • Hayes K, O’halloran F, Cotter L. A review of antibiotic resistance in Group B Streptococcus: the story so far. Crit Rev Microbiol. 2020;46:253–269.
  • Geng Y, Wang KY, Huang XL, et al. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China. Transbound Emerg Dis. 2012;59:369–375.
  • Lee HH, Molla MN, Cantor CR, et al. Bacterial charity work leads to population-wide resistance. Nature. 2010;467:82–85.
  • Zhao XL, Chen ZG, Yang TC, et al. Glutamine promotes antibiotic uptake to kill multidrug-resistant uropathogenic bacteria. Sci Transl Med. 2021;13:eabj0716.
  • Jiang M, Yang L, Chen ZG, et al. Exogenous maltose enhances Zebrafish immunity to levofloxacin-resistant Vibrio alginolyticus. Microbiol Biotechnol. 2020;13:1213–1227.
  • Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 2015;21:249–262.
  • Su YB, Peng B, Han Y, et al. Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin. J Proteome Res. 2015;14:1612–1620.
  • Ye JZ, Su YB, Lin XM, et al. Alanine enhances aminoglycosides-induced ROS production as revealed by proteomic analysis. Front Microbiol. 2018;9:29.
  • Zhang S, Wang J, Jiang M, et al. Reduced redox-dependent mechanism and glucose-mediated reversal in gentamicin-resistant Vibrio alginolyticus. Environ Microbiol. 2019;21:4724–4739.
  • Liu Y, Yang K, Jia Y, et al. Cysteine potentiates bactericidal antibiotics activity against gram-negative bacterial persisters. Infect Drug Resist. 2020;13:2593–2599.
  • Meylan S, Porter CBM, Yang JH, et al. Carbon sources tune antibiotic susceptibility in pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol. 2017;24:195–206.
  • Liu Y, Yang K, Jia Y, et al. Thymine sensitizes gram-negative pathogens to antibiotic killing. Front Microbiol. 2021;12:622798.
  • Cheng ZX, Guo C, Chen ZG, et al. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. Nat Commun. 2019;10:3325.
  • Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50:1355–1361.
  • Li L, Su YB, Peng B, et al. Metabolic mechanism of colistin resistance and its reverting in Vibrio alginolyticus. Environ Microbiol. 2020;22:4295–4313.
  • Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys. 2014;68:475–478.
  • Arnold PK, Jackson BT, Paras KI, et al. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature. 2022;603:477–481.
  • Karlin S, Theriot J, Mrazek J. Comparative analysis of gene expression among low G+C gram-positive genomes. Proc Natl Acad Sci U S A. 2004;101:6182–6187.
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033.
  • McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90:269–281.
  • Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev. 2008;32:361–385.
  • Haenni M, Galofaro L, Ythier M, et al. Penicillin-binding protein gene alterations in Streptococcus uberis isolates presenting decreased susceptibility to penicillin. Antimicrob Agents Chemother. 2010;54:1140–1145.
  • Zhang J, Wu H, Wang D, et al. Intracellular glycosyl hydrolase PslG shapes bacterial cell fate, signaling, and the biofilm development of Pseudomonas aeruginosa. Elife. 2022;11. DOI:10.7554/eLife.72778.
  • Huang J, Li C, Song J, et al. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol. 2020;15:445–459.
  • Lecuru M, Nicolas-Chanoine MH, Tanaka S, et al. Emergence of imipenem resistance in a CpxA-H208P-variant-producing proteus mirabilis clinical isolate. Microb Drug Resist. 2021;27:747–751.
  • Emami K, Guyet A, Kawai Y, et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat Microbiol. 2017;2:16253.
  • Zhu L, Yerramilli P, Pruitt L, et al. Functional insights into the high-molecular-mass penicillin-binding proteins of streptococcus agalactiae revealed by gene deletion and transposon mutagenesis analysis. J Bacteriol. 2021;203:e0023421.
  • Rismondo J, Halbedel S, Grundling A. Cell shape and antibiotic resistance are maintained by the activity of multiple FtsW and RodA enzymes in Listeria monocytogenes. MBio. 2019;10. DOI:10.1128/mBio.01448-19
  • Chochua S, Metcalf B, Li Z, et al. Invasive Group a Streptococcal penicillin binding protein 2x variants associated with reduced susceptibility to beta-Lactam antibiotics in the United States, 2015-2021. Antimicrob Agents Chemother. 2022;66:e0080222.
  • Maurer P, Koch B, Zerfass I, et al. Penicillin-binding protein 2x of Streptococcus pneumoniae: three new mutational pathways for remodelling an essential enzyme into a resistance determinant. J Mol Biol. 2008;376:1403–1416.
  • Zerfass I, Hakenbeck R, Denapaite D. An important site in PBP2x of penicillin-resistant clinical isolates of Streptococcus pneumoniae: mutational analysis of Thr338. Antimicrob Agents Chemother. 2009;53:1107–1115.
  • Nang SC, Azad MAK, Velkov T, et al. Rescuing the last-line Polymyxins: achievements and challenges. Pharmacol Rev. 2021;73:679–728.
  • Peng Z, Ling L, Stratton CW, et al. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect. 2018;7:15.
  • Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80.
  • Bush K. Past and present perspectives on beta-Lactamases. Antimicrob Agents Chemother. 2018;62. DOI:10.1128/AAC.01076-18
  • Gutierrez A, Jain S, Bhargava P, et al. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol Cell. 2017;68:1147–54 e3.
  • Martins D, Nguyen D. Stimulating central carbon metabolism to re-sensitize pseudomonas aeruginosa to aminoglycosides. Cell Chem Biol. 2017;24:122–124.
  • Cheng ZX, Yang MJ, Peng B, et al. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J Proteomics. 2018;181:83–91.
  • Yu X, Niks D, Ge X, et al. Synthesis of formate from CO2 gas catalyzed by an O2-Tolerant NAD-dependent formate dehydrogenase and glucose dehydrogenase. Biochemistry. 2019;58:1861–1868.
  • Lee HH, Collins JJ. Microbial environments confound antibiotic efficacy. Nat Chem Biol. 2011;8:6–9.
  • Hewitt LF. Bacterial metabolism: glucose breakdown by pneumococcus variants and the effect of phosphate thereon. Biochem J. 1932;26:464–471.
  • Mickelson MN. Aerobic metabolism of Streptococcus agalactiae. J Bacteriol. 1967;94:184–191.
  • Katayama Y, Zhang HZ, Chambers HF. PBP 2a mutations producing very-high-level resistance to beta-lactams. Antimicrob Agents Chemother. 2004;48:453–459.
  • Contreras-Martel C, Job V, Di Guilmi AM, et al. Crystal structure of penicillin-binding protein 1a (Pbp1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J Mol Biol. 2006;355:684–696.
  • Albarracin Orio AG, Pinas GE, Cortes PR, et al. Compensatory evolution of pbp mutations restores the fitness cost imposed by beta-lactam resistance in Streptococcus pneumoniae. PLOS Pathog. 2011;7:e1002000.
  • Tang XK, Su YB, Ye HQ, et al. Glucose-potentiated Amikacin killing of Cefoperazone/Sulbactam resistant pseudomonas aeruginosa. Front Microbiol. 2021;12:800442.
  • Zhang S, Yang MJ, Peng B, et al. Reduced ROS-mediated antibiotic resistance and its reverting by glucose in Vibrio alginolyticus. Environ Microbiol. 2020;22:4367–4380.
  • Rutowski J, Zhong F, Xu M, et al. Metabolic shift of Staphylococcus aureus under sublethal dose of methicillin in the presence of glucose. J Pharm Biomed Anal. 2019;167:140–148.
  • Yang DX, Yang MJ, Yin Y, et al. Serine metabolism tunes immune responses to promote Oreochromis niloticus survival upon Edwardsiella tarda infection. mSystems. 2021;6:e0042621.
  • Kou T, Wu J, Chen X, et al. Exogenous glycine promotes oxidation of glutathione and resotres sensitivity of bacterial pathogens to serum-induced cell death. Redox Biol. 2022;58:102512.
  • Yin Y, Yin Y, Yang H, et al. Vibrio alginolyticus survives from ofloxacin stress by metabolic adjustment. Front Microbiol. 2022;13:818923.
  • Trick AY, Chen FE, Schares JA, et al. High resolution estimates of relative gene abundance with quantitative ratiometric regression PCR (qRR-PCR). Analyst. 2021;146:6463–6469.
  • Keren I, Kaldalu N, Spoering A, et al. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 2004;230:13–18.
  • Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol. 2011;14:593–598.
  • Kuang SF, Feng DY, Chen ZG, et al. Inactivation of nitrite-dependent nitric oxide biosynthesis is responsible for overlapped antibiotic resistance between naturally and artificially evolved Pseudomonas aeruginosa. mSystems. 2021;6:e0073221.
  • Hooven TA, Randis TM, Daugherty SC, et al. Complete genome sequence of Streptococcus agalactiae CNCTC 10/84, a hypervirulent sequence type 26 strain. Genome Announc. 2014;2. DOI:10.1128/genomeA.01338-14.
  • Tettelin H, Masignani V, Cieslewicz MJ, et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A. 2002;99:12391–12396.
  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.