1,536
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

African swine fever virus protein p17 promotes mitophagy by facilitating the interaction of SQSTM1 with TOMM70

, , , , , & show all
Article: 2232707 | Received 23 Jan 2023, Accepted 14 Jun 2023, Published online: 13 Jul 2023

References

  • Dixon LK, Stahl K, Jori F, et al. African swine fever epidemiology and control. Ann Rev Anim Biosci. 2020;8:221–11. doi: 10.1146/annurev-animal-021419-083741
  • Gaudreault NN, Madden DW, Wilson WC, et al. African swine fever virus: an emerging DNA arbovirus. Front Vet Sci. 2020;7:215. doi: 10.3389/fvets.2020.00215
  • Dixon LK, Chapman DA, Netherton CL, et al. African swine fever virus replication and genomics. Virus Res. 2013;173:3–14. doi: 10.1016/j.virusres.2012.10.020
  • Decout A, Katz JD, Venkatraman S, et al. The Cgas-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–569. doi: 10.1038/s41577-021-00524-z
  • Wang X, Wu J, Wu Y, et al. Inhibition of Cgas-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem Biophys Res Commun. 2018;506(3):437–443. doi: 10.1016/j.bbrc.2018.10.103
  • Garcia-Belmonte R, Perez-Nunez D, Pittau M, et al. African swine fever virus armenia/07 virulent strain controls interferon beta production through the Cgas-STING pathway. J Virol. 2019;93(12). doi: 10.1128/JVI.02298-18
  • Yang K, Huang Q, Wang R, et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the Cgas-STING-mediated signaling pathway. Vet Microbiol. 2021;263:109265. doi: 10.1016/j.vetmic.2021.109265
  • Luo J, Zhang J, Ni J, et al. The African swine fever virus protease pS273R inhibits DNA sensing Cgas-STING pathway by targeting IKKepsilon. Virulence. 2022;13:740–756. doi: 10.1080/21505594.2022.2065962
  • Ran Y, Li D, Xiong MG, et al. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLOS Pathog. 2022;18(1):e1010270. doi: 10.1371/journal.ppat.1010270
  • de Oliveira VL, Almeida SC, Soares HR, et al. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Arch Virol. 2011;156:597–609. doi: 10.1007/s00705-010-0894-7
  • Correia S, Ventura S, Parkhouse RM. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res. 2013;173(1):87–100. doi: 10.1016/j.virusres.2012.10.013
  • West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402. doi: 10.1038/nri2975
  • Zheng W, Xia N, Zhang J, et al. African Swine fever virus structural protein p17 inhibits Cgas-STING signaling pathway through interacting with STING. Front Immunol. 2022;13:941579. doi: 10.3389/fimmu.2022.941579
  • Kirkin V, Rogov VV. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol Cell. 2019;76:268–285. doi: 10.1016/j.molcel.2019.09.005
  • Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20:1726–1737. doi: 10.1093/hmg/ddr048
  • Geisler S, Holmstrom KM, Treis A, et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy. 2010;6(7):871–878. doi: 10.4161/auto.6.7.13286
  • Lazarou M, Narendra DP, Jin SM, et al. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Bio. 2013;200(2):163–172. doi: 10.1083/jcb.201210111
  • Okatsu K, Iemura S, Koyano F, et al. Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. Biochem Biophys Res Commun. 2012;428(1):197–202. doi: 10.1016/j.bbrc.2012.10.041
  • Rakovic A, Shurkewitsch K, Seibler P, et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem. 2013;288(4):2223–2237. doi: 10.1074/jbc.M112.391680
  • Yoshii SR, Kishi C, Ishihara N, et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286(22):19630–19640. doi: 10.1074/jbc.M110.209338
  • Fukuda T, Ebi Y, Saigusa T, et al. Atg43 tethers isolation membranes to mitochondria to promote starvation-induced mitophagy in fission yeast. Elife. 2020;9. doi: 10.7554/eLife.61245.
  • Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–564. doi: 10.1515/hsz-2012-0119
  • Li Y, Wu K, Zeng S, et al. The role of mitophagy in viral infection. Cells. 2022;11(4):11. doi: 10.3390/cells11040711
  • Rouiller I, Brookes SM, Hyatt AD, et al. African swine fever virus is wrapped by the endoplasmic reticulum. J Virol. 1998;72(3):2373–2387. doi: 10.1128/JVI.72.3.2373-2387.1998
  • Alejo A, Matamoros T, Guerra M, et al. A proteomic atlas of the African swine fever virus particle. J Virol. 2018;92(23). doi: 10.1128/JVI.01293-18
  • Suarez C, Gutierrez-Berzal J, Andres G, et al. African swine fever virus protein p17 is essential for the progression of viral membrane precursors toward icosahedral intermediates. J Virol. 2010;84:7484–7499. doi: 10.1128/JVI.00600-10
  • Liu S, Luo Y, Wang Y, et al. Cryo-EM structure of the African swine fever virus. Cell Host Microbe. 2019;26:836–43 e3. doi: 10.1016/j.chom.2019.11.004
  • Xia N, Wang H, Liu X, et al. African swine fever virus structural protein p17 inhibits cell proliferation through ER stress—ROS mediated cell cycle arrest. Viruses. 2020;13:13. doi: 10.3390/v13010021
  • Wang N, Zhao D, Wang J, et al. Architecture of African swine fever virus and implications for viral assembly. Science. 2019;366(6465):640–644. doi: 10.1126/science.aaz1439
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021;17:1–382. doi: 10.1080/15548627.2020.1797280
  • Zhong G, Deng T, Xu K, et al. Identification of host proteins interacting with African swine fever virus inner envelope protein p17. Chin J Biotech. 2022;38:8.
  • Yamada T, Dawson TM, Yanagawa T, et al. SQSTM1/P62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy. 2019;15(11):2012–2018. doi: 10.1080/15548627.2019.1643185
  • Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173(1):122–130. doi: 10.1016/j.virusres.2012.10.026
  • Galindo I, Hernaez B, Munoz-Moreno R, et al. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012;3(7):e341. doi: 10.1038/cddis.2012.81
  • Gomez Del Moral M, Ortuno E, Fernandez-Zapatero P, et al. African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. J Virol. 1999;73:2173–2180. doi: 10.1128/JVI.73.3.2173-2180.1999
  • Zsak L, Neilan JG. Regulation of apoptosis in African swine fever virus-infected macrophages. ScientificWorldjournal. 2002;2:1186–1195. doi: 10.1100/tsw.2002.214
  • Galindo I, Hernaez B, Diaz-Gil G, et al. A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology. 2008;375(2):561–572. doi: 10.1016/j.virol.2008.01.050
  • Nogal ML, Gonzalez de Buitrago G, Rodriguez C, et al. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol. 2001;75:2535–2543. doi: 10.1128/JVI.75.6.2535-2543.2001
  • Hurtado C, Granja AG, Bustos MJ, et al. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology. 2004;326(1):160–170. doi: 10.1016/j.virol.2004.05.019
  • Zhang F, Moon A, Childs K, et al. The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIf2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J Virol. 2010;84:10681–10689. doi: 10.1128/JVI.01027-10
  • Hernaez B, Diaz-Gil G, Garcia-Gallo M, et al. The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Lett. 2004;569:224–228. doi: 10.1016/j.febslet.2004.06.001
  • Wei B, Cui Y, Huang Y, et al. Tom70 mediates Sendai virus-induced apoptosis on mitochondria. J Virol. 2015;89(7):3804–3818. doi: 10.1128/JVI.02959-14
  • Backes S, Bykov YS, Flohr T, et al. The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Rep. 2021;35(1):108936. doi: 10.1016/j.celrep.2021.108936
  • Yang K, Shi H, Qi R, et al. Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells. Mol Biol Cell. 2006;17(3):1461–1471. doi: 10.1091/mbc.e05-09-0853
  • Kreimendahl S, Rassow J. The mitochondrial outer membrane protein Tom70-mediator in protein traffic, membrane contact sites and innate immunity. Int J Mol Sci. 2020;21(19):21. doi: 10.3390/ijms21197262
  • Xia M, Gonzalez P, Li C, et al. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J Virol. 2014;88(9):5152–5164. doi: 10.1128/JVI.03851-13
  • Ding B, Zhang L, Li Z, et al. The matrix protein of human parainfluenza virus type 3 induces mitophagy that suppresses interferon responses. Cell Host Microbe. 2017;21:538–47 e4. doi: 10.1016/j.chom.2017.03.004
  • Wang K, Ma H, Liu H, et al. The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses. Cell Rep. 2019;27:2075–91 e5. doi: 10.1016/j.celrep.2019.04.061
  • Vilmen G, Glon D, Siracusano G, et al. BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy. 2021;17(6):1296–1315. doi: 10.1080/15548627.2020.1758416
  • Wang R, Zhu Y, Ren C, et al. Influenza a virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy. 2021;17(2):496–511. doi: 10.1080/15548627.2020.1725375
  • Zhu JJ, Ramanathan P, Bishop EA, et al. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS One. 2019;14(11):e0223955. doi: 10.1371/journal.pone.0223955
  • Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956–959. doi: 10.1126/science.1225967
  • Shimmon GL, Hui JYK, Wileman TE, et al. Autophagy impairment by African swine fever virus. J Gen Virol. 2021;102(8). doi: 10.1099/jgv.0.001637