1,086
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

METTL14 and FTO mediated m6A modification regulate PCV2 replication by affecting miR-30a-5p maturity

, , , , , , , , , , , , & show all
Article: 2232910 | Received 15 Feb 2023, Accepted 26 Jun 2023, Published online: 07 Jul 2023

References

  • Karuppannan AK, Ramesh A, Reddy YK, et al. Emergence of Porcine Circovirus 2 Associated Reproductive Failure in Southern India. Transbound Emerg Dis. 2016;63(3):314–11. doi: 10.1111/tbed.12276
  • Segales J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res. 2012;164(1–2):10–19. doi: 10.1016/j.virusres.2011.10.007
  • Ren L, Chen X, Ouyang H. Interactions of porcine circovirus 2 with its hosts. Virus Genes. 2016;52(4):437–444. doi: 10.1007/s11262-016-1326-x
  • Denner J, Mankertz A. Porcine Circoviruses and Xenotransplantation. Viruses. 2017;9(4):83. doi: 10.3390/v9040083
  • Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell. 1975;4(4):379–386. doi: 10.1016/0092-8674(75)90158-0
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–3975. doi: 10.1073/pnas.71.10.3971
  • Narayan P, Rottman FM. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science. 1988;242(4882):1159–1162. doi: 10.1126/science.3187541
  • Zhao BS, Roundtree IA, He C. Publisher Correction: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2018;19(12):808. doi: 10.1038/s41580-018-0075-1
  • Bartosovic M, Molares HC, Gregorova P, et al. N6-methyladenosine demethylase FTO targets pre-mRnas and regulates alternative splicing and 3’-end processing. Nucleic Acids Res. 2017;45(19):11356–11370. doi: 10.1093/nar/gkx778
  • Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27(5):606–625. doi: 10.1038/cr.2017.55
  • Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–328. doi: 10.1038/cr.2017.15
  • Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626. doi: 10.1038/ncomms12626
  • Roignant JY, Soller M. M(6)a in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends Genet. 2017;33(6):380–390. doi: 10.1016/j.tig.2017.04.003
  • Wu R, Jiang D, Wang Y, et al. N (6)-Methyladenosine (m(6)A) Methylation in mRNA with a Dynamic and Reversible Epigenetic Modification. Mol Biotechnol. 2016;58(7):450–459. doi: 10.1007/s12033-016-9947-9
  • Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28(6):616–624. doi: 10.1038/s41422-018-0040-8
  • Sledz P, Jinek M. Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. 2016;5:5. doi: 10.7554/eLife.18434.
  • Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell. 2016;63(2):306–317. doi: 10.1016/j.molcel.2016.05.041
  • Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi: 10.1038/nchembio.1432
  • Bokar JA, Shambaugh ME, Polayes D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233–1247.
  • Patil DP, Chen CK, Pickering BF, et al. M(6)a RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537(7620):369–373. doi: 10.1038/nature19342
  • Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–189. doi: 10.1038/cr.2014.3
  • Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5’-terminal 7-methylguanosine in cap structures. J Virol. 1976;20(1):45–53. doi: 10.1128/jvi.20.1.45-53.1976
  • Moss B, Koczot F. Sequence of methylated nucleotides at the 5’-terminus of adenovirus-specific RNA. J Virol. 1976;17(2):385–392. doi: 10.1128/jvi.17.2.385-392.1976
  • Shukla GC, Singh J, Barik S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol. 2011;3(3):83–92.
  • Zhang P, Wang L, Li Y, et al. Identification and characterization of microRNA in the lung tissue of pigs with different susceptibilities to PCV2 infection. Vet Res. 2018;49(1):18. doi: 10.1186/s13567-018-0512-3
  • Nunez-Hernandez F, Perez LJ, Vera G, et al. Evaluation of the capability of the PCV2 genome to encode miRnas: lack of viral miRNA expression in an experimental infection. Vet Res. 2015;46:48. doi: 10.1186/s13567-015-0181-4
  • Li C, Sun Y, Li J, et al. PCV2 Regulates Cellular Inflammatory Responses through Dysregulating Cellular miRNA-mRNA Networks. Viruses. 2019;11(11):1055. doi: 10.3390/v11111055
  • Wang X, Xu X, Wang W, et al. MicroRNA-30a-5p promotes replication of porcine circovirus type 2 through enhancing autophagy by targeting 14-3-3. Arch Virol. 2017;162(9):2643–2654. doi: 10.1007/s00705-017-3400-7
  • Hong JS, Kim NH, Choi CY, et al. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet Res. 2015;46:39. doi: 10.1186/s13567-015-0172-5
  • Lichinchi G, Gao S, Saletore Y, et al. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol. 2016;1:16011. doi: 10.1038/nmicrobiol.2016.11
  • Courtney DG, Kennedy EM, Dumm RE, et al. Epitranscriptomic Enhancement of Influenza a Virus Gene Expression and Replication. Cell Host Microbe. 2017;22(3):377–386. doi: 10.1016/j.chom.2017.08.004
  • Tsai K, Courtney DG, Cullen BR, et al. Addition of m6A to SV40 late mRnas enhances viral structural gene expression and replication. PLOS Pathog. 2018;14(2):e1006919. doi: 10.1371/journal.ppat.1006919
  • Imam H, Khan M, Gokhale NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci U S A. 2018;115(35):8829–8834. doi: 10.1073/pnas.1808319115
  • Lichinchi G, Zhao BS, Wu Y, et al. Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host & Microbe. 2016;20(5):666–673. doi: 10.1016/j.chom.2016.10.002
  • Gokhale NS, McIntyre A, McFadden MJ, et al. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe. 2016;20(5):654–665. doi: 10.1016/j.chom.2016.09.015
  • Martinez-Perez M, Aparicio F, Lopez-Gresa MP, et al. Arabidopsis m(6)A demethylase activity modulates viral infection of a plant virus and the m(6)A abundance in its genomic RNAs. Proc Natl Acad Sci U S A. 2017;114(40):10755–10760. doi: 10.1073/pnas.1703139114
  • Ma J Z, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–543. doi: 10.1002/hep.28885
  • Nunez-Hernandez F, Perez LJ, Munoz M, et al. Identification of microRnas in PCV2 subclinically infected pigs by high throughput sequencing. Vet Res. 2015;46:18. doi: 10.1186/s13567-014-0141-4
  • Acuna SM, Floeter-Winter LM, Muxel SM. MicroRNAs: Biological Regulators in Pathogen–Host Interactions. Cells. 2020;9(1):113. doi: 10.3390/cells9010113
  • Skalsky RL, Cullen BR. Viruses, microRnas, and host interactions. Annu Rev Microbiol. 2010;64(1):123–141. doi: 10.1146/annurev.micro.112408.134243