746
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Sucrose non-fermenting protein kinase gene UvSnf1 is required for virulence in Ustilaginoidea virens

, , , , , & ORCID Icon show all
Article: 2235460 | Received 24 Nov 2022, Accepted 06 Jul 2023, Published online: 14 Jul 2023

References

  • Sun W, Fan J, Fang A, et al. Ustilaginoidea virens: insights into an emerging rice pathogen. Annu Review Phytopathol. 2020;58:363–385. doi: 10.1146/annurev-phyto-010820-012908
  • Qiu J, Meng S, Deng Y, et al. Ustilaginoidea virens: a fungus infects rice flower and threats world rice production. Rice Sci. 2019;26(4):199–14. doi: 10.1016/j.rsci.2018.10.007
  • Guo X, Li Y, Fan J, et al. Progress in the study of false smut disease in rice. J Agric Sci Technol. 2012;2:1211–1217.
  • Zhang Y, Zhang K, Fang A, et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun. 2014;5(1). doi: 10.1038/ncomms4849
  • Li G-B, He J-X, Wu J-L, et al. Enhanced production of OsRACK1A, an effector-targeted scaffold protein that promotes OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. Mol Plant. 2022;15(11):1790–1806. doi: 10.1016/j.molp.2022.10.009
  • Zheng X, Fang A, Qiu S, et al. Ustilaginoidea virens secretes a family of phosphatases that stabilize the negative immune regulator OsMPK6 and suppress plant immunity. Plant Cell. 2022;34(8):3088–3109. doi: 10.1093/plcell/koac154
  • Yu J, Yu M, Song T, et al. UvSMEK1, a suppressor of MEK null, regulates pathogenicity, conidiation and conidial germination in rice false smut fungus Ustilaginoidea virens. Rice Sci. 2021;28(5):457–465. doi: 10.1016/j.rsci.2021.07.006
  • Liu Y, Qu J, Wang Y, et al. bZIP transcription factor UvATF21 mediates vegetative growth, conidiation, stress tolerance and is required for full virulence of rice false smut fungus Ustilaginoidea virens. Rice Sci. 2023;30(1):50–57. doi: 10.1016/j.rsci.2022.12.001
  • Zheng D, Wang Y, Han Y, et al. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep. 2016;6(1):6. doi: 10.1038/srep24824
  • Lv B, Zheng L, Liu H, et al. Use of random T-DNA mutagenesis in identification of gene UvPRO1, a regulator of conidiation, stress response, and virulence in Ustilaginoidea virens. Front Microbiol. 2016;7. doi: 10.3389/fmicb.2016.02086
  • Song J-H, Wei W, Lv B, et al. Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environ Microbiol. 2016;18(11):3840–3849. doi: 10.1111/1462-2920.13343
  • Conrad M, Schothorst J, Kankipati HN, et al. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2014;38(2):254–299. doi: 10.1111/1574-6976.12065
  • Shashkova S, Welkenhuysen N, Hohmann S. Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res. 2015;15(4):15. doi: 10.1093/femsyr/fov026
  • Zhang S, Guo Y, Li S, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree. BMC Genet. 2019;20(1):20. doi: 10.1186/s12863-019-0796-y
  • Amodeo GA, Rudolph MJ, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature. 2007;449(7161):492–U13. doi: 10.1038/nature06127
  • Adnan M, Zheng W, Islam W, et al. Carbon catabolite repression in filamentous fungi. Int J Mol Sci. 2018;19(1):48. doi: 10.3390/ijms19010048
  • Yi M, Park J-H, Ahn J-H, et al. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol. 2008;45(8):1172–1181. doi: 10.1016/j.fgb.2008.05.003
  • Tzima AK, Paplomatas EJ, Rauyaree P, et al. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Mol Plant-Microbe Interact. 2011;24(1):129–142. doi: 10.1094/MPMI-09-09-0217
  • Lee S-H, Lee J, Lee S, et al. GzSNF1 is required for normal sexual and asexual development in the Ascomycete Gibberella zeae. Eukaryot Cell. 2009;8(1):116–127. doi: 10.1128/EC.00176-08
  • Ospina-Giraldo MD, Mullins E, Kang S. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet. 2003;44(1):49–57. doi: 10.1007/s00294-003-0419-y
  • Tonukari NJ, Scott-Craig JS, Walton JD. The cochliobolus carbonum SNF1 gene is required for cell wall–degrading enzyme expression and virulence on maize. Plant Cell. 2000;12(2):237–247. doi: 10.1105/tpc.12.2.237
  • Feng J, Zhang H, Strelkov SE, et al. The LmSNF1 gene is required for pathogenicity in the canola blackleg pathogen Leptosphaeria maculans. PLoS One. 2014;9(3):e92503. doi: 10.1371/journal.pone.0092503
  • Nadal M, Garcia-Pedrajas MD, Gold SE. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes. Phytopathology®. 2010;100(12):1364–1372. doi: 10.1094/PHYTO-01-10-0011
  • Lengyel S, Rascle C, Poussereau N, et al. Snf1 kinase differentially regulates botrytis cinerea pathogenicity according to the plant host. Microorganisms. 2022;10(2):10. doi: 10.3390/microorganisms10020444
  • Tang K, Lv W, Zhang Q, et al. Coding the α-subunit of SNF1 kinase, Snf1 is required for the conidiogenesis and pathogenicity of the Alternaria alternata tangerine pathotype. Fungal Biol. 2020;124(6):562–570. doi: 10.1016/j.funbio.2020.02.008
  • Zhang T, Sun X, Xu Q, et al. PdSNF1, a sucrose non-fermenting protein kinase gene, is required for penicillium digitatum conidiation and virulence. Appl Microbiol Biotechnol. 2013;97(12):5433–5445. doi: 10.1007/s00253-012-4593-z
  • Li Y, Yan P, Lu X, et al. Involvement of PaSNF1 in fungal development, sterigmatocystin biosynthesis, and lignocellulosic degradation in the filamentous fungus podospora anserina. Front Microbiol. 2020;11:11. doi: 10.3389/fmicb.2020.01038
  • Wang Y, Wang R, Li Y, et al. Diverse function and regulation of CmSnf1 in entomopathogenic fungus cordyceps militaris. Fungal Genet Biol. 2020;142:142. doi: 10.1016/j.fgb.2020.103415
  • Wang X-X, He P-H, Feng M-G, et al. BbSNF1 contributes to cell differentiation, extracellular acidification, and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus. Appl Microbiol Biotechnol. 2014;98(20):8657–8673. doi: 10.1007/s00253-014-5907-0
  • Zeng X-Q, Chen G-Q, Liu X-H, et al. Crosstalk between SNF1 pathway and the peroxisome-mediated lipid metabolism in Magnaporthe oryzae. PLoS One. 2014;9(8):e103124. doi: 10.1371/journal.pone.0103124
  • Hamer JE, Talbot NJ. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol. 1998;1(6):693–697. doi: 10.1016/S1369-5274(98)80117-3
  • Walton JD. Deconstructing the cell wall. Plant Physiol. 1994;104(4):1113–1118. doi: 10.1104/pp.104.4.1113
  • Ruijter GJG, Visser J. Carbon repression in aspergilli. FEMS Microbiol Lett. 1997;151(2):103–114. doi: 10.1111/j.1574-6968.1997.tb12557.x
  • Meng S, Qiu J, Xiong M, et al. UvWhi2 is required for stress response and pathogenicity in Ustilaginoidea virens. Rice Sci. 2022;29(1):47–54. doi: 10.1016/j.rsci.2021.12.004
  • Yang J, Zhang N, Wang J, et al. SnRK1A-mediated phosphorylation of a cytosolic ATPase positively regulates rice innate immunity and is inhibited by Ustilaginoidea virens effector SCRE1. New Phytol. 2022;236(4):1422–1440. doi: 10.1111/nph.18460
  • Zhang N, Yang J, Fang A, et al. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region. Mol Plant Pathol. 2020;21(4):445–459. doi: 10.1111/mpp.12894
  • Meng S, Xiong M, Jagernath JS, et al. UvAtg8-mediated autophagy regulates fungal growth, stress responses, conidiation, and pathogenesis in Ustilaginoidea virens. Rice. 2020;13(1):56. doi: 10.1186/s12284-020-00418-z
  • Xiong M, Meng S, Qiu J, et al. Putative phosphatase UvPsr1 is required for mycelial growth, conidiation, stress response and pathogenicity in Ustilaginonidea virens. Rice Sci. 2020;27(6):529–536. doi: 10.1016/j.rsci.2020.09.009
  • Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Revi Biochem. 1998;67(1):821–855. doi: 10.1146/annurev.biochem.67.1.821
  • Carlson M, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics. 1981;98(1):25–40. doi: 10.1093/genetics/98.1.25
  • Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 2005;29(4):719–739. doi: 10.1016/j.femsre.2004.11.006
  • Chen L-Q, Hou B-H, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468(7323):527–U199. doi: 10.1038/nature09606
  • Celenza JL, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986;233(4769):1175–1180. doi: 10.1126/science.3526554
  • Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci Landmark. 2008;13(13):2408–2420. doi: 10.2741/2854
  • Ming Y, Wei Q, Jin K, et al. MaSnf1, a sucrose non-fermenting protein kinase gene, is involved in carbon source utilization, stress tolerance, and virulence in Metarhizium acridum. Appl Microbiol Biotechnol. 2014;98(24):10153–10164. doi: 10.1007/s00253-014-6066-z
  • Goodwin PH, Chen GY. High expression of a sucrose non-fermenting (SNF1)-related protein kinase from colletotrichum gloeosporoides f. sp. malvae is associated with penetration of Malva pusilla. FEMS Microbiol Lett. 2002;215(2):169–174. doi: 10.1111/j.1574-6968.2002.tb11387.x
  • Vacher S, Cotton P, Fevre M. Characterization of a SNF1 homologue from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene. 2003;310:113–121. doi: 10.1016/S0378-1119(03)00525-0
  • Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. Microb Cell. 2018;5(11):482–494. doi: 10.15698/mic2018.11.655
  • Backhaus K, Rippert D, Heilmann CJ, et al. Mutations in SNF1 complex genes affect yeast cell wall strength. Eur J Cell Biol. 2013;92(12):383–395. doi: 10.1016/j.ejcb.2014.01.001
  • Zhang J, Vaga S, Chumnanpuen P, et al. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol. 2011;7(1). doi: 10.1038/msb.2011.80
  • Hong S-P, Carlson M. Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem. 2007;282(23):16838–16845. doi: 10.1074/jbc.M700146200
  • Lin X. The regulation of Saccharomyces cerevisiae Snf1 protein kinase on glucose utilization is in a glucose-dependent manner. Curr Genet. 2021;67(2):245–248. doi: 10.1007/s00294-020-01137-0
  • Islam KT, Bond JP, Fakhoury AM. FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean. Curr Genet. 2017;63(4):723–738. doi: 10.1007/s00294-017-0676-9
  • Tang YX, Jin J, Hu DW, et al. Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathology. 2013;62(1):1–8. doi: 10.1111/j.1365-3059.2012.02629.x