8,808
Views
5
CrossRef citations to date
0
Altmetric
Review Article - Invited

Pathogenicity and virulence of Clostridium botulinum

, , & ORCID Icon
Article: 2205251 | Received 26 Oct 2022, Accepted 17 Apr 2023, Published online: 08 May 2023

References

  • Hauschild AHW. Clostridium botulinum. In: Doyle M, editor. Foodborne bacterial pathogens. New York: Marcel Dekker Inc; 1989. pp. 111–28.
  • Hatheway CL. Botulism. In: Barlows A, WJ Hausler Jr., M Ohashi, A Turano, Lennete EH, editors. Laboratory diagnosis of infectious diseases. New York: Springer; 1988. p. 111–133.
  • Sobel J. Botulism. Clin Infect Dis. 2005;41(8):1167–1173.
  • Johnson EA. Clostridium botulinum. In: Doyle M, Buchanan R, editors. Food Microbiology. Washington DC: ASM Press; 2019. pp. 487–512.
  • Johnson EA. Clostridium botulinum and the Most Poisonous Poison. In: Gurtler J, Doyle M, Kornacki J, editors. Foodborne Pathogens. Cam, Switzerland: Springer; 2017. pp.553–601.
  • Rossetto O, Pirazzini M, Fabris F, et al. Botulinum Neurotoxins: Mechanism of Action . Handbook of Experimental Pharmacology. 2021;263 :35–47.
  • Hauschild AHW. Clostridium botulinum. In: editors, Hauschild A, and K Dodds. Ecology and Control in Foods. 1st ed. Boca Raton: CRC Press; 1993.
  • Minton NP, Clarke DJ. Clostridia. New York: Plenum; 1989.
  • Hatheway CL. Toxigenic clostridia. Clinical Microbiology Reviews. 1990;3(1):66–98.
  • Peck MW. Biology and Genomic Analysis of Clostridium botulinum. Adv Microb Physiol. 2009;55:183–320.
  • Shukla HD, Sharma SK. Clostridium botulinum: a bug with beauty and weapon. Crit Rev Microbiol. 2005;31(1):11–18.
  • Nigam P, Nigam A. Botulinum toxin. Indian J Dermatol. 2010;55(1):8–14.
  • Dorizas A, Krueger N, Sadick NS. Aesthetic uses of the botulinum toxin. Dermatol Clin. 2014;32(1):23–36.
  • Chen S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins (Basel). 2012;4:913–939.
  • Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nature Rev Microbiol. 2014;12(8):535–549.
  • Lund BM, Peck M. Clostridium botulinum. In: Lund BM, Baird-Parker AC, GW Gould, editors. The Microbiological Safety and Quality of Food. Maryland, MD, USA: Aspen; 2000. pp. 1057–1109.
  • Erbguth FJ. From poison to remedy: the chequered history of botulinum toxin. J Neural Transm. 2008;115(4):559–565.
  • Kerner J Neue beobachtungen über die in württemberg so häufig vorfallenden tödlichen vergiftungen durch den genuss geräucherter würste. Tübingen, Oisander 1820.
  • Erbguth FJ, Naumann M. Historical aspects of botulinum toxin: justinus Kerner (1786-1862) and the sausage poison. Neurology. 1999;53(8):1850.
  • Erbguth FJ. Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov Disord. 2004;19(S8):S2–6.
  • van Ermengem E. A New Anaerobic Bacillus and Its Relation to Botulism. Clin Infect Dis. 1979;1(4):701–719.
  • Winslow CE, Broadhurst J, Buchanan RE, et al. THE families and genera of the bacteria preliminary report of the committee of the society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol. 1917;2(5):505.
  • Burke GS. The Occurrence of Bacillus botulinus in Nature. J Bacteriol. 1919;4(5):541.
  • Sommer H, Nealon PJ, Snipe PT. Studies on Botulinum Toxin: 4. Dialysis Experiments. J Infect Dis. 1928;43(2):161–166.
  • Lamanna C, Eklund HW, McElroy OE. Botulinum Toxin (Type A); Including a Study of Shaking with Chloroform as a Step in the Isolation Procedure. J Bacteriol. 1946;52(1):1.
  • Burgen ASV, Dickens F, Zatman LJ. The action of botulinum toxin on the neuromuscular junction. Journal of Physiology. 1949;109(1–2):10–24.
  • Schiavo GG, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359(6398):832–835.
  • Schantz EJ, Johnson EA. Botulinum toxin: the story of its development for the treatment of human disease. Perspect Biol Med. 1997;40(3):317–327.
  • Pellett S. Learning from the past: historical aspects of bacterial toxins as pharmaceuticals. Curr Opin Microbiol. 2012;15(3):292–299.
  • Scott AB. Botulinum toxin injection to correct strabism. Trans Am Ophthalmol Soc. 1979;79:924–927.
  • Scott AB. Botulinum Toxin Injection into Extraocular Muscles as an Alternative to Strabismus Surgery. Ophthalmol. 1980;87(10):1044–1049.
  • Schantz EJ, Scott AB. Use of crystalline type a botulinum toxin in medical research. In: Lewis E, editor. Biomedical Aspects of Botulism. San Diego, CA: Academic Press; 1981. pp. 143–150.
  • Ting PT, Freiman A. The story of Clostridium botulinum: from food poisoning to Botox. Clin Med. 2004;4:258–261.
  • Monheit GD, Pickett A. AbobotulinumtoxinA: a 25-year history. Aesthet Surg J. 2017;37(suppl_1):S4–11.
  • Choudhury S, Baker MR, Chatterjee S, et al. Botulinum toxin: an update on pharmacology and newer products in development. Toxins (Basel). 2021;13(1):58.
  • Frevert J, Ahn KY, Park MY, et al. Comparison of botulinum neurotoxin type a formulations in Asia. 2018;11:327.
  • Duplantier J, A DK, Bavari C, et al. Searching for therapeutics against botulinum neurotoxins: a true challenge for drug discovery. Curr Top Med Chem. 2016;16(21):2330–2349.
  • Hill KK, Smith TJ, Helma CH, et al. Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol. 2007;189(3):818–832.
  • Holdeman LV, Brooks JB. Variation among strains of Clostridium botulinum and related clostridia. In: Herzberg M, editor. Proceedings of the 1st US-Japan Conference on Toxic Microorganisms. Washington, DC.: U.S. Government Printing Office; 1970. p. 278–286.
  • Collins C, East E. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol. 1998;84:5–17.
  • Peck MW, Smith TJ, Anniballi F, et al. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins (Basel). 2017;9(1):38.
  • Hill KK, Smith TJ. Genetic Diversity Within Clostridium botulinum Serotypes, Botulinum Neurotoxin Gene Clusters and Toxin Subtypes. Curr Top Microbiol Immunol. 2012;364:1–20.
  • Suen JC, Hatheway CL, Steigerwalt AG, et al. Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int J Bacteriol. 1988;38(4):375–381.
  • Zhang S, Masuyer G, Zhang J, et al. Identification and characterization of a novel botulinum neurotoxin. Nat Commun. 2017;8(1):1–10.
  • Dover N, Barash JR, Hill KK, et al. Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis. 2014;209(2):192–202.
  • Kalb SR, Baudys J, Raphael BH, et al. Functional Characterization of Botulinum Neurotoxin Serotype H as a Hybrid of Known Serotypes F and a (BoNT F/A). Anal Chem. 2015;87(7):3911–3917.
  • Maslanka SE, Lúquez C, Dykes JK, et al. A novel botulinum neurotoxin, previously reported as Serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes a and F and is neutralized with Serotype a antitoxin. J Infect Dis. 2016;213(3):379–385.
  • Leuchs J. Beiträge zur Kenntnis des Toxins und Antitoxins des Bacillus botulinus. Zeitschrift für Hygiene und Infektionskrankheiten. 1910;76(1):55–84.
  • Smith TJ, Lou J, Geren IN, et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun. 2005;73(9):5450–5457.
  • Rossetto O, Montecucco C. Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins (Basel). 2019;11(12):686.
  • Franciosa G, Floridi F, Maugliani A, et al. Differentiation of the gene clusters encoding botulinum neurotoxin type a complexes in Clostridium botulinum type A, Ab, and A(B) strains. Appl Environ Microbiol. 2004;70(12):7192–7199.
  • Moriishi K, Koura M, Fujii N, et al. Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl Environ Microbiol. 1996;62(2):662.
  • Moriishi K, Koura M, Abe N, et al. Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms 1. Biochimica Et Biophysica Acta (BBA) - Gene Structure and Expression. 1996;1307(2):123–126.
  • Nakamura K, Kohda T, Umeda K, et al. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Vet Microbiol. 2010;140:147–154.
  • Schleberger C, Hochmann H, Barth H, et al. Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol. 2006;364:705–715.
  • Sakaguchi Y, Suzuki T, Yamamoto Y, et al. Genomics of Clostridium botulinum group III strains. Res Microbiol. 2015;166:318–325.
  • Zornetta I, Azarnia Tehran D, Arrigoni G, et al. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep. 2016;6.
  • Zhang S, Lebreton F, Mansfield MJ, et al. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host & Microbe. 2018;23(2):169–176.e6.
  • Brunt J, Carter AT, Stringer SC, et al. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018;592(3):310–317.
  • Wentz TG, Muruvanda T, Lomonaco S, et al. Closed genome sequence of Chryseobacterium piperi strain CTMT/ATCC BAA- 1782, a Gram-negative bacterium with clostridial neurotoxin-like coding sequences. Genome Announc. 2017; 5(48).
  • Eleopra R, Tugnoli V, Rossetto O, et al. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes a and E in humans. Neurosci Lett. 1998;256:135–138.
  • Keller JE. Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience. 2006;139(2):629–637.
  • Seddon HR. Bulbar Paralysis in Cattle Due to the Action of a Toxicogenic Bacillus, with a Discussion on the Relationship of the Condition to Forage Poisoning (Botulism). J Comp Pathol Ther. 1922;35:147–190.
  • Skarin H, Håfström T, Westerberg J, et al. Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics. 2011;12(1):185.
  • Smith T, Williamson CHD, Hill K, et al. Botulinum neurotoxin-producing bacteria. Isn’t it time that we called a species a species? MBio. 2018;9(5).
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–3027.
  • Janik E, Ceremuga M, Bijak JS, et al. Biological toxins as the potential tools for bioterrorism. Int J Mol Sci. 2019;20.
  • Carus WS. Bioterrorism and Biocrimes: the Illicit Use of Biological Agents Since 1900. . Washington DC, USA: Center for Counterproliferation Research, National Defense University; 2001. p. 209.
  • U.K. Government. Schedule 5 Pathogens and toxins [Internet]. 2001 [cited 20 October 2022]. Available from: http://www.legislation.gov.uk/ukpga/2001/24/contents.
  • Centers for Disease Control and Prevention (CDC). Bioterrorism Agents/Diseases [Internet]. 2018 [cited 20 October 2022]; Available from: https://emergency.cdc.gov/agent/agentlist-category.asp.
  • Josko D. Botulin toxin: a weapon in terrorism. Clin. Lab Sci. 2004;17:30–34.
  • Patocka J, Splino M, Merka V. Botulism and bioterrorism: how serious is this problem? Acta medica (Hradec Králové). Acta Medica (Hradec Kralove). 2005;48(1):23–28.
  • Arnon SS, Schechter R, V IT, et al. Botulinum toxin as a biological weapon. JAMA. 2001;285:1059–1070.
  • Smith TJ, Roxas-Duncan V, Smith L. Botulinum neurotoxins as biothreat agents. J Bioterror Biodef. 2012;2:S2:003.
  • Zilinskas RA. Iraq’s Biological Weapons. JAMA. 1997;278:418–424.
  • Villar RG, Elliott SP, Davenport KM. Botulism: the Many Faces of Botulinum Toxin and its Potential for Bioterrorism. Infect Dis Clin North Am. 2006;20:313–327.
  • Kazdobina IS. Stability of botulin toxins in solutions and beverages. Gig Sanit. 1995;1:9–12.
  • Siegel LS. Destruction of Botulinum Toxins in Food and Water. In: Hauschild A, Dodds K, editors. Ecology and Control in Foods. 1st ed. Boca Raton: CRC Press; 1993. pp. 323–341.
  • Cenciarelli O, Riley PW, Baka A. Biosecurity Threat Posed by Botulinum Toxin. Toxins (Basel). 2019;11(12):681.
  • Johnson EA, Montecucco C. Botulism. In: Andrew GE, editor. Handbook of Clinical Neurology. Vol. 91. Amsterdam, NL: Elsevier; 2008. p. 333–368. DOI:10.1016/S0072-9752(07)01511-4
  • Centers for Disease Control and Prevention (CDC). National Botulism Surveillance Summary, 2017 [Internet]. [cited 20 Occtober 2022]. Available from: https://www.cdc.gov/botulism/surv/2017/index.html
  • Gangarosa EJ, Donadio JA, Armstrong RW, et al. Botulism in the United States, 1899–1969. Am J Epidemiol. 1971;93(2):93–101.
  • Shapiro RL. Botulism in the United States: a clinical and epidemiologic review. Ann internal med. 1998;129(3):221–228.
  • Sobel J, Tucker N, Sulka A, et al. Foodborne Botulism in the United States, 1990–2000. Emerg Infect Dis. 2004;10(9):1606–1611.
  • Critchley EM. A comparison of human and animal botulism: a review. J R Soc Med. 1991;84(5):295.
  • Hughes JM, Blumenthal JR, Merson MH, et al. Clinical features of types a and B food-borne botulism. Ann Intern Med. 1981;95:442–445.
  • Lund BM, Peck MW. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life. J Appl Bacteriol. 1994;76:115S–128S.
  • Peck MW. Clostridium botulinum and the safety of refrigerated processed foods of extended durability. Trends Food Sci Technol. 1997;8:186–192.
  • McLauchlin J, Grant KA, Little CL. Food-borne botulism in the United Kingdom. J Public Health. 2006;28(4):337–342.
  • International Commission on Microbiological Specifications for Foods (ICMSF). Clostridium botulinum. In: Roberts TA, Baird-Parker AC, Tompkin RB, editors. Microorganisms in Foods 5: characteristics of microbial pathogens. London, UK: Blackie Academic & Professional; 1996. p. 68–111.
  • Carter AT, Peck MW. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res Microbiol. 2015;166(4):303–317.
  • Peck MW. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Microbiol. 2006;101(3):556–570.
  • Peck MW, Stringer SC. The safety of pasteurised in-pack chilled meat products with respect to the foodborne botulism hazard. Meat Sci. 2005;70(3):461–475.
  • Stumbo CR, Purohit KS, Ramakrishnan TV. Thermal process lethality guide for low‐acid foods in metal containers. J Food Sci. 1975;40(6):1316–1323.
  • Lindström M, Kiviniemi K, Korkeala H. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int J Food Microbiol. 2006;108:92–104.
  • Juliao PC, Maslanka S, Dykes J, et al. National outbreak of type a foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin Infect Dis. 2013;56(3):376–382.
  • Rocke TE, Samuel MD. Water and Sediment Characteristics Associated with Avian Botulism Outbreaks in Wetlands. J Wildl Manage. 1999;63(4):1249.
  • Espelund M, Klaveness D. Botulism outbreaks in natural environments – an update. Front Microbiol. 2014;5:287.
  • Duncan RM, Jensen WI. A relationship between avian carcasses and living invertebrates in the epizootiology of avian botulism. J Wildl Dis. 1976;12:116–126.
  • Johnson AL, McAdams-Gallagher SC, Aceto H. Accuracy of a Mouse Bioassay for the Diagnosis of Botulism in Horses. J Vet Intern Med. 2016;30:1293–1299.
  • Cagan E, Peker E, Dogan M, et al. Infant Botulism. Eurasian J Med. 2010;42(2):92.
  • Fox CK, Keet CA, Strober JB. Recent advances in infant botulism. Pediatr Neurol. 2005;32(3):149–154.
  • Tanzi MG, Gabay MP. Association between honey consumption and infant botulism. Pharmacotherapy. 2002;22(11):1479–1483.
  • Arnon SS, Midura TF, Damus K, et al. Honey and other environmental risk factors for infant botulism. J Paediatr. 1979;94(2):331–336.
  • Aureli P, Franciosa G, Fenicia L. Infant botulism and honey in Europe: a commentary. Pediatr Infect Dis J. 2002;21(9):866–868.
  • Brett MM, McLauchlin J, Harris A, et al. A case of infant botulism with a possible link to infant formula milk powder: evidence for the presence of more than one strain of Clostridium botulinum in clinical specimens and food. J Med Microbiol. 2005;54:769–776.
  • Nevas M, Lindstrom M, Virtanen A, et al. Infant botulism acquired from household dust presenting as sudden infant death syndrome. J Clin Microbiol. 2005;43(1):511–513.
  • Midura TF, Arnon SS. Infant botulism. Identification of Clostridium botulinum and its toxins in faeces. Lancet. 1976;308(7992):934–936.
  • Koepke R, Sobel J, Arnon SS. Global occurrence of infant botulism, 1976-2006. Pediatrics. 2008;122(1):122.
  • Centers for Disease Control and Prevention (CDC). National Botulism Surveillance [Internet]. 2018 [cited 20th October 2022]. Available from: https://www.cdc.gov/botulism/surveillance.html.
  • Davis JB, Mattman LH, Wiley M. Clostridium botulinum in a Fatal Wound Infection. J Am Med Assoc. 1951;146:646–648.
  • Merson MH, Dowell VR. Epidemiologic, Clinical and Laboratory Aspects of Wound Botulism. N Engl J Med. 1973;289:1005–1010.
  • Elston HR, Wang M, Loo LK. Arm abscesses caused by Clostridium botulinum. J Clin Microbiol. 1991;29:2678.
  • Brett MM, Hood J, Brazier JS, et al. Soft tissue infections caused by spore-forming bacteria in injecting drug users in the United Kingdom. Epidemiol Infect. 2005;133:575–582.
  • Kuehn B. Wound Botulism Outbreak. JAMA. 2019;321(6):538.
  • Werner SB, Passaro D, McGee J, et al. Wound Botulism in California, 1951–1998: recent Epidemic in Heroin Injectors. Clin Infect Dis. 2000;31:1018–1024.
  • Passaro DJ, Werner SB, McGee J, et al. Wound botulism associated with black tar heroin among injecting drug users. J Am Med Assoc. 1998;279:859–863.
  • McCroskey LM, Hatheway CL. Laboratory findings in four cases of adult botulism suggest colonization of the intestinal tract. J Clin Microbiol. 1988;26(5):1052.
  • Fenicia L, Anniballi F, Aureli P. Intestinal toxemia botulism in Italy, 1984-2005. Eur J Clin Microbiol Infect Dis. 2007;26:385–394.
  • Harris RA, Anniballi F, Austin JW. Adult Intestinal Toxemia Botulism. Toxins (Basel). 2020;12(2):81./81.
  • Bakheit AMO, Ward CD, McLellan DL. Generalised botulism-like syndrome after intramuscular injections of botulinum toxin type A: a report of two cases [3]. J Neurol Neurosurg Psychiatry. 1997;62(2):198.
  • Chertow DS, Tan ET, Maslanka SE, et al. Botulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. JAMA. 2006;296(20):2476–2479.
  • Crowner BE, Brunstrom JE, Racette BA. Iatrogenic botulism due to therapeutic botulinum toxin a injection in a pediatric patient. Clin Neuropharmacol. 2007;30(5):310–313.
  • Holzer E. Botulism caused by inhalation. Medizinische Klin. 1962;57:1735–1738.
  • Park JB, Simpson LL. Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect Immun. 2003;71(3):1147–1154.
  • Pitt MLM, LeClaire RD. Pathogenesis by Aerosol. In: Lebeda F , Korch G, Lindler L, editors. Biological Weapons Defense. Totowa, NJ: Humana Press; 2005. pp. 65–78.
  • O’Horo JC, Harper EP, El Rafei A, et al. Efficacy of Antitoxin Therapy in Treating Patients with Foodborne Botulism: a Systematic Review and Meta-analysis of Cases, 1923-2016. Clin Infect Dis. 2017;66:S43–56.
  • Rao AK, Sobel J, Chatham-Stephens K, et al. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recommendations Rep. 2021;70(2):1.
  • Yu PA, Lin NH, Mahon BE, et al. Safety and Improved Clinical Outcomes in Patients Treated with New Equine-Derived Heptavalent Botulinum Antitoxin. Clin Infect Dis. 2018;66(suppl_1):S57–64.
  • Barker D, Gillum KT, Niemuth NA, et al. Therapeutic efficacy of equine botulism heptavalent antitoxin against all seven botulinum neurotoxins in symptomatic guinea pigs. PLoS ONE. 2019;14:e0222670. DOI:10.1371/journal.pone.0222670
  • Lonati D, Schicchi A, Crevani M, et al. Foodborne Botulism: clinical diagnosis and medical treatment. Toxins (Basel). 2020;12(8):509.
  • Ben David A, Barnea A, Torgeman A, et al. Immunologic and Protective Properties of Subunit- vs. Whole Toxoid-Derived Anti-Botulinum Equine Antitoxin. Vaccines. 2022;10(9):1522.
  • US Food and Drug Administration (FDA). Approval History, Letters, Reviews, and Related Documents - BAT (Botulism Antitoxin Heptavalent (A B, C D, E F, G)) (Equine) [Internet]. 2013 [cited 20th October 2022]; Available from: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/bat-botulism-antitoxin-heptavalent-b-c-d-e-f-g-equine
  • Atassi MZ. Immune recognition of BoNTs a and B: how anti-toxin antibodies that bind to the heavy chain obstruct toxin action. Toxicon. 2009;54(5):600–613.
  • Tacket CO, Shandera WX, Mann JM, et al. Equine antitoxin use and other factors that predict outcome in type a foodborne botulism. Am j med. 1984;76(5):794–798.
  • Black RE, Gunn RA. Hypersensitivity reactions associated with botulinal antitoxin. Am j med. 1980;69(4):567–570.
  • Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov. 2017;12(5):497–510.
  • Schussler E, Sobel J, Hsu J, et al. Workgroup Report by the Joint Task Force Involving American Academy of Allergy, Asthma & Immunology (AAAAI); Food Allergy, Anaphylaxis, Dermatology and Drug Allergy (FADDA) (Adverse Reactions to Foods Committee and Adverse Reactions to Drugs, Biologicals, and Latex Committee); and the Centers for Disease Control and Prevention Botulism Clinical Treatment Guidelines Workgroup—Allergic Reactions to Botulinum Antitoxin: a Systematic Review. Clin Infect Dis an off Publ Infect Dis Soc Am. 2018;66:S65.
  • Arnon SS, Schechter R, Maslanka SE, et al. Human Botulism Immune Globulin for the Treatment of Infant Botulism. N Engl J Med. 2006;354(5):462–471.
  • US Food and Drug Administration (FDA). BabyBIG [Internet]. 2003 [cited 20th October 2022]; Available from: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/babybig
  • Fenicia L, Anniballi F. Infant botulism. Ann Ist Super Sanita. Annali dell’Istituto superiore di sanita. 2009;45(2):134–146.
  • Payne JR, Khouri JM, Jewell NP, et al. Efficacy of Human Botulism Immune Globulin for the Treatment of Infant Botulism: the First 12 Years Post Licensure. J Paediatr. 2018;193:172–177.
  • Schulte M, Hamsen U, Schildhauer TA, et al. Effective and rapid treatment of wound botulism, a case report. BMC Surg. 2017;17(1):103.
  • Brook I. Infant botulism. Journal of Perinatology. 2007;27(3):175–180.
  • Arnon SS. Botulism as an intestinal toxemia. In: S BM, RJ PD GH GR, editors. Infections of the gastrointestinal tract. New York: Raven Press; 1995. pp. 257–271.
  • Fagan RP, Neil KP, Sasich R, et al. Initial Recovery and Rebound of Type F Intestinal Colonization Botulism After Administration of Investigational Heptavalent Botulinum Antitoxin. Clin Infect Dis. 2011;53(9):e125–8.
  • Rasetti-Escargueil C, Popoff MR. Antibodies and vaccines against botulinum toxins: available measures and novel approaches. Toxins (Basel). 2019;11:528. DOI:10.3390/toxins11090528
  • Thanongsaksrikul J, Chaicumpa W. Botulinum neurotoxins and botulism: a novel therapeutic approach. Toxins (Basel). 2011;3(5):469–488.
  • Nowakowski A, Wang C, Powers DB, et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci, USA. 2002;99(17):11346–11350.
  • Fan Y, Garcia-Rodriguez C, Lou J, et al. A three monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotype F subtypes. PLoS ONE. 2017;12:e0174187. DOI:10.1371/journal.pone.0174187
  • Snow DM, Riling K, Kimbler A, et al. Safety and Pharmacokinetics of a Four Monoclonal Antibody Combination Against Botulinum C and D Neurotoxins. Antimicrob Agents Chemother. 2019;63:e01270–19. DOI:10.1128/AAC.01270-19
  • Matsumura T, Amatsu S, Misaki R, et al. Fully Human Monoclonal Antibodies Effectively Neutralizing Botulinum Neurotoxin Serotype B. Toxins (Basel). 2020;12(5):12.
  • Garcia-Rodriguez C, Razai A, Geren IN, et al. A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins (Basel). 2018;10(3):10.
  • Godakova SA, Noskov AN, Vinogradova ID, et al. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin a in Mice. Toxins (Basel). 2019;11:464. DOI:10.3390/toxins11080464
  • Mukherjee J, Ondeck CA, Tremblay JM, et al. Intramuscular delivery of formulated RNA encoding six linked nanobodies is highly protective for exposures to three Botulinum neurotoxin serotypes. Sci Rep. 2022;12(1):12.
  • Derkaev AA, Ryabova EI, Esmagambetov IB, et al. rAAV expressing recombinant neutralizing antibody for the botulinum neurotoxin type a prophylaxis. Front Microbiol. 2022;13.
  • Rusnak JM, Smith LA. Botulinum neurotoxin vaccines: past history and recent developments. Hum Vaccines. 2009;5(12):794–805.
  • Smith LA. Botulism and vaccines for its prevention. Vaccine. 2009;27 Suppl 4:D33–9. DOI:10.1016/j.vaccine.2009.08.059
  • Graham R, Thorp F. The Effect of Formalin on Botulinum Toxins A, B and C. J Immunol. 1929;16(4):391–401.
  • Keller JE. Characterization of new formalin-detoxified botulinum neurotoxin toxoids. Clin Vaccine Immunol. 2008;15(9):1374–1379.
  • Centers for Disease Control and Prevention (CDC). Notice of CDC’s discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins. Morb Mortal Wkly Rep. 2011;60:1454–1455.
  • Sundeen G, Barbieri JT. Vaccines against botulism. Toxins (Basel). 2017;9(9):268.
  • Hatami F, Shokouhi S, Mardani M, et al. Early recovery of botulism: one decade of experience. Clin Toxicol. 2021;59(7):628–632.
  • De Paiva A, Meunier FA, Molgó J, et al. Functional repair of motor endplates after botulinum neurotoxin type a poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Nat Acad Sci. 1999;96(6):3200–3205.
  • Holland RL, Brown MC. Nerve growth in botulinum toxin poisoned muscles. Neuroscience. 1981;6(6):1167–1179.
  • Adler M, Franz DR. Toxicity of botulinum neurotoxin by inhalation: implications in bioterrorism. In: Salem H, Katz S, editors. Aerobiology: the Toxicology of Airborne Pathogens and Toxins. Cambridge, U.K: Royal Society of Chemistry; 2016. pp. 167–185.
  • Meunier FA, Schiavo G, Molgó J. Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris. 2002;96(1–2):105–113.
  • Tsai YC, Maditz R, Kuo C-L, et al. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Nat Acad Sci. 2010;107(38):16554–16559.
  • Tsai YC, Kotiy A, Kiris E, et al. Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type a intoxication. Proc Nat Acad Sci. 2017;114(26):E5158–66.
  • Sen E, Kota KP, Panchal RG, et al. Screening of a Focused Ubiquitin-Proteasome Pathway Inhibitor Library Identifies Small Molecules as Novel Modulators of Botulinum Neurotoxin Type a Toxicity. Front Pharmacol. 2021;12:2659.
  • Rao AK, Lin NH, Jackson KA, et al. Clinical Characteristics and Ancillary Test Results Among Patients with Botulism—United States, 2002–2015. Clin Infect Dis. 2017;66(suppl_1):S4–10.
  • Chatham-Stephens K, Fleck-Derderian S, Johnson SD, et al. Clinical Features of Foodborne and Wound Botulism: a Systematic Review of the Literature, 1932-2015. Clin Infect Dis. 2017;66:S11–6.
  • Louis ME S, Peck SHS, Bowering D, et al. Botulism from chopped garlic: delayed recognition of a major outbreak. Ann Intern Med. 1988;108:363–368.
  • Maslanka SE, Solomon HM, Sharma S, et al. Clostridium botulinum and its toxins. In: Tortorello M, F Downes, S Doores, K Ito, and Y Salfinger, editors. Compendium of methods for the microbiological examination of foods . Washington, DC: American Public Health Association; 2013. p. Chapter 32:1–11. DOI:10.2105/MBEF.0222.037
  • Solomon HM, Lilly TJ. Chapter 17: Clostridium Botulinum. In: Jackson GJ , Merker RI, Bandler R, editors. Bacteriological Analytical Manual. 8th Ed. College Park, MD, USA: U.S. Food and Drug Administration (FDA), Centre for Food Safety and Applied Nutrition; 2001. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-17-clostridium-botulinum
  • Lindström M, Korkeala H. Laboratory diagnostics of botulism. Clin. Clinical Microbiology Reviews. 2006;19(2):298–314.
  • Taylor K. Botulinum toxin testing on animals is still a Europe-wide issue. ALTEX. 2019;36(1):81–90.
  • Kakinuma H, Maruyama H, Yamakawa K, et al. Application of nested polymerase chain reaction for the rapid diagnosis of infant botulism type B. Pediatr Int. 1997;39(3):346–348.
  • De Medici D, Anniballi F, Wyatt GM, et al. Multiplex PCR for Detection of Botulinum Neurotoxin-Producing Clostridia in Clinical, Food, and Environmental Samples. Appl Environ Microbiol. 2009;75(20):6457.
  • Szabo EA, Pemberton JM, Gibson AM, et al. Application of PCR to a clinical and environmental investigation of a case of equine botulism. J Clin Microbiol. 1994;32(8):1986–1991.
  • Chellapandi P, Prisilla A. PCR-based molecular diagnosis of botulism (types C and D) outbreaks in aquatic birds. Ann Microbiol. 2018;68(12):835–849.
  • Cai S, Singh BR, Sharma S. Botulism diagnostics: from clinical symptoms to in vitro assays. Crit Rev Microbiol. 2007;33(2):109–125.
  • Thirunavukkarasu N, Johnson E, Pillai S, et al. Botulinum Neurotoxin Detection Methods for Public Health Response and Surveillance. Front Bioeng Biotechnol. 2018;6:80.
  • Wictome M, Newton KA, Jameson K, et al. Development of in vitro assays for the detection of botulinum toxins in foods. FEMS Immunology & Medical Microbiology. 1999;24(3):319–323.
  • Cheng LW, Land KM, Stanker LH. Chapter 1: Presence of Botulinum Neurotoxins in Food and Other Biological Samples. In: Morse SA, editor. Bioterrorism. Online Edition. London, UK: InTechOpen; 2012. p. 1–16. DOI:10.5772/33638
  • Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol. 2013;39(1):43–56.
  • Čapek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel). 2010;2(1):24–53.
  • Fernández-Salas E, Wang J, Molina Y, et al. Botulinum Neurotoxin Serotype a Specific Cell-Based Potency Assay to Replace the Mouse Bioassay. PLoS ONE. 2012;7(11):e49516.
  • Pharma M. Press Release: alternative Test Method for Botulinum Neurotoxin Now Approved in Europe [Internet]. 2015 [cited 20th October 2022]; Available from: https://www.merz.com/blog/news/alternative-test-method-for-botulinum-neurotoxin-now-approved-in-europe/
  • Ipsen Inc. Press Release: ipsen’s Cell-Based Assay Receives Approvals in the E.U. and Switzerland for its Botulinum Toxin [Internet]. 2018 [cited 20th October 2022]; Available from: https://www.ipsen.com/websites/IPSENCOM-PROD/wp-content/uploads/2018/08/28165732/00-IAW-ONLINE-POSITION-STATEMENT_Ipsens-CBA-implementation-2018-08-27.pdf
  • Pellett S. Progress in Cell Based Assays for Botulinum Neurotoxin Detection. Curr Top Microbiol Immunol. 2013;364:257–285.
  • Koh C-Y, Schaff UY, Piccini ME, et al. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin. Anal Chem. 2015;87(2):922–928.
  • Halliwell J, Gwenin C. A label free colorimetric assay for the detection of active botulinum neurotoxin type a by SNAP-25 conjugated colloidal gold. Toxins (Basel). 2013;5(8):1381–1391.
  • Patel K, Halevi S, Melman P, et al. A novel surface plasmon resonance biosensor for the rapid detection of botulinum neurotoxins. Biosens (Basel). 2017;7(4):32.
  • Savage AC, Buckley N, Halliwell J, et al. Botulinum neurotoxin serotypes detected by electrochemical impedance spectroscopy. Toxins (Basel). 2015;7(5):1544–1555.
  • Hobbs RJ, Thomas CA, Halliwell J, et al. Rapid Detection of Botulinum Neurotoxins—A Review. Toxins (Basel). 2019;11(7):11.
  • Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol. 2015;166(4):290–302.
  • Lacy DB, Tepp W, Cohen AC, et al. Crystal structure of botulinum neurotoxin type a and implications for toxicity. Nat Struct Biol. 1998;5(10):898–902.
  • Swaminathan S, Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol. 2000;7(8):693–699.
  • Kumaran D, Eswaramoorthy S, Furey W, et al. Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol. 2009;386(1):233–245.
  • Dekleva ML, Dasgupta BR. Purification and characterization of a protease from Clostridium botulinum type a that nicks single-chain type a botulinum neurotoxin into the di-chain form. J Bacteriol. 1990;172(5):2498–2503.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.
  • Bandyopadhyay S, Clark AW, DasGupta BR, et al. Role of the heavy and light chains of botulinum neurotoxin in neuromuscular paralysis. J Biol Chem. 1987;262(6):2660–2663.
  • Kriegistein KG, DasGupta BR, Henschen AH. Covalent structure of botulinum neurotoxin type A: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. Journal of Protein Chemistry. 1994;13(1):49–57.
  • Montecucco C, Schiavo G. Structure and Function of Tetanus and Botulinum Neurotoxins. Q Rev Biophys. 1995;28(4):423–472.
  • Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol. 2022;96(6):1521–1539.
  • Yao G, Zhang S, Mahrhold S, et al. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin a. Nature Structural & Molecular Biology. 2016;23(7):656–662.
  • Muraro L, Tosatto S, Motterlini L, et al. The N-terminal half of the receptor domain of botulinum neurotoxin a binds to microdomains of the plasma membrane. Biochem Biophys Res Commun. 2009;380(1):76–80.
  • Montecucco C, Zanotti G. Botulinum neurotoxin A1 likes it double sweet. Nature Structural & Molecular Biology. 2016;23:619–621.
  • Rummel A. Two feet on the membrane: uptake of clostridial neurotoxins. Curr Top Microbiol Immunol. 2017;406:1–37.
  • Brunger AT, Breidenbach MA, Jin R, et al. Botulinum Neurotoxin Heavy Chain Belt as an Intramolecular Chaperone for the Light Chain. PLOS Pathog. 2007;3:e113.
  • Galloux M, Vitrac H, Montagner C, et al. Membrane interaction of botulinum neurotoxin a translocation (T) domain: the belt region is a regulatory loop for membrane interaction. J Biol Chem. 2008;283:27668–27676.
  • Fischer A, Montal M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon. 2013;75:101–107.
  • Gu S, Jin R. Assembly and Function of the Botulinum Neurotoxin Progenitor Complex. Curr Top Microbiol Immunol. 2013;364:21–44.
  • Barrett AJ, Rawlings ND. Types and families of endopeptidases. Biochem Soc Trans. 1991;19:707–715.
  • Gu S, Rumpel S, Zhou J, et al. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science. 2012;335:977–981.
  • Jacobson MJ, Lin G, Raphael B, et al. Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype a subtypes. Appl Environ Microbiol. 2008;74:2778–2786.
  • Sebaihia M, Peck MW, Minton NP, et al. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall a and comparative analysis of the clostridial genomes. Genome Res. 2007;17(7):1082–1092.
  • Lee K, Gu S, Jin L, et al. Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity. PLOS Pathogens. 2013;9(10):e1003690.
  • Fujinaga Y, Inoue K, Watanabe S, et al. The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology. 1997;143(12):3841–3847.
  • Fujinaga Y, Inoue K, Nomura T, et al. Identification and characterization of functional subunits of Clostridium botulinum type a progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett. 2000;467(2–3):179–183.
  • Matsumura T, Sugawara Y, Yutani M, et al. Botulinum toxin a complex exploits intestinal M cells to enter the host and exert neurotoxicity. Nat Commun. 2015;6(1):6.
  • Matsumura T, Fujinaga Y. Functional Analysis of Botulinum Hemagglutinin (HA). Methods Mol Biol. 2020;2132:191–200.
  • Jin Y, Takegahara Y, Sugawara Y, et al. Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins – differences in cell tropism and the mechanism of action between HA proteins of types a or B, and HA proteins of type C. Microbiology. 2009;155(1):35–45.
  • Sugawara Y, Matsumura T, Takegahara Y, et al. Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Bio. 2010;189(4):691–700.
  • Lee K, Zhong X, Gu S, et al. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin a complex. Science. 2014;344(6190):1405–1410.
  • Fujinaga Y, Popoff MR. Translocation and dissemination of botulinum neurotoxin from the intestinal tract. Toxicon. 2018;147:13–18.
  • Gustafsson R, Berntsson RP-A, Martínez-Carranza M, et al. Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett. 2017;591(22):3781–3792.
  • Lam K-H, Qi R, Liu S, et al. The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon. 2018;147:19–26.
  • Inoue K, Fujinaga Y, Watanabe T, et al. Molecular composition of Clostridium botulinum type a progenitor toxins. Infect Immun. 1996;64(5):1589–1594.
  • Simpson L. The life history of a botulinum toxin molecule. Toxicon. 2013;68:40–59.
  • Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci. 1986;11(8):314–317.
  • Rummel A. Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity. Curr Top Microbiol Immunol. 2013;364:61–90.
  • Pirazzini M, Rossetto O, Bolognese P, et al. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol. 2011;13(11):1731–1743.
  • Cottone G, Chiodo L, Maragliano L, et al. In Silico Conformational Features of Botulinum Toxins A1 and E1 According to Intraluminal Acidification. Toxins (Basel). 2022;14(9):644. 2022. .
  • Moriyama Y, Futai M. H±atpase, a primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem Biophys Res Commun. 1990;173:443–448.
  • Fischer A. Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons. Curr Top Microbiol Immunol. 2013;364:115–137.
  • Koriazova LK, Montal M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat Struct Biol. 2003;10(1):13–18.
  • Hoch DH, Romero-Mira M, Ehrlich BE, et al. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Nat Acad Sci. 1985;82(6):1692–1696.
  • Fischer A, Montal M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. 2007;282:29604–29611.
  • Pirazzini M, Bordin F, Rossetto O, et al. The thioredoxin reductase-thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett. 2013;587(2):150–155.
  • Sutton RB, Fasshauer D, Jahn R, et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature. 1998;395(6700):347–353.
  • Jahn R, Scheller RH. Snares — engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–643.
  • Südhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harbor Perspect Biol. 2011;3(12):3.
  • Binz T. Clostridial Neurotoxin Light Chains: devices for SNARE Cleavage Mediated Blockade of Neurotransmission. Curr Top Microbiol Immunol. 2013;364:139–157.
  • Rossetto O, Schiavo G, Montecucco C, et al. SNARE motif and neurotoxins. Nature. 1994;372(6505):415–416.
  • Shoemaker CB, Oyler GA. Persistence of Botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol. 2013;364:179–196.
  • Keller JE, Neale EA. The Role of the Synaptic Protein SNAP-25 in the Potency of Botulinum Neurotoxin Type a. J Biol Chem. 2001;276(16):13476–13482.
  • Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci. 2014;71(5):793–811.
  • Pirazzini M, Rossetto O, Eleopra R, et al. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2017;69:200–235.
  • Caleo M, Schiavo G. Central effects of tetanus and botulinum neurotoxins. Toxicon. 2009;54(5):593–599.
  • Restani L, Novelli E, Bottari D, et al. Botulinum neurotoxin a impairs neurotransmission following retrograde transynaptic transport. Traffic. 2012;13(8):1083–1089.
  • Marchand-Pauvert V, Aymard C, Giboin L-S, et al. Beyond muscular effects: depression of spinal recurrent inhibition after botulinum neurotoxin a. Journal of Physiology. 2013;591(4):1017.
  • Aymard C, Giboin L-S, Lackmy-Vallée A, et al. Spinal plasticity in stroke patients after botulinum neurotoxin a injection in ankle plantar flexors. Physiological Reports. 2013;1(6):e00173.
  • Mazzocchio R, Caleo M. More than at the neuromuscular synapse: actions of botulinum neurotoxin a in the central nervous system. Neuroscientist. 2015;21(1):44–61.
  • Marinelli S, Vacca V, Ricordy R, et al. The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin a Involves Schwann Cells and Astrocytes. PLoS ONE. 2012;7(10):e47977.
  • Luvisetto S. Botulinum Neurotoxins in Central Nervous System: an Overview from Animal Models to Human Therapy. Toxins (Basel). 2021;13(11):751.
  • Popoff MR, Marvaud J. Structural and genomic features of clostridial neurotoxins. In: Alouf JE J Freer, editors. The Comprehensive Sourcebook of Bacterial Protein Toxins. London, UK: Academic Press; 1999. pp. 174–201.
  • Doxey AC, Lynch MDJ, Müller KM, et al. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain a neurotoxin gene cluster. BMC Evol Biol. 2008;8(1):14.
  • Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon. 2013;75:63–89.
  • Nowakowska MB, Douillard FP, Lindström M. Looking for the X Factor in Bacterial Pathogenesis: association of orfX-p47 Gene Clusters with Toxin Genes in Clostridial and Non-Clostridial Bacterial Species. Toxins (Basel). 2019;12(1):19.
  • Dupuy B, Matamouros S. Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase σ-factors. Res Microbiol. 2006;157(3):201–205.
  • Marvaud JC, Gibert M, Inoue K, et al. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum a. Mol Microbiol. 1998;29(4):1009–1018.
  • Raffestin S, Marvaud JC, Cerrato R, et al. Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani. Anaerobe. 2004;10(2):93–100.
  • Raffestin S, Dupuy B, Marvaud JC, et al. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type a and Clostridium tetani. Mol Microbiol. 2004;55(1):235–249.
  • Dover N, Barash JR, Hill KK, et al. Novel Structural Elements within the Nonproteolytic Clostridium botulinum Type F Toxin Gene Cluster. Appl Environ Microbiol. 2011;77(5):1904.
  • Collins MD, East AK. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol. 1998;84:5–17.
  • Smith TJ, Williamson CHD, Hill KK, et al. The Distinctive Evolution of orfX Clostridium parabotulinum Strains and Their Botulinum Neurotoxin Type a and F Gene Clusters is Influenced by Environmental Factors and Gene Interactions via Mobile Genetic Elements. Front Microbiol. 2021;12:566908.
  • Mansfield MJ, Adams JB, Doxey AC. Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett. 2015;589:342–348.
  • Dover N, Barash JR, Burke JN, et al. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters. PLoS ONE. 2014;9:e97983.
  • Oguma K. The stability of toxigenicity in Clostridium botulinum types C and D. J Gen Microbiol. 1976;92(1):67–75.
  • Hariharan H, Mitchell WR. Observations on bacteriophages of Clostridium botulinum type C isolates from different sources and the role of certain phages in toxigenicity. Appl Environ Microbiol. 1976;32:145–158.
  • Smith TJ, Hill KK, Foley BT, et al. Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids. PLoS ONE. 2007;2(12):e1271.
  • Marshall KM, Bradshaw M, Pellett S, et al. Plasmid Encoded Neurotoxin Genes in Clostridium botulinum Serotype a Subtypes. Biochem Biophys Res Commun. 2007;361:49.
  • Franciosa G, Maugliani A, Scalfaro C, et al. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS ONE. 2009;4(3):4.
  • Zhang Z, Hintsa H, Chen Y, et al. Plasmid-Borne Type E Neurotoxin Gene Clusters in Clostridium botulinum Strains. Appl Environ Microbiol. 2013;79:3856.
  • Zhou Y, Sugiyama H, Nakano H, et al. The genes for the Clostridium botulinum type G toxin complex are on a plasmid. Infect Immun. 1995;63(5):2087.
  • Raphael BH, Bradshaw M, Kalb SR, et al. Clostridium botulinum Strains Producing BoNT/F4 or BoNT/F5. Appl Environ Microbiol. 2014;80:3250.
  • Dover N, Barash JR, Hill KK, et al. Clostridium botulinum Strain Af84 Contains Three Neurotoxin Gene Clusters: bont/A2, bont/F4 and bont/F5. PLoS ONE. 2013;8(4):e61205.
  • Marshall KM, Bradshaw M, Johnson EA. Conjugative Botulinum Neurotoxin-Encoding Plasmids in Clostridium botulinum. PLoS ONE. 2010;5(6):e11087.
  • Nawrocki EM, Bradshaw M, Johnson EA. Botulinum neurotoxin–encoding plasmids can be conjugatively transferred to diverse Clostridial strains. Sci Rep. 2018;8(1).
  • Smith TJ, Tian R, Imanian B, et al. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins (Basel). 2021;13(7):473.
  • Dineen SS, Bradshaw M, Johnson EA. Neurotoxin gene clusters in Clostridium botulinum type a strains: sequence comparison and evolutionary implications. Curr Microbiol. 2003;46(5):345–352.
  • Hill KK, Xie G, Foley BT, et al. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol. 2009;7(1):66.
  • Frankel G, Newton SMC, Schoolnik GK, et al. Intragenic recombination in a flagellin gene: characterization of the H1-j gene of Salmonella typhi. EMBO J. 1989;8(10):3149.
  • Harrington CS, Thomson-Carter FM, Carter PE. Evidence for recombination in the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme. J Clin Microbiol. 1997;35(9):2386–2392.
  • Carter AT, Paul CJ, Mason DR, et al. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics. 2009;10(1):115.
  • Bradshaw M, Dineen SS, Maks ND, et al. Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC 2916. Anaerobe. 2004;10(6):321–333.
  • Bonventre PF, Kempe LL. Physiology of toxin production by Clostridium botulinum types a and B. I. Growth, autolysis, and toxin production. J Bacteriol. 1960;79:18–23.
  • Couesnon A, Raffestin S, Popoff MR. Expression of botulinum neurotoxins a and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR. Microbiology. 2006;152(3):759–770.
  • Ihekwaba AEC, Mura I, Malakar PK, et al. New elements to consider when modeling the hazards associated with botulinum neurotoxin in food. J Bacteriol. 2016;198(2):204–211.
  • Connan C, Denève C, Mazuet C, et al. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon. 2013;75:90–100.
  • Cooksley CM, Davis IJ, Winzer K, et al. Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol. 2010;76(13):4448–4460.
  • Zhang Z, Korkeala H, Dahlsten E, et al. Two-Component Signal Transduction System CBO0787/CBO0786 Represses Transcription from Botulinum Neurotoxin Promoters in Clostridium botulinum ATCC 3502. PLOS Pathogens. 2013;9(3):e1003252.
  • Connan C, Popoff MR. Two-component systems and toxinogenesis regulation in Clostridium botulinum. Res Microbiol. 2015;166(4):332–343.
  • Bonventre PF, Kempe LL. Physiology of toxin production by Clostridium botulinum types a and B. III. Effect of pH and temperature during incubation on growth, autolysis. and toxin production. Appl Microbiol. 1959;7(6):374–377.
  • Leyer GJ, Johnson EA. Repression of toxin production by tryptophan in Clostridium botulinum type E. Arch Microbiol. 1990;154(5):443–447.
  • Fredrick CM, Lin G, Johnson EA. Regulation of botulinum neurotoxin synthesis and toxin complex formation by arginine and glucose in Clostridium botulinum ATCC 3502. Appl Environ Microbiol. 2017;83(13).
  • Bowers LE, Williams OB. Effect of arginine on growth and lysis of Clostridium botulinum. J Bacteriol. 1963;85:1175.
  • Inzalaco HN, Tepp WH, Fredrick C, et al. Posttranslational Regulation of Botulinum Neurotoxin Production in Clostridium botulinum Hall A- hyper. mSphere. 2021;6(4):6.
  • Zhang Z, Dahlsten E, Korkeala H, et al. Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol. 2014;80:7651–7658.
  • Ihekwaba AEC, Mura I, Walshaw J, et al. An Integrative Approach to Computational Modelling of the Gene Regulatory Network Controlling Clostridium botulinum Type A1 Toxin Production. PLoS Comput Biol. 2016;12(11):e1005205.
  • Piggot PJ, Hilbert DW. Sporulation of Bacillus subtilis. Curr Opin Microbiol. 2004;7:579–586.
  • Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nature Rev Microbiol. 2005;3(12):969–978.
  • Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep. 2014;6:212–225.
  • Wörner K, Szurmant H, Chiang C, et al. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol Microbiol. 2006;59:1000–1012.
  • Davidson P, Eutsey R, Redler B, et al. Flexibility and constraint: evolutionary remodeling of the sporulation initiation pathway in Firmicutes. PLoS Genet. 2018;14(9):e1007470.
  • Hoch JA. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol. 1993;47(1):441–465.
  • Kirk DG, Zhang Z, Korkeala H, et al. Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502. Appl Environ Microbiol. 2014;80:5141–5150.
  • Kirk DG, Palonen E, Korkeala H, et al. Evaluation of normalization reference genes for RT-Qpcr analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502. Anaerobe. 2014;26:14–19.
  • Mascher G, Mertaoja A, Korkeala H, et al. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E. Environ Microbiol. 2017;19(10):4287–4300.
  • Imae Y, Strominger JL. Cortex content of asporogenous mutants of Bacillus subtilis. J Bacteriol. 1976;126(2):914–918.
  • Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006;101(3):514–525.
  • Portinha IM, Douillard FP, Korkeala H, et al. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. Int J Mol Sci. 2022;23(2):23.
  • Setlow P. Germination of spores of Bacillus species: what we know and do not know. J Bacteriol. 2014;196:1297–1305.
  • Moir A. How do spores germinate? J Appl Microbiol. 2006;101:526–530.
  • Brunt J, van Vliet AHM, van den Bos F, et al. Diversity of the germination apparatus in Clostridium botulinum groups I, II, III, and IV. Front Microbiol. 2016;7:1702. DOI:10.3389/fmicb.2016.01702.
  • Clauwers C, Lood C, Van Noort V, et al. Canonical germinant receptor is dispensable for spore germination in Clostridium botulinum group II strain NCTC 11219. Sci Rep. 2017;7:1–10.
  • Ross C, Abel-Santos E. The Ger Receptor Family from Sporulating Bacteria. Curr Issues Mol Biol. 2010;12:147.
  • Brunt J, Carter AT, Pye HV, et al. The orphan germinant receptor protein GerXAO (but not GerX3b) is essential for L-alanine induced germination in Clostridium botulinum Group II. Sci Rep. 2018;8(1):1–10.
  • Cañadas IC, Groothuis D, Zygouropoulou M, et al. RiboCas: a Universal CRISPR-Based Editing Tool for Clostridium. ACS Synth Biol. 2019;8(6):1379–1390.
  • Mertaoja A, Nowakowska MB, Mascher G, et al. CRISPR-Cas9-Based Toolkit for Clostridium botulinum Group II Spore and Sporulation Research. Front Microbiol. 2021;12:32.
  • Heap JT, Pennington OJ, Cartman ST, et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods. 2007;70:452–464.
  • Heap JT, Ehsaan M, Cooksley CM, et al. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res. 2012;40(8):e59.
  • Nowakowska MB, Selby K, Przykopanski A, et al. Construction and validation of safe Clostridium botulinum Group II surrogate strain producing inactive botulinum neurotoxin type E toxoid. Sci Rep. 2022;12(1):1790.
  • Chen S, Barbieri JT. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci, USA. 2009;106:9180–9184.
  • Vazquez-Cintron EJ, Vakulenko M, Band PA, et al. Atoxic derivative of botulinum neurotoxin a as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS ONE. 2014;9(1):e85517.
  • Vazquez-Cintron E, Tenezaca L, Angeles C, et al. Pre-clinical study of a novel recombinant botulinum neurotoxin derivative engineered for improved safety. Sci Rep. 2016;6:6.
  • Tao L, Peng L, Berntsson RP-A, et al. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun. 2017; 8(1).
  • Guo J, Pan X, Zhao Y, et al. Engineering clostridia neurotoxins with elevated catalytic activity. Toxicon. 2013;74:158–166.