1,056
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Cyclin-dependent kinase 5 negatively regulates antiviral immune response by disrupting myeloid differentiation primary response protein 88 self-association

, , , , , , & show all
Article: 2223394 | Received 17 Dec 2022, Accepted 05 Jun 2023, Published online: 18 Jun 2023

References

  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–17. Epub 2006/02/25 PubMed PMID: 16497588. doi: 10.1016/j.cell.2006.02.015
  • Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev. 2009;227(1):54–65. Epub 2009/01/06 PubMed PMID: 19120475. doi:10.1111/j.1600-065X.2008.00727.x.
  • Seth RB, Sun L, Ea CK, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122(5):669–682. Epub 2005/08/30 PubMed PMID: 16125763. doi: 10.1016/j.cell.2005.08.012
  • Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005;6(10):981–988. Epub 2005/08/30 PubMed PMID: 16127453. doi:10.1038/ni1243.
  • Xu LG, Wang YY, Han KJ, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell. 2005;19(6):727–740. Epub 2005/09/13 PubMed PMID: 16153868. doi:10.1016/j.molcel.2005.08.014.
  • Fitzgerald KA, McWhirter SM, Faia KL, et al. Ikkepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491–496. Epub 2003/04/15 PubMed PMID: 12692549. doi:10.1038/ni921.
  • Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity. 2006;25(3):349–360. Epub 2006/09/19 PubMed PMID: 16979567. doi:10.1016/j.immuni.2006.08.009.
  • Kang DC, Gopalkrishnan RV, Wu Q, et al. Mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A. 2002;99(2):637–642. Epub 2002/01/24 PubMed PMID: 11805321; PubMed Central PMCID: PMCPMC117358. doi: 10.1073/pnas.022637199
  • Kang DC, Gopalkrishnan RV, Lin L, et al. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene. 2004;23(9):1789–1800. Epub 2003/12/17 PubMed PMID: 14676839. doi:10.1038/sj.onc.1207300.
  • Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011;21(13):R488–93. Epub 2011/07/12 PubMed PMID: 21741580. doi:10.1016/j.cub.2011.05.039.
  • Beutler BA. TLRs and innate immunity. Blood. 2009;113(7):1399–1407. Epub 2008/09/02 PubMed PMID: 18757776; PubMed Central PMCID: PMCPMC2644070. doi:10.1182/blood-2008-07-019307
  • Into T, Inomata M, Niida S, et al. Regulation of MyD88 aggregation and the MyD88-dependent signaling pathway by sequestosome 1 and histone deacetylase 6. J Biol Chem. 2010;285(46):35759–35769. Epub 2010/09/15 PubMed PMID: 20837465; PubMed Central PMCID: PMCPMC2975200. doi:10.1074/jbc.M110.126904.
  • Hu YH, Wang Y, Wang F, et al. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association. Cell Mol Immunol. 2020;18:1708–1717. Epub 2020/04/03 PubMed PMID: 32235916. doi:10.1038/s41423-020-0411-1
  • Honda K, Yanai H, Mizutani T, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A. 2004;101(43):15416–15421. Epub 2004/10/20 PubMed PMID: 15492225; PubMed Central PMCID: PMCPMC523464. doi:10.1073/pnas.0406933101.
  • Kawai T, Sato S, Ishii KJ, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol. 2004;5(10):1061–1068. Epub 2004/09/14 PubMed PMID: 15361868. doi:10.1038/ni1118.
  • Lee YS, Park JS, Kim JH, et al. Smad6-specific recruitment of Smurf E3 ligases mediates TGF-beta1-induced degradation of MyD88 in TLR4 signalling. Nat Commun. 2011;2:460. Epub 2011/09/08 PubMed PMID: 21897371. doi:10.1038/ncomms1469
  • Wang C, Chen T, Zhang J, et al. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat Immunol. 2009;10(7):744–752. Epub 2009/06/02 PubMed PMID: 19483718. doi:10.1038/ni.1742.
  • Han C, Jin J, Xu S, et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol. 2010;11(8):734–742. Epub 20100718 PubMed PMID: 20639876. doi:10.1038/ni.1908.
  • Gurung P, Fan G, Lukens JR, et al. Tyrosine Kinase SYK licenses MyD88 adaptor protein to instigate IL-1alpha-mediated inflammatory disease. Immunity. 2017;46(4):635–648. Epub 2017/04/16 PubMed PMID: 28410990; PubMed Central PMCID: PMCPMC5501252. doi:10.1016/j.immuni.2017.03.014.
  • Loiarro M, Volpe E, Ruggiero V, et al. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells. J Biol Chem. 2013;288(42):30210–30222. Epub 20130909 PubMed PMID: 24019529; PubMed Central PMCID: PMCPMC3798488. doi:10.1074/jbc.M113.490946.
  • Xie L, Liu C, Wang L, et al. Protein phosphatase 2A catalytic subunit alpha plays a MyD88-dependent, central role in the gene-specific regulation of endotoxin tolerance. Cell Rep. 2013;3(3):678–688. Epub 2013/02/26 PubMed PMID: 23434512; PubMed Central PMCID: PMCPMC4060247. doi:10.1016/j.celrep.2013.01.029.
  • Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–134. Epub 1995/03/09 PubMed PMID: 7877684. doi: 10.1038/374131a0
  • Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol. 2001;2(10):749–759. Epub 2001/10/05 PubMed PMID: 11584302. doi:10.1038/35096019
  • Humbert S, Dhavan R, Tsai L. P39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci. 2000;113(Pt 6):975–983. Epub 2000/02/22. PubMed PMID: 10683146. doi:10.1242/jcs.113.6.975.
  • Zhuang K, Zhang J, Xiong M, et al. CDK5 functions as a tumor promoter in human colorectal cancer via modulating the ERK5-AP-1 axis. Cell Death Dis. 2016;7(10):e2415. Epub 2016/10/14 PubMed PMID: 27735944; PubMed Central PMCID: PMCPMC5133995. doi:10.1038/cddis.2016.333.
  • Zhang X, Zhong T, Dang Y, et al. Aberrant expression of CDK5 infers poor outcomes for nasopharyngeal carcinoma patients. Int J Clin Exp Pathol. 2015;8(7):8066–8074. Epub 2015/09/05. PubMed PMID: 26339373; PubMed Central PMCID: PMCPMC4555701.
  • Zeng J, Xie S, Liu Y, et al. CDK5 functions as a tumor promoter in human lung cancer. J Cancer. 2018;9(21):3950–3961. Epub 2018/11/10 PubMed PMID: 30410599; PubMed Central PMCID: PMCPMC6218768. doi:10.7150/jca.25967.
  • Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal. 2012;24(1):44–52. Epub 2011/09/20 PubMed PMID: 21924349. doi:10.1016/j.cellsig.2011.08.022.
  • Arif A. Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochem Pharmacol. 2012;84(8):985–993. Epub 2012/07/17 PubMed PMID: 22795893. doi:10.1016/j.bcp.2012.06.027.
  • Lam E, Choi SH, Pareek TK, et al. Cyclin-dependent kinase 5 represses Foxp3 gene expression and Treg development through specific phosphorylation of Stat3 at Serine 727. Mol Immunol. 2015;67(2 Pt B):317–324. Epub 2015/07/23 PubMed PMID: 26198700; PubMed Central PMCID: PMCPMC4734131. doi:10.1016/j.molimm.2015.06.015.
  • Lam E, Pareek TK, Letterio JJ. Cdk5 controls IL-2 gene expression via repression of the mSin3a-HDAC complex. Cell Cycle. 2015;14(8):1327–1336. Epub 2015/03/19 PubMed PMID: 25785643; PubMed Central PMCID: PMCPMC4614394. doi:10.4161/15384101.2014.987621
  • Pareek TK, Lam E, Zheng XJ, et al. Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J Exp Med. 2010;207(11):2507–2519. PubMed PMID: WOS:000285504900019. doi:10.1084/jem.20100876.
  • Zhao YY, Sun XF, Nie XL, et al. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLoS Pathog. 2012;8(12). ARTN e1003086 10.1371/journal.ppat.1003086. PubMed PMID: WOS:000312907100038.
  • Lei C, Yang J, Hu J, et al. On the calculation of TCID50 for quantitation of virus infectivity. Virol Sin. 2021;36(1):141–144. Epub 2020/05/28 PubMed PMID: 32458296; PubMed Central PMCID: PMCPMC7973348. doi:10.1007/s12250-020-00230-5.
  • Wang JQ, Zhu S, Wang YH, et al. Miro2 supplies a platform for Parkin translocation to damaged mitochondria. Sci Bull. 2019;64(11):730–747. PubMed PMID: WOS:000472947800004. doi:10.1016/j.scib.2019.04.033.
  • Tarricone C, Dhavan R, Peng J, et al. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell. 2001;8(3):657–669. Epub 2001/10/05 PubMed PMID: 11583627. doi:10.1016/s1097-2765(01)00343-4.
  • Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615–622. Epub 1999/12/22 PubMed PMID: 10604467. doi:10.1038/45159.
  • Zukerberg LR, Patrick GN, Nikolic M, et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron. 2000;26(3):633–646. Epub 2000/07/15 PubMed PMID: 10896159. doi:10.1016/s0896-6273(00)81200-3.
  • Xu S, Li X, Gong Z, et al. Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration. Mol & Cell Proteomics. 2014;13(11):2986–3000. Epub 2014/08/07 PubMed PMID: 25096995; PubMed Central PMCID: PMCPMC4223486. doi:10.1074/mcp.M113.036699.
  • Lin H, Chen MC, Chiu CY, et al. Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem. 2007;282(5):2776–2784. Epub 2006/12/06 PubMed PMID: 17145757. doi:10.1074/jbc.M607234200.
  • Lund JM, Alexopoulou L, Sato A, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A. 2004;101(15):5598–5603. Epub 2004/03/23 PubMed PMID: 15034168; PubMed Central PMCID: PMCPMC397437. doi:10.1073/pnas.0400937101.
  • Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885–890. Epub 2010/05/21 PubMed PMID: 20485341; PubMed Central PMCID: PMCPMC2888693. doi:10.1038/nature09121.
  • Na YR, Jung D, Gu GJ, et al. The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production. Sci Signal. 2015;8(404):ra121. Epub 2015/11/26 PubMed PMID: 26602020. doi:10.1126/scisignal.aab3156.
  • Pfander P, Fidan M, Burret U, et al. Cdk5 deletion enhances the anti-inflammatory potential of GC-Mediated GR activation during inflammation. Front Immunol. 2019;10:1554. Epub 2019/07/30 PubMed PMID: 31354714; PubMed Central PMCID: PMCPMC6635475. doi:10.3389/fimmu.2019.01554
  • Pareek TK, Lam E, Zheng X, et al. Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J Exp Med. 2010;207(11):2507–2519. Epub 2010/10/13 PubMed PMID: 20937706; PubMed Central PMCID: PMCPMC2964575. doi:10.1084/jem.20100876.
  • Askew D, Pareek TK, Eid S, et al. Cyclin-dependent kinase 5 activity is required for allogeneic T-cell responses after hematopoietic cell transplantation in mice. Blood. 2017;129(2):246–256. Epub 20161114 PubMed PMID: 28064242; PubMed Central PMCID: PMCPMC5234215. doi:10.1182/blood-2016-05-702738.
  • Wang X., Sun L., Guan S., Yan H., Huang X., Liang M., Zhang R., & Luo, T. Cyclin-dependent kinase 5 inhibitor attenuates lipopolysaccharide-induced neuroinflammation through metabolic reprogramming. Eur J Pharmacol. 2022;929:175118. doi:10.1016/j.ejphar.2022.175118
  • Shukla AK, Spurrier J, Kuzina I, et al. Hyperactive Innate immunity causes degeneration of dopamine neurons upon altering activity of Cdk5. Cell Rep. 2019;: . PubMed PMID: 30605670; PubMed Central PMCID: PMCPMC6442473. doi:10.1016/j.celrep.2018.12.025.
  • Rakoff-Nahoum, S., & Medzhitov, R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9(1):57–63. doi: 10.1038/nrc2541
  • Guillamot, M. The E3 ubiquitin ligase SPOP controls resolution of systemic inflammation by triggering MYD88 degradation. Nat Immunol. 2019;20(9):1196–1207. doi:10.1038/s41590-019-0454-6
  • Heun Y, Pircher J, Czermak T, et al. Inactivation of the tyrosine phosphatase SHP-2 drives vascular dysfunction in Sepsis. EBioMedicine. 2019;42:120–132. Epub 2019/03/25 PubMed PMID: 30905847; PubMed Central PMCID: PMCPMC6491420. doi:10.1016/j.ebiom.2019.03.034.
  • Liang Q, Li L, Zhang J, et al. CDK5 is essential for TGF-beta1-induced epithelial-mesenchymal transition and breast cancer progression. Sci Rep. 2013;3:2932. Epub 2013/10/15 PubMed PMID: 24121667; PubMed Central PMCID: PMCPMC3796304. doi:10.1038/srep02932
  • Oner M, Lin E, Chen MC, et al. Future aspects of CDK5 in prostate cancer: from pathogenesis to therapeutic implications. Int J Mol Sci. 2019;20(16): Epub 2019/08/10 PubMed PMID: 31395805; PubMed Central PMCID: PMCPMC6720211. doi:10.3390/ijms20163881.
  • Gao GB, Sun Y, Fang RD, et al. Post-translational modifications of CDK5 and their biological roles in cancer. Mol Biomed. 2021;2(1):22. Epub 2022/01/11 PubMed PMID: 35006426; PubMed Central PMCID: PMCPMC8607427. doi: 10.1186/s43556-021-00029-0
  • Zeng Y, Liu Q, Wang Y, et al. CDK5 activates hippo signaling to confer resistance to radiation therapy via upregulating TAZ in lung cancer. Int J Radiat Oncol Biol Phys. 2020;108(3):758–769. Epub 2020/05/15 PubMed PMID: 32407930. doi:10.1016/j.ijrobp.2020.05.005.
  • Hamilton G, Klameth L, Rath B, et al. Synergism of cyclin-dependent kinase inhibitors with camptothecin derivatives in small cell lung cancer cell lines. Molecules. 2014;19(2):2077–2088. Epub 2014/02/20 PubMed PMID: 24549232; PubMed Central PMCID: PMCPMC6271949. doi:10.3390/molecules19022077
  • Prince G, Yang TY, Lin H, et al. Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. Chin J Physiol. 2019;62(6):231–240. Epub 2019/12/04 PubMed PMID: 31793458. doi:10.4103/CJP.CJP_67_19.
  • Liu JL, Wang XY, Huang BX, et al. Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Med Oncol. 2011;28(3):673–678. Epub 2010/04/01 PubMed PMID: 20354813. doi:10.1007/s12032-010-9510-7.
  • Zitvogel L, Galluzzi L, Kepp O, et al. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–414. Epub 2015/06/02 PubMed PMID: 26027717. doi:10.1038/nri3845.
  • Yang X, Zhang X, Fu ML, et al. Targeting the tumor microenvironment with interferon-beta bridges innate and adaptive immune responses. Cancer Cell. 2014;25(1):37–48. Epub 2014/01/18 PubMed PMID: 24434209; PubMed Central PMCID: PMCPMC3927846. doi:10.1016/j.ccr.2013.12.004.
  • Vacchelli E, Aranda F, Eggermont A, et al. Trial Watch: tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3(1):e27048. Epub 2014/03/08 PubMed PMID: 24605265; PubMed Central PMCID: PMCPMC3937194. doi:10.4161/onci.27048.
  • Chen KS, Reinshagen C, Van Schaik TA, et al. Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity. Sci Transl Med. 2023;15(677):eabo4778. Epub 2023/01/05 PubMed PMID: 36599004; PubMed Central PMCID: PMCPMC10068810. doi:10.1126/scitranslmed.abo4778.
  • Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–670. Epub 20120710 PubMed PMID: 22781695; PubMed Central PMCID: PMCPMC3888062. doi: 10.1038/nbt.2287
  • Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol. 2012;93(Pt 12):2529–2545. Epub 2012/10/12 PubMed PMID: 23052398; PubMed Central PMCID: PMCPMC4091291. doi:10.1099/vir.0.046672-0.