868
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Identification of miRnas with possible prognostic roles for HAM/TSP

, , , , , , , , & ORCID Icon show all
Article: 2230015 | Received 26 Dec 2022, Accepted 21 Jun 2023, Published online: 02 Jul 2023

References

  • Poiesz BJ, Ruscetti FW, Gazdar AF, et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77(12):7415–16. doi: 10.1073/pnas.77.12.7415
  • Gessain A, Cassar O. Epidemiological aspects and world distribution of htlv-1 infection. Front Microbiol. 2012;3:388. doi: 10.3389/fmicb.2012.00388
  • Bangham CR, Araujo A, Yamano Y, et al. HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers. 2015;1(1):15012. doi: 10.1038/nrdp.2015.12
  • Khan RB, Bertorini TE, Levin MC. HTLV-1 and its neurological complications. Neurologist. 2001;7(5):271–278. doi: 10.1097/00127893-200109000-00001
  • Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007;7(4):270–280. doi: 10.1038/nrc2111
  • Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development. 2008;135(7):1201–1214. doi: 10.1242/dev.005629
  • Mattick JS, Makunin IV. Human molecular genetics. Hum Mol Genet. 2006;15(Spec No 1):R17–29. doi: 10.1093/hmg/ddl046
  • Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–279. doi: 10.1261/rna.2183803
  • Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–441. doi: 10.1093/nar/gkg006
  • Li J, Wu B, Xu J, et al. Genome-wide identification and characterization of long intergenic non-coding RNAs in ganoderma lucidum. PLoS One. 2014;9(6):e99442. doi: 10.1371/journal.pone.0099442
  • Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36. doi: 10.1016/S0092-8674(03)00231-9
  • Wienholds E, Koudijs MJ, van Eeden FJ, et al. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genet. 2003;35:217–218. doi: 10.1038/ng1251
  • Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13(9):790–795. doi: 10.1016/S0960-9822(03)00250-1
  • Aushev VN, Lee E, Zhu J, et al. Novel predictors of breast cancer survival derived from miRNA activity analysis. Clin Cancer Res. 2018;24(3):581–591. doi: 10.1158/1078-0432.CCR-17-0996
  • Regev K, Paul A, Healy B, et al. Comprehensive evaluation of serum microRnas as biomarkers in multiple sclerosis. Neurol(r) Neuroimmunol Neuroinflammation. 2016;3(5):e267. doi: 10.1212/NXI.0000000000000267
  • Zheng Z, Ke X, Wang M, et al. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol. 2013;87(10):5645–5656. doi: 10.1128/JVI.02655-12
  • Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–1581. doi: 10.1126/science.1113329
  • Wen W, He Z, Jing Q, et al. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus. J Infect. 2015;70(6):631–640. doi: 10.1016/j.jinf.2014.12.001
  • Santhakumar D, Forster T, Laqtom NN, et al. Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRnas. Proc Natl Acad Sci USA. 2010;107:13830–13835. doi: 10.1073/pnas.1008861107
  • Pichler K, Schneider G, Grassmann R. MicroRNA miR-146a and further oncogenesis-related cellular microRnas are dysregulated in HTLV-1-transformed T lymphocytes. Retrovirology. 2008;5(1):100. doi: 10.1186/1742-4690-5-100
  • Bellon M, Lepelletier Y, Hermine O, et al. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood. 2009;113(20):4914–4917. doi: 10.1182/blood-2008-11-189845
  • Yeung ML, Yasunaga J, Bennasser Y, et al. Roles for MicroRNAs, miR-93 and miR-130b, and tumor protein 53–induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human t-cell lymphotrophic virus 1. Cancer Res. 2008;68(21):8976–8985. doi: 10.1158/0008-5472.CAN-08-0769
  • Yamagishi M, Nakano K, Miyake A, et al. Polycomb-mediated loss of mir-31 activates nik-dependent nf-κb pathway in adult t cell leukemia and other cancers. Cancer Cell. 2012;21(1):121–135. doi: 10.1016/j.ccr.2011.12.015
  • Osame M. Review of WHO Kagoshima meeting and diagnostic guidelines for HAM/TSP. In: Human retrovirology: hTLV. New York: Raven Press; 1990. p. 191–197.
  • de Souza DR V, Pessoa R, Nascimento A, et al. Small RNA profiles of HTLV‑1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T‑cell antigen receptor γ‑chain using massively parallel sequencing: a pilot study. Oncol Lett. 2020;20(3):2311–2321. doi: 10.3892/ol.2020.11803
  • Heneine W, Khabbaz RF, Lal RB, et al. Sensitive and specific polymerase chain reaction assays for diagnosis of human T-cell lymphotropic virus type I (HTLV-I) and HTLV-II infections in HTLV-I/II-seropositive individuals. J Clin Microbiol. 1992;30(6):1605–1607. doi: 10.1128/jcm.30.6.1605-1607.1992
  • Pessoa R, Watanabe JT, Nukui Y, et al. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLoS One. 2014;9(3):e93374. doi: 10.1371/journal.pone.0093374
  • Clissa PB, Pessôa R, Ferraz KF, et al. Data on global expression of non-coding RNome in mice gastrocnemius muscle exposed to jararhagin, snake venom metalloproteinase. Data Brief. 2016;9:685–688. doi: 10.1016/j.dib.2016.09.052
  • Langenberger D, Bermudez-Santana CI, Stadler PF, et al. Identification and classification of small RNAs in transcriptome sequence data. Pac Symp Biocomput. 2010;1:80–87.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Sticht C, De La Torre C, Parveen A, et al. miRwalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13:e0206239. doi: 10.1371/journal.pone.0206239
  • Yamano Y, Nagai M, Brennan M, et al. Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood. 2002;99:88–94. doi: 10.1182/blood.V99.1.88
  • Haziot ME, Gascon MR, Assone T, et al. Detection of clinical and neurological signs in apparently asymptomatic HTLV-1 infected carriers: association with high proviral load. PLoS neglected tropical diseases. PLoS negl trop dis. 2019;13(5):e0006967. doi: 10.1371/journal.pntd.0006967
  • Coutinho R Jr., Grassi MF, Korngold AB, et al. Human T lymphotropic virus type 1 (HTLV-1) proviral load induces activation of T-lymphocytes in asymptomatic carriers. BMC Infect Dis. 2014;14(1):453. doi: 10.1186/1471-2334-14-453
  • Desai SS, Hentz VR. The treatment of Dupuytren disease. J Hand Surg. 2011;36(5):936–942. doi: 10.1016/j.jhsa.2011.03.002
  • Yamano Y, Sato T. Clinical pathophysiology of human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol. 2012;3:389. doi: 10.3389/fmicb.2012.00389
  • Sato T, Yagishita N, Tamaki K, et al. Proposal of classification criteria for htlv-1-associated myelopathy/tropical spastic paraparesis disease activity. Front Microbiol. 2018;9:1651. doi: 10.3389/fmicb.2018.01651
  • Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592(17):2884–2900. doi: 10.1002/1873-3468.13182
  • Correia CN, Nalpas NC, McLoughlin KE, et al. Circulating microRnas as potential biomarkers of infectious disease. Front Immunol. 2017;8:118. doi: 10.3389/fimmu.2017.00118
  • Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front Immunol. 2017;8:1182. doi: 10.3389/fimmu.2017.01182
  • Grassmann R, Jeang KT. The roles of microRnas in mammalian virus infection. Biochim Biophys Acta Gene Regul Mech. 2008;1779(11):706–711. doi: 10.1016/j.bbagrm.2008.05.005
  • Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med. 2017;23(1):80–93. doi: 10.1016/j.molmed.2016.11.003
  • Van Duyne R, Guendel I, Klase Z, et al. Localization and sub-cellular shuttling of HTLV-1 tax with the miRNA machinery. PLoS One. 2012;7(7):e40662. doi: 10.1371/journal.pone.0040662
  • Abe M, Suzuki H, Nishitsuji H, et al. Interaction of human T-cell lymphotropic virus type I rex protein with dicer suppresses RNAi silencing. FEBS Lett. 2010;584(20):4313–4318. doi: 10.1016/j.febslet.2010.09.031
  • Gazon H, Belrose G, Terol M, et al. Impaired expression of DICER and some microRnas in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget. 2016;7(21):30258–30275. doi: 10.18632/oncotarget.7162
  • Tomita M. Important roles of cellular microRNA mir-155 in leukemogenesis by human t-cell leukemia virus type 1 infection. ISRN Microbiol. 2012;2012:978607. doi: 10.5402/2012/978607
  • Nascimento A, Valadao de Souza DR, Pessoa R, et al. Global expression of noncoding RNome reveals dysregulation of small RNAs in patients with HTLV-1–associated adult T-cell leukemia: a pilot study. Infect Agent Cancer. 2021;16(1):4. doi: 10.1186/s13027-020-00343-2
  • Huang C, Zheng JM, Cheng Q, et al. Serum microRNA-29 levels correlate with disease progression in patients with chronic hepatitis B virus infection. J Dig Dis. 2014;15(11):614–621. doi: 10.1111/1751-2980.12185
  • Wang Y, Zhang X, Li H, et al. The role of miRNA-29 family in cancer. Eur J Cell Biol. 2013;92(3):123–128. doi: 10.1016/j.ejcb.2012.11.004
  • Smith KM, Guerau-de-Arellano M, Costinean S, et al. MiR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol. 2012;189(4):1567–1576. doi: 10.4049/jimmunol.1103171
  • Cox MB, Cairns MJ, Gandhi KS, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One. 2010;5(8):e12132. doi: 10.1371/journal.pone.0012132
  • Swaminathan S, Suzuki K, Seddiki N, et al. Differential regulation of the Let-7 family of microRnas in CD4+ T cells alters IL-10 expression. J Immunol. 2012;188(12):6238–6246. doi: 10.4049/jimmunol.1101196
  • Kumar M, Sahu SK, Kumar R, et al. MicroRNA let-7 modulates the immune response to mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-kappaB pathway. Cell Host Microbe. 2015;17:345–356. doi: 10.1016/j.chom.2015.01.007
  • Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science. 2005;308(5721):557–560. doi: 10.1126/science.1108784
  • Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010;59:1794–1802. doi: 10.2337/db09-1736
  • Chung AC, Huang XR, Meng X, et al. MiR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol. 2010;21:1317–1325. doi: 10.1681/ASN.2010020134
  • Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci, USA. 2007;104(9):3432–3437. doi: 10.1073/pnas.0611192104
  • Sun L, Zhang D, Liu F, et al. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J Pathol. 2011;225(3):364–377. doi: 10.1002/path.2961
  • Grant C, Oh U, Yao K, et al. Dysregulation of TGF-beta signaling and regulatory and effector T-cell function in virus-induced neuroinflammatory disease. Blood. 2008;111:5601–5609. doi: 10.1182/blood-2007-11-123430
  • Merling R, Chen C, Hong S, et al. HTLV-1 Tax mutants that do not induce G1 arrest are disabled in activating the anaphase promoting complex. Retrovirology. 2007;4(1):35. doi: 10.1186/1742-4690-4-35
  • Ho YK, Zhi H, DeBiaso D, et al. HTLV-1 tax-induced rapid senescence is driven by the transcriptional activity of nf-κb and depends on chronically activated IKKα and p65/RelA. J Virol. 2012;86(17):9474–9483. doi: 10.1128/JVI.00158-12
  • Guo L, Zhao RC, Wu Y. The role of microRnas in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol. 2011;39(6):608–616. doi: 10.1016/j.exphem.2011.01.011
  • Shang J, Yao Y, Fan X, et al. MiR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-Prb pathways. Biochim Biophys Acta. 2016;1863:520–532. doi: 10.1016/j.bbamcr.2016.01.005
  • Ruddy MJ, Wong GC, Liu XK, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by ccaat/enhancer-binding protein family members. J Biol Chem. 2004;279(4):2559–2567. doi: 10.1074/jbc.M308809200
  • Shen F, Hu Z, Goswami J, et al. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem. 2006;281(34):24138–24148. doi: 10.1074/jbc.M604597200
  • Araujo A, Bangham CRM, Casseb J, et al. Management of HAM/TSP: systematic review and consensus-based recommendations 2019. Neurol Clin Pract. 2021;11(1):49–56. doi: 10.1212/CPJ.0000000000000832
  • Olindo S, Lezin A, Cabre P, et al. HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression. J Neurolog Sci. 2005;237(1–2):53–59. doi: 10.1016/j.jns.2005.05.010
  • Matsuura E, Nozuma S, Tashiro Y, et al. HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP): a comparative study to identify factors that influence disease progression. J Neurolog Sci. 2016;371:112–116. doi: 10.1016/j.jns.2016.10.030
  • de Paula Martins R, Ghisoni K, CK L, et al. Neopterin preconditioning prevents inflammasome activation in mammalian astrocytes. Free Radic Biol Med. 2018;115:371–382. doi: 10.1016/j.freeradbiomed.2017.11.022
  • Ando H, Sato T, Tomaru U, et al. Positive feedback loop via astrocytes causes chronic inflammation in virus-associated myelopathy. Brain. 2013;136(9):2876–2887. doi: 10.1093/brain/awt183
  • Sato T, Coler-Reilly A, Utsunomiya A, et al. CSF CXCL10, CXCL9, and neopterin as candidate prognostic biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS neglected tropical diseases. PLoS negl trop dis. 2013;7(10):e2479. doi: 10.1371/journal.pntd.0002479