7,166
Views
8
CrossRef citations to date
0
Altmetric
Review Article - Invited

Pathogenicity and virulence of influenza

Article: 2223057 | Received 21 Feb 2023, Accepted 05 Jun 2023, Published online: 20 Jun 2023

References

  • Krammer F, Smith GJD, Fouchier RAM, et al. Influenza. Nat Rev Dis Primers. 2018;4(1):3. doi: 10.1038/s41572-018-0002-y
  • Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–21. doi: 10.3201/eid1209.05-0979.
  • Shi J, Zeng X, Cui P, et al. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect. 2023;12(1):2155072. doi: 10.1080/22221751.2022.2155072
  • Smyk JM, Szydłowska N, Szulc W, et al. Evolution of influenza viruses—drug resistance, treatment options, and prospects. IJMS. 2022;23(20):12244. doi: 10.3390/ijms232012244.
  • Wright PF, Neumann G, Kawaoka Y. Orthomyxoviruses. In: Knipe DM, Howley PM, editor. Fields Virology. Lippincott Williams & Wilkins; 2013. pp. 1146–1243.
  • Liu R, Sheng Z, Huang C, et al. Influenza D virus. Curr Opin Virol. 2020;44:154–161. doi: 10.1016/j.coviro.2020.08.004
  • Chauhan RP, Gordon ML. An overview of influenza a virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes. 2022;58(4):255–269. doi: 10.1007/s11262-022-01904-w.
  • Huang TS, Palese P, Krystal M. Determination of influenza virus proteins required for genome replication. J Virol. 1990;64(11):5669–5673. doi: 10.1128/jvi.64.11.5669-5673.1990.
  • Pleschka S, Jaskunas R, Engelhardt OG, et al. A plasmid-based reverse genetics system for influenza a virus. J Virol. 1996;70(6):4188–4192. doi: 10.1128/jvi.70.6.4188-4192.1996
  • Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–493. doi: 10.1038/nrmicro.2016.87.
  • Nayak DP, Hui EK-W, Barman S. Assembly and budding of influenza virus. Virus Res. 2004;106(2):147–165. doi: 10.1016/j.virusres.2004.08.012.
  • Noda T, Murakami S, Nakatsu S, et al. Importance of the 1+7 configuration of ribonucleoprotein complexes for influenza a virus genome packaging. Nat Commun. 2018;9(1):54. doi: 10.1038/s41467-017-02517-w
  • Dong G, Peng C, Luo J, et al. Adamantane-resistant influenza a viruses in the world (1902–2013): frequency and distribution of M2 gene mutations. PLoS ONE. 2015;10(3):e0119115. doi: 10.1371/journal.pone.0119115.
  • Chesnokov A, Patel MC, Mishin VP, et al. Replicative fitness of seasonal influenza a viruses with decreased susceptibility to baloxavir. J Infect Dis. 2020;221:367–371. doi: 10.1093/infdis/jiz472
  • Jones JC, Kumar G, Barman S, et al. Identification of the I38T PA substitution as a resistance marker for next-generation influenza virus endonuclease inhibitors. MBio. 2018;9(2):e00430–18. doi: 10.1128/mBio.00430-18.
  • Govorkova EA, Takashita E, Daniels RS, et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018-2020. Antiviral Res. 2022;200:105281. doi: 10.1016/j.antiviral.2022.105281
  • Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol. 2008;3(1):499–522. doi: 10.1146/annurev.pathmechdis.3.121806.154316.
  • de Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza a (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12:1203–1207. doi: 10.1038/nm1477
  • Gu J, Xie Z, Gao Z, et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet. 2007;370(9593):1137–1145. doi: 10.1016/S0140-6736(07)61515-3
  • Flerlage T, Boyd DF, Meliopoulos V, et al. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol. 2021;19(7):425–441. doi: 10.1038/s41579-021-00542-7
  • Olsen B, Munster VJ, Wallensten A, et al. Global patterns of influenza a virus in wild birds. Science. 2006;312(5772):384–388. doi: 10.1126/science.1122438.
  • Caini S, Kusznierz G, Garate VV, et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS ONE. 2019;14(9):e0222381. doi: 10.1371/journal.pone.0222381
  • WHO. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO. 5January 2023 [Internet]. [cited 2023 February 2]; Available from: https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-ah5n1-reported-to-who-2003-2022-5-jan-2023
  • WHO. Avian influenza weekly update [Internet]. 2023. Available from: https://www.who.int/docs/default-source/wpro—documents/emergency/surveillance/avian-influenza/ai_20230113.pdf?sfvrsn=5bc7c406_19
  • Sutton TC. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses. 2018;10(9):461. doi: 10.3390/v10090461.
  • Kupferschmidt K. Bird flu spread between mink is a ‘warning bell’. Science. 2023;379(6630):316–317. doi: 10.1126/science.adg8342.
  • Lowen AC, Spindler KR. It’s in the mix: reassortment of segmented viral genomes. PLOS Pathog. 2018;14(9):e1007200. doi: 10.1371/journal.ppat.1007200.
  • Herfst S, Schrauwen EJA, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336(6088):1534–1541. doi: 10.1126/science.1213362
  • Chen L-M, Blixt O, Stevens J, et al. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology. 2012;422(1):105–113. doi: 10.1016/j.virol.2011.10.006.
  • Zhang Y, Zhang Q, Kong H, et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science. 2013;340(6139):1459–1463. doi: 10.1126/science.1229455
  • Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012;486(7403):420–428. doi: 10.1038/nature10831
  • Linster M, van Boheemen S, de Graaf M, et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell. 2014;157(2):329–339. doi: 10.1016/j.cell.2014.02.040
  • Thompson AJ, Paulson JC. Adaptation of influenza viruses to human airway receptors. J Biol Chem. 2021;296:100017. doi: 10.1074/jbc.REV120.013309
  • Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza a viruses to human-type receptors. Nature. 2006;444(7117):378–382. doi: 10.1038/nature05264
  • Schrauwen EJA, Richard M, Burke DF, et al. Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 virus. J Virol. 2016;90(7):3794–3799. doi: 10.1128/JVI.03052-15
  • de Vries RP, Zhu X, McBride R, et al. Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol. 2014;88:768–773. doi: 10.1128/JVI.02690-13
  • Mair CM, Meyer T, Schneider K, et al. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion. J Virol. 2014;88(22):13189–13200. doi: 10.1128/JVI.01704-14
  • Wang W, Lu B, Zhou H, et al. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol. 2010;84(13):6570–6577. doi: 10.1128/JVI.00221-10
  • Shi Y, Zhang W, Wang F, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science. 2013;342(6155):243–247. doi: 10.1126/science.1242917
  • Peng X, Liu F, Wu H, et al. Amino acid substitutions HA A150V, PA A343T, and PB2 E627K increase the virulence of H5N6 influenza virus in mice. Front Microbiol. 2018;9:453. doi: 10.3389/fmicb.2018.00453
  • Auewarakul P, Suptawiwat O, Kongchanagul A, et al. An avian influenza H5N1 virus that binds to a human-type receptor. J Virol. 2007;81(18):9950–9955. doi: 10.1128/JVI.00468-07
  • Crusat M, Liu J, Palma AS, et al. Changes in the hemagglutinin of H5N1 viruses during human infection–influence on receptor binding. Virology. 2013;447(1–2):326–337. doi: 10.1016/j.virol.2013.08.010
  • Zhu X, Viswanathan K, Raman R, et al. Structural basis for a switch in receptor binding specificity of two H5N1 hemagglutinin mutants. Cell Rep. 2015;13(8):1683–1691. doi: 10.1016/j.celrep.2015.10.027
  • de Vriesx RP, Peng W, Grant OC, et al. Three mutations switch H7N9 influenza to human-type receptor specificity. PLOS Pathog. 2017;13(6):e1006390. doi: 10.1371/journal.ppat.1006390
  • Yang H, Carney PJ, Chang JC, et al. Structural and molecular characterization of the hemagglutinin from the fifth-epidemic-wave A(H7N9) influenza viruses. J Virol. 2018;92(16):e00375–18. doi: 10.1128/JVI.00375-18
  • Liu K, Guo Y, Zheng H, et al. Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. Virol Sin. 2022;38(1):S47–55. doi: 10.1016/j.virs.2022.09.006
  • Glaser L, Stevens J, Zamarin D, et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol. 2005;79(17):11533–11536. doi: 10.1128/JVI.79.17.11533-11536.2005
  • Stevens J, Blixt O, Glaser L, et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol. 2006;355(5):1143–1155. doi: 10.1016/j.jmb.2005.11.002
  • Tumpey TM, Maines TR, Van Hoeven N, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science. 2007;315(5812):655–659. doi: 10.1126/science.1136212
  • Watanabe Y, Ibrahim MS, Ellakany HF, et al. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLOS Pathog. 2011;7(5):e1002068. doi: 10.1371/journal.ppat.1002068
  • Chutinimitkul S, Herfst S, Steel J, et al. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol. 2010;84(22):11802–11813. doi: 10.1128/JVI.01136-10
  • Vines A, Wells K, Matrosovich M, et al. The role of influenza a virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol. 1998;72(9):7626–7631. doi: 10.1128/JVI.72.9.7626-7631.1998
  • Stevens J, Blixt O, Tumpey TM, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312(5772):404–410. doi: 10.1126/science.1124513
  • Chutinimitkul S, van Riel D, Munster VJ, et al. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza a viruses with altered receptor specificity. J Virol. 2010;84:6825–6833. doi: 10.1128/JVI.02737-09
  • Zhang W, Shi Y, Lu X, et al. An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Science. 2013;340(6139):1463–1467. doi: 10.1126/science.1236787
  • Xiong X, Martin SR, Haire LF, et al. Receptor binding by an H7N9 influenza virus from humans. Nature. 2013;499(7459):496–499. doi: 10.1038/nature12372
  • Tzarum N, de Vries RP, Peng W, et al. The 150-loop restricts the host specificity of human H10N8 influenza virus. Cell Rep. 2017;19(2):235–245. doi: 10.1016/j.celrep.2017.03.054
  • Sun X, Belser JA, Maines TR. Adaptation of H9N2 influenza viruses to mammalian hosts: a review of molecular markers. Viruses. 2020;12(5):541. doi:10.3390/v12050541.
  • Xiong X, Coombs PJ, Martin SR, et al. Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature. 2013;497(7449):392–396. doi: 10.1038/nature12144
  • de Bruin ACM, Funk M, Spronken MI, et al. Hemagglutinin subtype specificity and mechanisms of highly pathogenic avian influenza virus genesis. Viruses. 2022;14:1566. doi: 10.3390/v14071566
  • Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999;258(1):1–20. doi:10.1006/viro.1999.9716.
  • Zaraket H, Bridges OA, Russell CJ. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice. J Virol. 2013;87(9):4826–4834. doi:10.1128/JVI.03110-12.
  • Steinhauer DA, Wharton SA, Skehel JJ, et al. Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc Natl Acad Sci U S A. 1991;88(24):11525–11529. doi: 10.1073/pnas.88.24.11525
  • Kim JH, Hatta M, Watanabe S, et al. Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol. 2010;91(5):1284–1289. doi: 10.1099/vir.0.018143-0
  • Graef KM, Vreede FT, Lau Y-F, et al. The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. J Virol. 2010;84(17):8433–8445. doi: 10.1128/JVI.00879-10
  • Bussey KA, Bousse TL, Desmet EA, et al. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza a viruses in mammalian host cells. J Virol. 2010;84(9):4395–4406. doi: 10.1128/JVI.02642-09
  • Song W, Wang P, Mok BW-Y, et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun. 2014;5(1):5509. doi: 10.1038/ncomms6509
  • Van Hoeven N, Pappas C, Belser JA, et al. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci U S A. 2009;106(9):3366–3371. doi: 10.1073/pnas.0813172106
  • Steel J, Lowen AC, Mubareka S, et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLOS Pathog. 2009;5(1):e1000252. doi: 10.1371/journal.ppat.1000252
  • Arai Y, Kawashita N, Ibrahim MS, et al. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLOS Pathog. 2019;15(7):e1007919. doi: 10.1371/journal.ppat.1007919
  • Li Z, Chen H, Jiao P, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol. 2005;79(18):12058–12064. doi: 10.1128/JVI.79.18.12058-12064.2005
  • Gabriel G, Dauber B, Wolff T, et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A. 2005;102(51):18590–18595. doi: 10.1073/pnas.0507415102
  • Elgendy EM, Arai Y, Kawashita N, et al. Identification of polymerase gene mutations that affect viral replication in H5N1 influenza viruses isolated from pigeons. J Gen Virol. 2017;98(1):6–17. doi: 10.1099/jgv.0.000674
  • Li J, Liang L, Jiang L, et al. Viral RNA-binding ability conferred by SUMOylation at PB1 K612 of influenza a virus is essential for viral pathogenesis and transmission. PLOS Pathog. 2021;17(2):e1009336. doi: 10.1371/journal.ppat.1009336
  • Feng X, Wang Z, Shi J, et al. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J Virol. 2016;90(4):1872–1879. doi: 10.1128/JVI.02387-15
  • Yamayoshi S, Yamada S, Fukuyama S, et al. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza a viruses. J Virol. 2014;88(6):3127–3134. doi: 10.1128/JVI.03155-13
  • Hu M, Chu H, Zhang K, et al. Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza a virus. Sci Rep. 2016;6(1):37800. doi: 10.1038/srep37800
  • Bussey KA, Desmet EA, Mattiacio JL, et al. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. J Virol. 2011;85(14):7020–7028. doi: 10.1128/JVI.00522-11
  • Song J, Xu J, Shi J, et al. Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep. 2015;5(1):10510. doi: 10.1038/srep10510
  • Xu G, Zhang X, Gao W, et al. Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity. J Virol. 2016;90(18):8105–8114. doi: 10.1128/JVI.00883-16
  • Mehle A, Dugan VG, Taubenberger JK, et al. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol. 2012;86(3):1750–1757. doi: 10.1128/JVI.06203-11
  • Zhu W, Zou X, Zhou J, et al. Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature. Virol J. 2015;12(1):71. doi: 10.1186/s12985-015-0304-6
  • Gabriel G, Herwig A, Klenk H-D, et al. Interaction of polymerase subunit PB2 and NP with importin α1 is a determinant of host range of influenza a virus. PLOS Pathog. 2008;4(2):e11. doi:10.1371/journal.ppat.0040011.
  • Zhu W, Feng Z, Chen Y, et al. Mammalian-adaptive mutation NP-Q357K in Eurasian H1N1 Swine influenza viruses determines the virulence phenotype in mice. Emerg Microbes Infect. 2019;8(1):989–999. doi: 10.1080/22221751.2019.1635873
  • Kamal RP, Alymova IV, York IA. Evolution and virulence of influenza a virus protein PB1-F2. IJMS. 2017;19(1):96. doi:10.3390/ijms19010096.
  • Schneider C, Nobs SP, Heer AK, et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLOS Pathog. 2014;10(4):e1004053. doi: 10.1371/journal.ppat.1004053
  • van Riel D, Leijten LME, van der Eerden M, et al. Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction. PLOS Pathog. 2011;7(6):e1002099. doi:10.1371/journal.ppat.1002099.
  • Marvin SA, Russier M, Huerta CT, et al. Influenza virus overcomes cellular blocks to productively replicate, impacting macrophage function. J Virol. 2017;91(2):e01417–16. doi: 10.1128/JVI.01417-16
  • Yu S, Ge H, Li S, et al. Modulation of macrophage polarization by viruses: turning off/on host antiviral responses. Front Microbiol. 2022;13:839585. doi: 10.3389/fmicb.2022.839585
  • Zhu B, Wu Y, Huang S, et al. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity. 2021;54(6):1200–1218.e9. doi: 10.1016/j.immuni.2021.04.001
  • Wilkinson TM, Li CKF, Chui CSC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med. 2012;18(2):274–280. doi: 10.1038/nm.2612
  • McKinstry KK, Strutt TM, Kuang Y, et al. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest. 2012;122(8):2847–2856. doi: 10.1172/JCI63689
  • Hayward AC, Wang L, Goonetilleke N, et al. Natural T cell–mediated protection against seasonal and pandemic influenza. Results of the flu watch cohort study. Am J Respir Crit Care Med. 2015;191(12):1422–1431. doi: 10.1164/rccm.201411-1988OC
  • Conenello GM, Zamarin D, Perrone LA, et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza a viruses contributes to increased virulence. PLOS Pathog. 2007;3(10):1414–1421. doi: 10.1371/journal.ppat.0030141
  • Kash JC, Tumpey TM, Proll SC, et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature. 2006;443(7111):578–581. doi: 10.1038/nature05181
  • Shi Y, Wu Y, Zhang W, et al. Enabling the ’host jump’: structural determinants of receptor-binding specificity in influenza a viruses. Nat Rev Microbiol. 2014;12(12):822–831. doi:10.1038/nrmicro3362.
  • Burke DF, Smith DJ, Digard P. A recommended numbering scheme for influenza a HA subtypes. PLoS ONE. 2014;9(11):e112302. doi:10.1371/journal.pone.0112302.
  • Chen J, Lee KH, Steinhauer DA, et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998;95(3):409–417. doi: 10.1016/S0092-8674(00)81771-7
  • de Graaf M, Fouchier RAM. Role of receptor binding specificity in influenza a virus transmission and pathogenesis. Embo J. 2014;33(8):823–841. doi:10.1002/embj.201387442.
  • Ma W, Kahn RE, Richt JA. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med. 2008;3(1):158–166. doi:10.1038/nchina.2008.185.
  • Hanson A, Imai M, Hatta M, et al. Identification of stabilizing mutations in an H5 hemagglutinin influenza virus protein. J Virol. 2016;90(6):2981–2992. doi: 10.1128/JVI.02790-15
  • Richard M, Schrauwen EJA, de Graaf M, et al. Limited airborne transmission of H7N9 influenza a virus between ferrets. Nature. 2013;501(7468):560–563. doi: 10.1038/nature12476
  • Xu R, de Vries RP, Zhu X, et al. Preferential recognition of avian-like receptors in human influenza a H7N9 viruses. Science. 2013;342:1230–1235. doi: 10.1126/science.1243761
  • Herfst S, Chutinimitkul S, Ye J, et al. Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol. 2010;84(8):3752–3758. doi: 10.1128/JVI.02634-09
  • Long JS, Giotis ES, Moncorgé O, et al. Species difference in ANP32A underlies influenza a virus polymerase host restriction. Nature. 2016;529(7584):101–104. doi: 10.1038/nature16474
  • Park YH, Chungu K, Lee SB, et al. Host-specific restriction of avian influenza virus caused by differential dynamics of ANP32 family members. J Infect Dis. 2020;221(1):71–80. doi: 10.1093/infdis/jiz506
  • Liang L, Jiang L, Li J, et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of h7n9 avian influenza virus in mammals. MBio. 2019;10(3):e01162–19. doi: 10.1128/mBio.01162-19
  • Camacho-Zarco AR, Kalayil S, Maurin D, et al. Molecular basis of host-adaptation interactions between influenza virus polymerase PB2 subunit and ANP32A. Nat Commun. 2020;11(1):3656. doi: 10.1038/s41467-020-17407-x
  • Carrique L, Fan H, Walker AP, et al. Host ANP32A mediates the assembly of the influenza virus replicase. Nature. 2020;587(7835):638–643. doi: 10.1038/s41586-020-2927-z
  • Zhang H, Zhang Z, Wang Y, et al. Fundamental contribution and host range determination of ANP32A and ANP32B in influenza a virus polymerase activity. J Virol. 2019;93(13):e00174–19. doi: 10.1128/JVI.00174-19
  • Long JS, Idoko-Akoh A, Mistry B, et al. Species specific differences in use of ANP32 proteins by influenza a virus. Elife. 2019;8:e45066. doi: 10.7554/eLife.45066
  • Gabriel G, Klingel K, Otte A, et al. Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun. 2011;2(1):156. doi: 10.1038/ncomms1158
  • Sediri H, Schwalm F, Gabriel G, et al. Adaptive mutation PB2 D701N promotes nuclear import of influenza vRnps in mammalian cells. Eur J Cell Biol. 2015;94(7–9):368–374. doi: 10.1016/j.ejcb.2015.05.012
  • Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384(1):28–32. doi:10.1016/j.virol.2008.11.044.
  • Guo J, Chen J, Li Y, et al. Sumoylation of matrix protein M1 and filamentous morphology collectively contribute to the replication and virulence of highly pathogenic H5N1 avian influenza viruses in mammals. J Virol. 2022;96(4):e0163021. doi: 10.1128/jvi.01630-21
  • Wang C, Qu R, Zong Y, et al. Enhanced stability of M1 protein mediated by a phospho-resistant mutation promotes the replication of prevailing avian influenza virus in mammals. PLOS Pathog. 2022;18(7):e1010645. doi: 10.1371/journal.ppat.1010645
  • Ayllon J, García-Sastre A. The NS1 protein: a multitasking virulence factor. Curr Top Microbiol Immunol. 2015;386:73–107.
  • Nogales A, Martinez-Sobrido L, Topham DJ, et al. Modulation of innate immune responses by the influenza a NS1 and PA-X proteins. Viruses. 2018;10(12):708. doi: 10.3390/v10120708
  • Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008;82(3):1146–1154. doi: 10.1128/JVI.01698-07
  • Ayllon J, Domingues P, Rajsbaum R, et al. A single amino acid substitution in the novel H7N9 influenza a virus NS1 protein increases CPSF30 binding and virulence. J Virol. 2014;88(20):12146–12151. doi: 10.1128/JVI.01567-14
  • Nogales A, Martinez-Sobrido L, Topham DJ, et al. NS1 protein amino acid changes D189N and V194I affect interferon responses, thermosensitivity, and virulence of circulating H3N2 human influenza a viruses. J Virol. 2017;91(5):e01930–16. doi: 10.1128/JVI.01930-16
  • Monteagudo PL, Muñoz-Moreno R, Fribourg M, et al. Differential modulation of innate immune responses in human primary cells by influenza a viruses carrying human or avian nonstructural protein 1. J Virol. 2019;94(1):e00999–19. doi: 10.1128/JVI.00999-19
  • Jagger BW, Wise HM, Kash JC, et al. An overlapping protein-coding region in influenza a virus segment 3 modulates the host response. Science. 2012;337(6091):199–204. doi: 10.1126/science.1222213
  • Gao H, Sun Y, Hu J, et al. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Sci Rep. 2015;5(1):8262. doi: 10.1038/srep08262
  • Nogales A, Martinez-Sobrido L, Chiem K, et al. Functional evolution of the 2009 pandemic H1N1 influenza virus NS1 and PA in humans. J Virol. 2018;92(19):e01206–18. doi: 10.1128/JVI.01206-18
  • Hayashi T, MacDonald LA, Takimoto T, et al. Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses. J Virol. 2015;89(12):6442–6452. doi: 10.1128/JVI.00319-15
  • Gao H, Xu G, Sun Y, et al. PA-X is a virulence factor in avian H9N2 influenza virus. J Gen Virol. 2015;96(9):2587–2594. doi: 10.1099/jgv.0.000232
  • Lee J, Yu H, Li Y, et al. Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses. Virology. 2017;504:25–35. doi: 10.1016/j.virol.2017.01.015
  • Qin T, Chen Y, Huangfu D, et al. PA-X protein of H1N1 subtype influenza virus disables the nasal mucosal dendritic cells for strengthening virulence. Virulence. 2022;13(1):1928–1942. doi:10.1080/21505594.2022.2139474.
  • Chen W, Calvo PA, Malide D, et al. A novel influenza a virus mitochondrial protein that induces cell death. Nat Med. 2001;7(12):1306–1312. doi: 10.1038/nm1201-1306
  • Cheung P-H-H, Lee T-WT, Chan C-P, et al. Influenza a virus PB1-F2 protein: an ambivalent innate immune modulator and virulence factor. J Leukocyte Biol. 2020;107(5):763–771. doi:10.1002/JLB.4MR0320-206R.
  • Park E-S, Byun YH, Park S, et al. Co-degradation of interferon signaling factor DDX3 by PB1-F2 as a basis for high virulence of 1918 pandemic influenza. Embo J. 2019;38(10):e99475. doi: 10.15252/embj.201899475
  • Cheung P-H-H, Lee T-WT, Kew C, et al. Virus subtype-specific suppression of MAVS aggregation and activation by PB1-F2 protein of influenza a (H7N9) virus. PLOS Pathog. 2020;16(6):e1008611. doi:10.1371/journal.ppat.1008611.
  • Cheung P-H-H, Ye Z-W, Lee T-WT, et al. PB1-F2 protein of highly pathogenic influenza a (H7N9) virus selectively suppresses RNA-induced NLRP3 inflammasome activation through inhibition of MAVS-NLRP3 interaction. J Leukocyte Biol. 2020;108(5):1655–1663. doi:10.1002/JLB.4AB0420-694R.
  • Koutsakos M, Kedzierska K, Subbarao K. Immune responses to avian influenza viruses. J Immunol. 2019;202(2):382–391. doi:10.4049/jimmunol.1801070.
  • Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014;14(5):315–328. doi:10.1038/nri3665.
  • Zhu C, Zhang M, Fu W, et al. Comparison of H7N9 and H9N2 influenza infections in mouse model unravels the importance of early innate immune response in host protection. Front Cell Infect Microbiol. 2022;12:941078. doi: 10.3389/fcimb.2022.941078
  • He Y, Fu W, Cao K, et al. IFN-κ suppresses the replication of influenza a viruses through the IFNAR-MAPK-Fos-CHD6 axis. Sci Signal. 2020;13(626):eaaz3381. doi: 10.1126/scisignal.aaz3381
  • Kobasa D, Jones SM, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 2007;445(7125):319–323. doi: 10.1038/nature05495
  • Yuen KY, Chan PK, Peiris M, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza a H5N1 virus. Lancet. 1998;351(9101):467–471. doi: 10.1016/S0140-6736(98)01182-9
  • Cheung CY, Poon LLM, Lau AS, et al. Induction of proinflammatory cytokines in human macrophages by influenza a (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet. 2002;360(9348):1831–1837. doi: 10.1016/S0140-6736(02)11772-7
  • Gao R, Bhatnagar J, Blau DM, et al. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza a (H1N1): role of the host immune response in pathogenesis. Am J Pathol. 2013;183(4):1258–1268. doi: 10.1016/j.ajpath.2013.06.023
  • Belser JA, Gustin KM, Pearce MB, et al. Pathogenesis and transmission of avian influenza a (H7N9) virus in ferrets and mice. Nature. 2013;501(7468):556–559. doi: 10.1038/nature12391
  • Mok CKP, Lee HHY, Chan MCW, et al. Pathogenicity of the novel A/H7N9 influenza virus in mice. MBio. 2013;4(4):e00362–13. doi:10.1128/mBio.00362-13.
  • Meliopoulos VA, Karlsson EA, Kercher L, et al. Human H7N9 and H5N1 influenza viruses differ in induction of cytokines and tissue tropism. J Virol. 2014;88(22):12982–12991. doi: 10.1128/JVI.01571-14
  • Bi Y, Xie Q, Zhang S, et al. Assessment of the internal genes of influenza a (H7N9) virus contributing to high pathogenicity in mice. J Virol. 2015;89(1):2–13. doi: 10.1128/JVI.02390-14
  • Li X, Shao M, Zeng X, et al. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Sig Transduct Target Ther. 2021;6:1–16. doi: 10.1038/s41392-021-00764-4
  • Fajgenbaum DC, June CH, Longo DL. Cytokine storm. N Engl J Med. 2020;383(23):2255–2273. doi:10.1056/NEJMra2026131.
  • Gu Y, Zuo X, Zhang S, et al. The mechanism behind influenza virus cytokine storm. Viruses. 2021;13(7):1362. doi: 10.3390/v13071362
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–737. doi:10.1038/nri3073.
  • Qi F, Liu M, Li F, et al. Interleukin-37 ameliorates influenza pneumonia by attenuating macrophage cytokine production in a MAPK-dependent manner. Front Microbiol. 2019;10:2482. doi: 10.3389/fmicb.2019.02482
  • Huang S, Zhu B, Cheon IS, et al. PPAR-γ in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J Virol. 2019;93(9):e00030–19. doi: 10.1128/JVI.00030-19
  • Cline TD, Karlsson EA, Seufzer BJ, et al. The hemagglutinin protein of highly pathogenic H5N1 influenza viruses overcomes an early block in the replication cycle to promote productive replication in macrophages. J Virol. 2013;87(3):1411–1419. doi: 10.1128/JVI.02682-12
  • Zhao X, Dai J, Xiao X, et al. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS ONE. 2014;9(8):e104506. doi: 10.1371/journal.pone.0104506
  • Chida J, Hara H, Uchiyama K, et al. Prion protein signaling induces M2 macrophage polarization and protects from lethal influenza infection in mice. PLOS Pathog. 2020;16(8):e1008823. doi: 10.1371/journal.ppat.1008823
  • Arora S, Dev K, Agarwal B, et al. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223:383–396. doi: 10.1016/j.imbio.2017.11.001
  • Cole SL, Dunning J, Kok WL, et al. M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza. JCI Insight. 2017;2(7):e91868. doi: 10.1172/jci.insight.91868
  • Yao D, Bao L, Li F, et al. H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage. Virulence. 2022;13(1):1558–1572. doi:10.1080/21505594.2022.2120951.
  • Geng P, Zhu H, Zhou W, et al. Baicalin inhibits influenza a virus infection via promotion of M1 macrophage polarization. Front Pharmacol. 2020;11:01298. doi: 10.3389/fphar.2020.01298
  • Halstead ES, Umstead TM, Davies ML, et al. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization. Respir Res. 2018;19(1):3. doi: 10.1186/s12931-017-0708-5
  • Hufford MM, Kim TS, Sun J, et al. The effector T cell response to influenza infection. Curr Top Microbiol Immunol. 2015;386:423–455.
  • McMichael AJ. Legacy of the influenza pandemic 1918: the host T cell response. Biomed J. 2018;41(4):242–248. doi:10.1016/j.bj.2018.08.003.
  • McMichael AJ, Gotch FM, Noble GR, et al. Cytotoxic T-cell immunity to influenza. N Engl J Med. 1983;309(1):13–17. doi:10.1056/NEJM198307073090103.
  • Wang Z, Wan Y, Qiu C, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun. 2015;6(1):6833. doi: 10.1038/ncomms7833
  • Guan W, Yang Z, Wu NC, et al. Clinical correlations of transcriptional profile in patients infected with avian influenza H7N9 virus. J Infect Dis. 2018;218(8):1238–1248. doi: 10.1093/infdis/jiy317
  • Duan S, Thomas PG. Balancing immune protection and immune pathology by CD8(+) T-Cell responses to influenza infection. Front Immunol. 2016;7:25. doi: 10.3389/fimmu.2016.00025
  • Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes. Annu Rev Immunol. 2019;37(1):521–546. doi:10.1146/annurev-immunol-042617-053214.
  • Behr FM, Chuwonpad A, Stark R, et al. Armed and ready: transcriptional regulation of tissue-resident memory CD8 T cells. Front Immunol. 2018;9:1770. doi: 10.3389/fimmu.2018.01770
  • Wang Z, Wang S, Goplen NP, et al. PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae. Sci Immunol. 2019;4(36):eaaw1217. doi: 10.1126/sciimmunol.aaw1217
  • Goplen NP, Wu Y, Son YM, et al. Tissue-resident CD8+ T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci Immunol. 2020;5(53):eabc4557. doi: 10.1126/sciimmunol.abc4557
  • Trimarco JD, Heaton NS. From high-throughput to therapeutic: host-directed interventions against influenza viruses. Curr Opin Virol. 2022;53:101198. doi: 10.1016/j.coviro.2021.12.014
  • Wang G, Jiang L, Wang J, et al. The G protein-coupled receptor FFAR2 promotes internalization during influenza a virus entry. J Virol. 2020;94(2):e01707–19. doi: 10.1128/JVI.01707-19
  • Song Y, Huang H, Hu Y, et al. A genome-wide CRISPR/Cas9 gene knockout screen identifies immunoglobulin superfamily DCC subclass member 4 as a key host factor that promotes influenza virus endocytosis. PLOS Pathog. 2021;17(12):e1010141. doi: 10.1371/journal.ppat.1010141
  • Pohl MO, Edinger TO, Stertz S, et al. Prolidase is required for early trafficking events during influenza a virus entry. J Virol. 2014;88(19):11271–11283. doi: 10.1128/JVI.00800-14
  • Edinger TO, Pohl MO, Yángüez E, et al. Cathepsin W is required for escape of influenza a virus from late endosomes. MBio. 2015;6(3):e00297. doi:10.1128/mBio.00297-15.
  • Lee J, Kim J, Son K, et al. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry. Sci Rep. 2017;7(1):43893. doi:10.1038/srep43893.
  • Larson GP, Tran V, Yú S, et al. EPS8 facilitates uncoating of influenza a virus. Cell Reports. 2019;29(8):2175–2183.e4. doi:10.1016/j.celrep.2019.10.064.
  • Yarbrough ML, Mata MA, Sakthivel R, et al. Viral subversion of nucleocytoplasmic trafficking. Traffic. 2014;15(2):127–140. doi: 10.1111/tra.12137
  • Resa-Infante P, Thieme R, Ernst T, et al. Importin-α7 is required for enhanced influenza a virus replication in the alveolar epithelium and severe lung damage in mice. J Virol. 2014;88(14):8166–8179. doi: 10.1128/JVI.00270-14
  • Zheng H, Ma L, Gui R, et al. G protein subunit β1 facilitates influenza a virus replication by promoting the nuclear import of PB2. J Virol. 2022;96(12):e0049422. doi: 10.1128/jvi.00494-22
  • Wang X, Jiang L, Wang G, et al. Influenza a virus use of BinCARD1 to facilitate the binding of viral NP to importin α7 is counteracted by TBK1-p62 axis-mediated autophagy. Cell Mol Immunol. 2022;19(10):1168–1184. doi: 10.1038/s41423-022-00906-w
  • Esparza M, Bhat P, Fontoura BM. Viral-host interactions during splicing and nuclear export of influenza virus mRnas. Curr Opin Virol. 2022;55:101254. doi: 10.1016/j.coviro.2022.101254
  • Peacock TP, Sheppard CM, Staller E, et al. Host determinants of influenza RNA synthesis. Annu Rev Virol. 2019;6(1):215–233. doi: 10.1146/annurev-virology-092917-043339
  • Eisfeld AJ, Kawakami E, Watanabe T, et al. RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol. 2011;85(13):6117–6126. doi: 10.1128/JVI.00378-11
  • Staller E, Barclay WS. Host cell factors that interact with influenza virus ribonucleoproteins. Cold Spring Harb Perspect Med. 2021;11(11):a038307. doi:10.1101/cshperspect.a038307.
  • Li F, Liu J, Yang J, et al. H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: mechanism of avian influenza virus inter-species infection in humans. PLOS Pathog. 2021;17(12):e1010098. doi: 10.1371/journal.ppat.1010098
  • Hui X, Cao L, Xu T, et al. PSMD12-mediated M1 ubiquitination of influenza a virus at K102 regulates viral replication. J Virol. 2022;96(15):e0078622. doi: 10.1128/jvi.00786-22
  • Liu L, Weber A, Linne U, et al. Phosphorylation of influenza a virus matrix protein 1 at threonine 108 controls its multimerization state and functional association with the STRIPAK complex. MBio. 2023;14(1):e0323122. doi:10.1128/mbio.03231-22.
  • Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza virus infections and cellular kinases. Viruses. 2019;11(2):171. doi:10.3390/v11020171.
  • Eierhoff T, Hrincius ER, Rescher U, et al. The epidermal growth factor receptor (EGFR) promotes uptake of influenza a viruses (IAV) into host cells. PLOS Pathog. 2010;6(9):e1001099. doi: 10.1371/journal.ppat.1001099
  • Verma V, Dileepan M, Huang Q, et al. Influenza a virus activates cellular tropomyosin receptor kinase a (TrkA) signaling to promote viral replication and lung inflammation. PLOS Pathog. 2022;18(9):e1010874. doi: 10.1371/journal.ppat.1010874
  • Kedzierski L, Tate MD, Hsu AC, et al. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. Elife. 2017;6:e20444. doi: 10.7554/eLife.20444
  • O’Hanlon R, Leyva-Grado VH, Sourisseau M, et al. An influenza virus entry inhibitor targets class II PI3 kinase and synergizes with oseltamivir. ACS Infect Dis. 2019;5(10):1779–1793. doi: 10.1021/acsinfecdis.9b00230
  • Ueki IF, Min-Oo G, Kalinowski A, et al. Respiratory virus–induced EGFR activation suppresses IRF1-dependent interferon λ and antiviral defense in airway epithelium. J Exp Med. 2013;210(10):1929–1936. doi:10.1084/jem.20121401.
  • Wang Q, Pan W, Wang S, et al. Protein tyrosine phosphatase SHP2 suppresses host innate immunity against influenza a virus by regulating EGFR-mediated signaling. J Virol. 2021;95(6):e02001–20. doi: 10.1128/JVI.02001-20
  • Mitchell HD, Eisfeld AJ, Stratton KG, et al. The role of EGFR in influenza pathogenicity: multiple network-based approaches to identify a key regulator of non-lethal infections. Front Cell Dev Biol. 2019;7:200. doi: 10.3389/fcell.2019.00200
  • Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72(1):609–642. doi:10.1146/annurev.biochem.72.121801.161629.
  • Ricci A, Felici L, Mariotta S, et al. Neurotrophin and neurotrophin receptor protein expression in the human lung. Am J Respir Cell Mol Biol. 2004;30(1):12–19. doi: 10.1165/rcmb.2002-0110OC
  • Dileepan M, Ge XN, Bastan I, et al. Regulation of eosinophil recruitment and allergic airway inflammation by tropomyosin receptor kinase A. J Immunol. 2020;204(3):682–693. doi: 10.4049/jimmunol.1900786
  • Yang Y-G, Tian W-M, Zhang H, et al. Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp Ther Med. 2013;6(5):1251–1258. doi: 10.3892/etm.2013.1284
  • Kumar N, Sharma NR, Ly H, et al. Receptor tyrosine kinase inhibitors that block replication of influenza a and other viruses. Antimicrob Agents Chemother. 2011;55(12):5553–5559. doi: 10.1128/AAC.00725-11
  • Kumar N, Liang Y, Parslow TG, et al. Receptor tyrosine kinase inhibitors block multiple steps of influenza a virus replication. J Virol. 2011;85(6):2818–2827. doi: 10.1128/JVI.01969-10
  • Chen X, Ye H, Kuruvilla R, et al. A chemical-genetic approach to studying neurotrophin signaling. Neuron. 2005;46(1):13–21. doi:10.1016/j.neuron.2005.03.009.
  • Chen L, Xing C, Ma G, et al. N-myc downstream-regulated gene 1 facilitates influenza a virus replication by suppressing canonical NF-κB signaling. Virus Res. 2018;252:22–28. doi: 10.1016/j.virusres.2018.05.001
  • Dam S, Kracht M, Pleschka S, et al. The influenza a virus genotype determines the antiviral function of NF-κB. J Virol. 2016;90(17):7980–7990. doi: 10.1128/JVI.00946-16
  • Lv C, Li Y, Wang T, et al. Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway. Virol Sin. 2022;38(1):S119–127. doi: 10.1016/j.virs.2022.11.010
  • Xu Y, Liu L. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway. Influenza Other Respir Viruses. 2017;11(5):457–463. doi:10.1111/irv.12459.
  • Wurzer WJ, Ehrhardt C, Pleschka S, et al. NF-κB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation. J Biol Chem. 2004;279(30):30931–30937. doi:10.1074/jbc.M403258200.
  • Nimmerjahn F, Dudziak D, Dirmeier U, et al. Active NF-κB signalling is a prerequisite for influenza virus infection. J Gen Virol. 2004;85(8):2347–2356. doi: 10.1099/vir.0.79958-0
  • Ehrhardt C, Rückle A, Hrincius ER, et al. The NF-κB inhibitor SC75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance. Cell Microbiol. 2013;15(7):1198–1211. doi: 10.1111/cmi.12108
  • Droebner K, Haasbach E, Dudek SE, et al. Pharmacodynamics, pharmacokinetics, and antiviral activity of BAY 81-8781, a novel NF-κB inhibiting anti-influenza drug. Front Microbiol. 2017;8:2130. doi: 10.3389/fmicb.2017.02130
  • Haasbach E, Reiling SJ, Ehrhardt C, et al. The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza a virus. Antiviral Res. 2013;99(3):336–344. doi: 10.1016/j.antiviral.2013.06.008
  • Kumar N, Xin Z-T, Liang Y, et al. NF-κB signaling differentially regulates influenza virus RNA synthesis. J Virol. 2008;82(20):9880–9889. doi:10.1128/JVI.00909-08.
  • Kuwahara T, Yamayoshi S, Noda T, et al. G protein pathway suppressor 1 promotes influenza virus polymerase activity by activating the NF-κB signaling pathway. MBio. 2019;10(6):e02867–19. doi:10.1128/mBio.02867-19.
  • Hale BG, Jackson D, Chen Y-H, et al. Influenza a virus NS1 protein binds p85β and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci U S A. 2006;103(38):14194–14199. doi:10.1073/pnas.0606109103.
  • Shin Y-K, Liu Q, Tikoo SK, et al. Influenza a virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J Gen Virol. 2007;88(1):13–18. doi: 10.1099/vir.0.82419-0
  • Hrincius ER, Dierkes R, Anhlan D, et al. Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production. Cell Microbiol. 2011;13(12):1907–1919. doi: 10.1111/j.1462-5822.2011.01680.x
  • Ehrhardt C, Marjuki H, Wolff T, et al. Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cell Microbiol. 2006;8(8):1336–1348. doi: 10.1111/j.1462-5822.2006.00713.x
  • Shin Y-K, Liu Q, Tikoo SK, et al. Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza a virus propagation. J Gen Virol. 2007;88(3):942–950. doi: 10.1099/vir.0.82483-0
  • Deinhardt-Emmer S, Jäckel L, Häring C, et al. Inhibition of phosphatidylinositol 3-kinase by pictilisib blocks influenza virus propagation in cells and in lungs of infected mice. Biomolecules. 2021;11(6):808. doi: 10.3390/biom11060808
  • Pleschka S, Wolff T, Ehrhardt C, et al. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol. 2001;3(3):301–305. doi: 10.1038/35060098
  • Laure M, Hamza H, Koch-Heier J, et al. Antiviral efficacy against influenza virus and pharmacokinetic analysis of a novel MEK-inhibitor, ATR-002, in cell culture and in the mouse model. Antiviral Res. 2020;178:104806. doi: 10.1016/j.antiviral.2020.104806
  • Ludwig S, Wolff T, Ehrhardt C, et al. MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS Lett. 2004;561(1–3):37–43. doi: 10.1016/S0014-5793(04)00108-5
  • Meineke R, Stelz S, Busch M, et al. FDA-Approved inhibitors of RTK/Raf signaling potently impair multiple steps of in vitro and ex vivo influenza a virus infections. Viruses. 2022;14(9):2058. doi: 10.3390/v14092058
  • Zhu L, Ly H, Liang Y. PLC-γ1 signaling plays a subtype-specific role in postbinding cell entry of influenza a virus. J Virol. 2014;88(1):417–424. doi:10.1128/JVI.02591-13.
  • Zhu L, Yuan C, Ding X, et al. PLC-γ1 is involved in the inflammatory response induced by influenza a virus H1N1 infection. Virology. 2016;496:131–137. doi: 10.1016/j.virol.2016.06.003
  • Pinto R, Herold S, Cakarova L, et al. Inhibition of influenza virus-induced NF-kappaB and Raf/MEK/ERK activation can reduce both virus titers and cytokine expression simultaneously in vitro and in vivo. Antiviral Res. 2011;92(1):45–56. doi: 10.1016/j.antiviral.2011.05.009