1,120
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Inhibitory effects of a maleimide compound on the virulence factors of Candida albicans

ORCID Icon, ORCID Icon, , , , , , & show all
Article: 2230009 | Received 12 Dec 2022, Accepted 21 Jun 2023, Published online: 02 Jul 2023

References

  • McCarty TP, White CM, Pappas PG. Candidemia and invasive candidiasis. Infect Dis Clin North Am. 2021;35(2):389–17. doi: 10.1016/j.idc.2021.03.007
  • Jeffery-Smith A, Taori SK, Schelenz S, et al. Candida auris: a review of the literature. Clin Microbiol Rev. 2018;31(1). doi: 10.1128/CMR.00029-17
  • Tong Y, Tang J. Candida albicans infection and intestinal immunity. Microbiol Res. 2017;198:27–35. doi: 10.1016/j.micres.2017.02.002
  • An Y, Dong Y, Liu M, et al. Novel naphthylamide derivatives as dual-target antifungal inhibitors: design, synthesis and biological evaluation. Eur J Med Chem. 2021;210:112991. doi: 10.1016/j.ejmech.2020.112991
  • Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792–798. doi: 10.1016/j.cmi.2019.03.028
  • Dahiya S, Sharma N, Punia A, et al. Antimycotic drugs and their mechanisms of resistance to Candida species. Curr Drug Targets. 2022;23(2):116–125. doi: 10.2174/1389450122666210719124143
  • Gioia F, Gomez-Lopez A, Alvarez ME, et al. Pharmacokinetics of echinocandins in suspected Candida peritonitis: a potential risk for resistance. Int J Infect Dis. 2020;101:24–28. doi: 10.1016/j.ijid.2020.09.019
  • Sortino M, Cechinel Filho V, Corrêa R, et al. N-Phenyl and N-phenylalkyl-maleimides acting against Candida spp.: time-to-kill, stability, interaction with maleamic acids. Bioorgan Med Chem. 2008;16(1):560–568. doi: 10.1016/j.bmc.2007.08.030
  • Bhagare AM, Aher JS, Gaware MR, et al. Novel Schiff bases derived from N-aryl maleimide derivatives as an effective antimicrobial agent: the oretical and experimental approach. Bioorg Chem. 2020;103:104129. doi: 10.1016/j.bioorg.2020.104129
  • CLSI (2020). Clinical and Laboratory Standards Institute Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts CLSI Document M44. 3rd ed (Wayne, PA: Clinical and Laboratory Standards Institute;). Available at: https://clsi.org/standards/products/microbiology/documents/m44/
  • Song M, Zhang M, Lu J, et al. Palmarumycin P3 reverses mrr1-mediated azole resistance by blocking the efflux pump Mdr1. Antimicrob Agents Chemother. 2022;66(3):e0212621. doi: 10.1128/aac.02126-21
  • Chang W, Li Y, Zhang L, et al. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol Pharm Bull. 2012;35(10):1794–1801. doi: 10.1248/bpb.b12-00511
  • Wang M, Gu K, Ding W, et al. Antifungal effect of a new photosensitizer derived from BODIPY on Candida albicans biofilms. Photodiagn Photodyn. 2022;39:102946. doi: 10.1016/j.pdpdt.2022.102946
  • Biniarz P, Baranowska G, Feder-Kubis J, et al. The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Anton leeuw int j g. 2015;108(2):343–353. doi: 10.1007/s10482-015-0486-3
  • Li Y, Shan M, Yan M, et al. Anticandidal activity of kalopanaxsaponin a: effect on proliferation, cell morphology, and key virulence attributes of Candida albicans. Front Microbiol. 2019;10:2844. doi: 10.3389/fmicb.2019.02844
  • Li Y, Chang W, Zhang M, et al. Natural product solasodine-3-O-β-D-glucopyranoside inhibits the virulence factors of Candida albicans. FEMS Yeast Res. 2015;15(6):fov060. doi: 10.1093/femsyr/fov060
  • Zhang L, Chang W, Sun B, et al. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS One. 2011;6(12):e28953. doi: 10.1371/journal.pone.0028953
  • Wu XZ, Cheng AX, Sun LM, et al. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans. Acta Pharmacol Sin. 2008;29(12):1478–1485. doi: 10.1111/j.1745-7254.2008.00900.x
  • Li Y, Chang W, Zhang M, et al. Diorcinol D exerts fungicidal action against Candida albicans through cytoplasm membrane destruction and ROS accumulation. PLoS One. 2015;10(6):e0128693. doi: 10.1371/journal.pone.0128693
  • Duan X, Xie Z, Ma L, et al. Selective metal chelation by a thiosemicarbazone derivative interferes with mitochondrial respiration and ribosome biogenesis in Candida albicans. Microbiol Spectr. 2022;10(3):e0195121. doi: 10.1128/spectrum.01951-21
  • Girardot M, Millot M, Hamion G, et al. Lichen polyphenolic compounds for the eradication of Candida albicans biofilms. Front Cell Infect Microbiol. 2021;11(null):698883. doi: 10.3389/fcimb.2021.698883
  • Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis. 2002;2(2):73–85. doi: 10.1016/s1473-3099(02)00181-0
  • Ardizzoni A, Boaretto G, Pericolini E, et al. Effects of benzydamine and mouthwashes containing benzydamine on Candida albicans adhesion, biofilm formation, regrowth, and persistence. Clin Oral Invest. 2022;26(4):3613–3625. doi: 10.1007/s00784-021-04330-8
  • Qiu L, Zhang TS, Song JZ, et al. BbWor1, a regulator of morphological transition, is involved in conidium-hypha switching, blastospore propagation, and virulence in Beauveria bassiana. Microbiol Spectr. 2021;9(1):e0020321. doi: 10.1128/Spectrum.00203-21
  • Kanchanapiboon J, Kongsa U, Pattamadilok D, et al. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. J Ethnopharmacol. 2020;261:113193. doi: 10.1016/j.jep.2020.113193
  • Honorato L, de Araujo JFD, Ellis CC, et al. Extracellular vesicles regulate biofilm formation and yeast-to-hypha differentiation in Candida albicans. MBio. 2022;13(3):e0030122. doi: 10.1128/mbio.00301-22
  • Chen M, Cheng T, Xu C, et al. Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1α/IL-17 axis by inhibiting cAMP mediated filamentation in Candida albicans-Candida glabrata dual biofilms. Virulence. 2022;13(1):428–443. doi: 10.1080/21505594.2022.2035066
  • Lee JH, Kim YG, Khadke SK, et al. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microbiol Biotechnol. 2021;14(4):1353–1366. doi: 10.1111/1751-7915.13710
  • Liu RH, Shang ZC, Li TX, et al. In Vitro Antibiofilm Activity of Eucarobustol E against Candida albicans. Antimicrob Agents Ch. 2017;61(8). doi: 10.1128/AAC.02707-16
  • Pukkila-Worley R, Ausubel FM, Mylonakis E, et al. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLOS Pathog. 2011;7(6):e1002074. doi: 10.1371/journal.ppat.1002074
  • Wang B, Wang Y, Zhang L, et al. Surveillance study of epidemiology, antifungal susceptibility and risk factors of invasive candidiasis in critically ill Patients. Clin Lab. 2022;68(6/2022). doi: 10.7754/Clin.Lab.2021.211001
  • Hoenigl M, Sprute R, Arastehfar A, et al. Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Inv Drug. 2022;31(8):1–18. doi: 10.1080/13543784.2022.2086120
  • Fan Y, Lu Y, Chen X, et al. Anti-leishmanial and cytotoxic activities of a series of maleimides: synthesis, biological evaluation and structure-activity relationship. Molecules. 2018;23(11):2878. doi: 10.3390/molecules23112878
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128. doi: 10.4161/viru.22913
  • McCall AD, Pathirana RU, Prabhakar A, et al. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes. 2019;5(1):21. doi: 10.1038/s41522-021-00264-x
  • Fu Y, Ibrahim AS, Sheppard DC, et al. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol. 2002;44(1):61–72. doi: 10.1046/j.1365-2958.2002.02873.x
  • Zhao X, Oh SH, Cheng G, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiol-sgm. 2004;150(7):2415–2428. doi: 10.1099/mic.0.26943-0
  • Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 2009;8(12):1909–1913. doi: 10.1128/EC.00245-09
  • Kumar A. The complex genetic basis and multilayered regulatory control of yeast pseudohyphal growth. Ann Rev Genet. 2021;55(1):1–21. doi: 10.1146/annurev-genet-071719-020249
  • Naglik JR, Moyes DL, Wächtler B, et al. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 2011;13(12–13):963–976. doi: 10.1016/j.micinf.2011.06.009
  • Mitchell AP. Microbiology: fungus produces a toxic surprise. Nature. 2016;532(7597):41–42. doi: 10.1038/nature17319
  • Antinori S, Milazzo L, Sollima S, et al. Candidemia and invasive candidiasis in adults: a narrative review. Eur J Intern Med. 2016;34:21–28. doi: 10.1016/j.ejim.2016.06.029
  • Chen H, Zhou X, Ren B, et al. The regulation of hyphae growth in Candida albicans. Virulence. 2020;11(1):337–348. doi: 10.1080/21505594.2020.1748930
  • Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 2006;8(9):1382–1391. doi: 10.1111/j.1462-5822.2006.00761.x
  • Zarnowski R, Noll A, Chevrette MG, et al. Coordination of fungal biofilm development by extracellular vesicle cargo. Nat Commun. 2021;12(1):6235. doi: 10.1038/s41467-021-26525-z
  • Monniot C, Boisramé A, Da Costa G, et al. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation. PLoS One. 2013;8(12):e82395. doi: 10.1371/journal.pone.0082395
  • Song P, Peng G, Yue H, et al. Candidalysin, a virulence factor of candida albicans, stimulates mast cells by mediating cross-talk between signaling pathways activated by the dectin-1 receptor and MAPKs. J Clin Immunol. 2022;42(5):1009–1025. doi: 10.1007/s10875-022-01267-9
  • Huang G, Huang Q, Wei Y, et al. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase a pathway in Candida albicans. Mol Microbiol. 2019;111(1):6–16. doi: 10.1111/mmi.14148
  • Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Ch. 2003;47(7):2366–2369. doi: 10.1128/AAC.47.7.2366-2369.2003
  • Navarathna DHMLP, Hornby JM, Krishnan N, et al. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun. 2007;75(4):1609–1618. doi: 10.1128/IAI.01182-06
  • Hisajima T, Maruyama N, Tanabe Y, et al. Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol. 2008;52(7):327–333. doi: 10.1111/j.1348-0421.2008.00044.x
  • Kruppa M, Krom BP, Chauhan N, et al. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell. 2004;3(4):1062–1065. doi: 10.1128/EC.3.4.1062-1065.2004
  • Nagy F, Vitális E, Jakab Á, et al. In vitro and in vivo effect of exogenous farnesol exposure against Candida auris. Front Microbiol. 2020;11(null):957. doi: 10.3389/fmicb.2020.00957
  • Mosel DD, Dumitru R, Hornby JM, et al. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microb. 2005;71(8):4938–4940. doi: 10.1128/AEM.71.8.4938-4940.2005
  • Abe S, Tsunashima R, Iijima R, et al. Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. Microbiol Immunol. 2009;53(6):323–330. doi: 10.1111/j.1348-0421.2009.00128.x
  • Jemel S, Guillot J, Kallel K, et al. Galleria mellonella for the evaluation of antifungal efficacy against medically important fungi, a narrative review. Microorganisms. 2020;8(3):390. null. doi: 10.3390/microorganisms8030390