1,513
Views
0
CrossRef citations to date
0
Altmetric
Review

Annexin A2: the missing piece in the puzzle of pathogen-induced damage

, , , , , & ORCID Icon show all
Article: 2237222 | Received 24 Apr 2023, Accepted 06 Jul 2023, Published online: 23 Jul 2023

References

  • Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002;82:331–17. doi: 10.1152/physrev.00030.2001
  • Huang Y, Jia M, Yang X, et al. Annexin A2: the diversity of pathological effects in tumorigenesis and immune response. Int J Cancer. 2022;151:497–509. doi: 10.1002/ijc.34048
  • Bharadwaj A, Bydoun M, Holloway R, et al. Annexin A2 heterotetramer: structure and function. Int J Mol Sci Multidisciplinary Digital Publishing Institute. 2013;14:6259–6305. doi: 10.3390/ijms14036259
  • Wang C-Y, Lin C-F. Annexin A2: its molecular regulation and cellular expression in cancer development. Dis Markers. 2014;2014:308976. doi: 10.1155/2014/308976
  • Becker T, Weber K, Johnsson N. Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. Embo J. 1990;9:4207–4213. doi: 10.1002/j.1460-2075.1990.tb07868.x
  • Jung Y, Wang J, Lee E, et al. Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res. 2015;13:197–207. doi: 10.1158/1541-7786.MCR-14-0118
  • Christensen MV, Høgdall CK, Jochumsen KM, et al. Annexin A2 and cancer: A systematic review. Int J Oncol. 2018;52:5–18. doi: 10.3892/ijo.2017.4197
  • Sharma MC. Annexin A2 (ANX A2): an emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer. 2019;144:2074–2081. doi: 10.1002/ijc.31817
  • Lim HI, Hajjar KA. Annexin A2 in fibrinolysis, inflammation and fibrosis. Int J Mol Sci. 2021;22:6836. doi: 10.3390/ijms22136836
  • Dallacasagrande V, Hajjar KA. Annexin A2 in inflammation and host defense. Cells. 2020;9:E1499. doi: 10.3390/cells9061499
  • Serrano B, Brotons M, Bosch FX, et al. Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol. 2018;47:14–26. doi: 10.1016/j.bpobgyn.2017.08.006
  • Dziduszko A, Ozbun MA. Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol. 2013;87:7502–7515. doi: 10.1128/JVI.00519-13
  • Woodham AW, Da Silva DM, Skeate JG, et al. The S100A10 subunit of the annexin A2 heterotetramer facilitates L2-mediated human papillomavirus infection. PLoS One. 2012;7(8):e43519. doi: 10.1371/journal.pone.0043519
  • Chen J, Wang D, Wang Z, et al. Critical residues involved in the coassembly of L1 and L2 capsid proteins of human papillomavirus 16. J Virol. 2023;97(3):e0181922. doi: 10.1128/jvi.01819-22
  • Fahey LM, Raff AB, Da Silva DM, et al. A major role for the minor capsid protein of human papillomavirus type 16 in immune escape. J Immunol. 2009;183:6151–6156. doi: 10.4049/jimmunol.0902145
  • Gräßel L, Fast LA, Scheffer KD, et al. The CD63-Syntenin-1 complex controls post-endocytic trafficking of oncogenic human papillomaviruses. Sci Rep. 2016;6:32337. doi: 10.1038/srep32337
  • Taylor JR, Fernandez DJ, Thornton SM, et al. Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci Rep. 2018;8:11642. doi: 10.1038/s41598-018-30051-2
  • Krawczyk E, Suprynowicz FA, Hebert JD, et al. The human papillomavirus type 16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol. 2011;85:10968–10975. doi: 10.1128/JVI.00706-11
  • Ren S, Gaykalova DA, Guo T, et al. HPV E2, E4, E5 drive alternative carcinogenic pathways in HPV positive cancers. Oncogene. 2020;39:6327–6339. doi: 10.1038/s41388-020-01431-8
  • Woodham AW, Raff AB, Raff LM, et al. Inhibition of Langerhans cell maturation by human papillomavirus type 16: a novel role for the annexin A2 heterotetramer in immune suppression. J Immunol. 2014;192:4748–4757. doi: 10.4049/jimmunol.1303190
  • Reddy TRK, Li C, Fischer PM, et al. Three-dimensional pharmacophore design and biochemical screening identifies substituted 1,2,4-triazoles as inhibitors of the annexin A2-S100A10 protein interaction. ChemMedchem. 2012;7:1435–1446. doi: 10.1002/cmdc.201200107
  • Woodham AW, Taylor JR, Jimenez AI, et al. Small molecule inhibitors of the annexin A2 heterotetramer prevent human papillomavirus type 16 infection. J Antimicrob Chemother. 2015;70:1686–1690. doi: 10.1093/jac/dkv045
  • Lucas S, Nelson AM. HIV and the spectrum of human disease. J Pathol. 2015;235:229–241. doi: 10.1002/path.4449
  • Ghosn J, Taiwo B, Seedat S, et al. Hiv. Lancet. 2018;392:685–697. doi: 10.1016/S0140-6736(18)31311-4
  • Ma G, Greenwell-Wild T, Lei K, et al. Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med. 2004;200:1337–1346. doi: 10.1084/jem.20041115
  • Ryzhova EV, Vos RM, Albright AV, et al. Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol. 2006;80:2694–2704. doi: 10.1128/JVI.80.6.2694-2704.2006
  • Rai T, Mosoian A, Resh MD. Annexin 2 is not required for human immunodeficiency virus type 1 particle production but plays a cell type-dependent role in regulating infectivity. J Virol. 2010;84:9783–9792. doi: 10.1128/JVI.01584-09
  • Woodham AW, Sanna AM, Taylor JR, et al. Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro. Virol J. 2016;13:187. doi: 10.1186/s12985-016-0649-5
  • Harrist AV, Ryzhova EV, Harvey T, et al. Anx2 interacts with HIV-1 Gag at phosphatidylinositol (4,5) bisphosphate-containing lipid rafts and increases viral production in 293T cells. PLoS One. 2009;4(3):e5020. doi: 10.1371/journal.pone.0005020
  • Ono A, Ablan SD, Lockett SJ, et al. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A. 2004;101:14889–14894. doi: 10.1073/pnas.0405596101
  • Tryoen-Tóth P, Chasserot-Golaz S, Tu A, et al. HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. J Cell Sci. 2013;126:454–463. doi: 10.1242/jcs.111658
  • Ratcliff AN, Shi W, Arts EJ. HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol. 2013;87:923–934. doi: 10.1128/JVI.01863-12
  • Henrich TJ, Kuritzkes DR. HIV-1 entry inhibitors: recent development and clinical use. Curr Opin Virol. 2013;3:51–57. doi: 10.1016/j.coviro.2012.12.002
  • Roger S, Ducancelle A, Le Guillou-Guillemette H, et al. HCV virology and diagnosis. Clin Res Hepatol Gastroenterol. 2021;45:101626. doi: 10.1016/j.clinre.2021.101626
  • Backes P, Quinkert D, Reiss S, et al. Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol. 2010;84:5775–5789. doi: 10.1128/JVI.02343-09
  • Dreux M, Garaigorta U, Boyd B, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe. 2012;12:558–570. doi: 10.1016/j.chom.2012.08.010
  • Solbak SMØ, Abdurakhmanov E, Vedeler A, et al. Characterization of interactions between hepatitis C virus NS5B polymerase, annexin A2 and RNA - effects on NS5B catalysis and allosteric inhibition. Virol J. 2017;14:236. doi: 10.1186/s12985-017-0904-4
  • Appel N, Zayas M, Miller S, et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLOS Pathog. 2008;4:e1000035. doi: 10.1371/journal.ppat.1000035
  • Masaki T, Suzuki R, Murakami K, et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol. 2008;82:7964–7976. doi: 10.1128/JVI.00826-08
  • Miyanari Y, Atsuzawa K, Usuda N, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007;9:1089–1097. doi: 10.1038/ncb1631
  • Saxena V, Lai C-K, Chao T-C, et al. Annexin A2 is involved in the formation of hepatitis C virus replication complex on the lipid raft. J Virol. 2012;86:4139–4150. doi: 10.1128/JVI.06327-11
  • Beaulieu PL. Filibuvir, a non-nucleoside NS5B polymerase inhibitor for the potential oral treatment of chronic HCV infection. IDrugs. 2010;13:938–948.
  • Gao P-J, Shi Y, Gao Y-H, et al. The receptor for beta(2)GP I on membrane of hepatocellular carcinoma cell line SMMC-7721 is annexin II. World J Gastroenterol. 2007;13:3364–3368. doi: 10.3748/wjg.v13.i24.3364
  • Liu Y-M, Zhang W-Y, Wang Z-F, et al. High expression of beta2-glycoprotein I is associated significantly with the earliest stages of hepatitis B virus infection. J Med Virol. 2014;86:1296–1306. doi: 10.1002/jmv.23961
  • Choi J, Chang J-S, Song M-S, et al. Association of hepatitis B virus polymerase with promyelocytic leukemia nuclear bodies mediated by the S100 family protein p11. Biochem Biophys Res Commun. 2003;305:1049–1056. doi: 10.1016/s0006-291x(03)00881-7
  • Bai X, Ran J, Zhao X, et al. The S100A10-AnxA2 complex is associated with the exocytosis of hepatitis B virus in intrauterine infection. Lab Invest. 2022;102:57–68. doi: 10.1038/s41374-021-00681-8
  • Niu D, Sui J, Zhang J, et al. Itraq-coupled 2-D LC-MS/MS analysis of protein profile associated with HBV-modulated DNA methylation. Proteomics. 2009;9:3856–3868. doi: 10.1002/pmic.200900071
  • Liu Y, Gao P. Modulation of hepatitis B surface antigen secretion by annexin II expressed in hepatitis B virus‑producing hepatoma cells. Mol Med Rep. 2014;10:3113–3117. doi: 10.3892/mmr.2014.2602
  • Sun T, Zhang J. ETV4 mediates the Wnt/β-catenin pathway through transcriptional activation of ANXA2 to promote hepatitis B virus-associated liver hepatocellular carcinoma progression. J Biochem. 2021;170:663–673. doi: 10.1093/jb/mvab088
  • Dioverti MV, Razonable RC, Spectr M, et al. Cytomegalovirus. Microbiol Spectr. 2016;4: doi: 10.1128/microbiolspec.DMIH2-0022-2015
  • Wright JF, Kurosky A, Wasi S. An endothelial cell-surface form of annexin II binds human cytomegalovirus. Biochem Biophys Res Commun. 1994;198:983–989. doi: 10.1006/bbrc.1994.1140
  • Wright JF, Kurosky A, Pryzdial EL, et al. Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J Virol. 1995;69:4784–4791. doi: 10.1128/JVI.69.8.4784-4791.1995
  • Raynor CM, Wright JF, Waisman DM, et al. Annexin II enhances cytomegalovirus binding and fusion to phospholipid membranes. Biochemistry. 1999;38:5089–5095. doi: 10.1021/bi982095b
  • Pietropaolo RL, Compton T. Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol. 1997;71:9803–9807. doi: 10.1128/JVI.71.12.9803-9807.1997
  • Derry MC, Sutherland MR, Restall CM, et al. Annexin 2-mediated enhancement of cytomegalovirus infection opposes inhibition by annexin 1 or annexin 5. J Gen Virol. 2007;88:19–27. doi: 10.1099/vir.0.82294-0
  • Brooks ND, Grundy JE, Lavigne N, et al. Ca2±dependent and phospholipid-independent binding of annexin 2 and annexin 5. Biochem J. 2002;367:895–900. doi: 10.1042/BJ20020997
  • Lee KH, Na DS, Kim JW. Calcium-dependent interaction of annexin I with annexin II and mapping of the interaction sites. FEBS Lett. 1999;442:143–146. doi: 10.1016/s0014-5793(98)01643-3
  • Lin YS, Lin CF, Fang YT, et al. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin Exp Immunol. 2005;141:500–508. doi: 10.1111/j.1365-2249.2005.02864.x
  • Hwa K-Y, Lin WM, Hou Y-I, et al. Peptide mimicrying between SARS coronavirus spike protein and human proteins reacts with SARS patient serum. J Biomed Biotechnol. 2008;2008:326464. doi: 10.1155/2008/326464
  • Fang Y-T, Lin C-F, Liao P-C, et al. Annexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodies. Mol Immunol. 2010;47:1000–1009. doi: 10.1016/j.molimm.2009.11.019
  • Zuniga M, Gomes C, Carsons SE, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58:2100918. doi: 10.1183/13993003.00918-2021
  • Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature. 2021;590:29–31. doi: 10.1038/d41586-021-00149-1
  • Vlasov I, Panteleeva A, Usenko T, et al. Transcriptomic profiles reveal downregulation of low-density lipoprotein particle receptor pathway activity in patients surviving severe COVID-19. Cells-Basel. 2021;10:3495. doi: 10.3390/cells10123495
  • Ural O, Kıratlı HE, Ş S, et al. Evaluation of Annexin-1 (ANXA-1), Annexin-2 (ANXA-2) and Bone Morphogenetic Protein-7 (BMP-7) Serum Levels in Patients Followed Up with a Diagnosis of COVID-19. Mikrobiyol Bul. 2022;56:25–35. doi: 10.5578/mb.20229903
  • Wang Y, Grunewald M, Perlman S. Coronaviruses: an updated overview of their replication and pathogenesis. Methods Mol Biol. 2020;2203:1–29. doi: 10.1007/978-1-0716-0900-2_1
  • Xu J, Cao Z, Ji C, et al. Analysis of interaction network between host protein and M protein of swine acute diarrhea syndrome coronavirus. Front Microbiol. 2022;13:858460. doi: 10.3389/fmicb.2022.858460
  • Kwak H, Park MW, Jeong S, et al. Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS One. 2011;6:e24067. doi: 10.1371/journal.pone.0024067
  • Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69:635–664. doi: 10.1128/MMBR.69.4.635-664.2005
  • Park S-J, Jung YH, Kim Y-G, et al. Identification of novel ligands for the RNA pseudoknot that regulate -1 ribosomal frameshifting. Bioorgan Med Chem. 2008;16:4676–4684. doi: 10.1016/j.bmc.2008.02.025
  • de Wilde AH, Pham U, Posthuma CC, et al. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology. 2018;522:46–55. doi: 10.1016/j.virol.2018.06.011
  • Chang X-B, Yang Y-Q, Gao J-C, et al. Annexin A2 binds to vimentin and contributes to porcine reproductive and respiratory syndrome virus multiplication. Vet Res. 2018;49:75. doi: 10.1186/s13567-018-0571-5
  • Zhang C, Xue C, Li Y, et al. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J. 2010;7:242. doi: 10.1186/1743-422X-7-242
  • Li J, Guo D, Huang L, et al. The interaction between host Annexin A2 and viral Nsp9 is beneficial for replication of porcine reproductive and respiratory syndrome virus. Virus Res. 2014;189:106–113. doi: 10.1016/j.virusres.2014.05.015
  • Liu J, Yao L, Huang S, et al. AMG487 inhibits PRRSV replication and ameliorates lung injury in pig lung xenografts by down-regulating the expression of ANXA2. Antivir Res. 2022;202:105314. doi: 10.1016/j.antiviral.2022.105314
  • Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol. 2005;3:591–600. doi: 10.1038/nrmicro1208
  • Goto H, Kawaoka Y. A novel mechanism for the acquisition of virulence by a human influenza a virus. P Natl Acad Sci USA. 1998;95:10224–10228. doi: 10.1073/pnas.95.17.10224
  • Goto H, Wells K, Takada A, et al. Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza a virus. J Virol. 2001;75:9297–9301. doi: 10.1128/JVI.75.19.9297-9301.2001
  • Choi KS, Fitzpatrick SL, Filipenko NR, et al. Regulation of plasmin-dependent fibrin clot lysis by annexin II heterotetramer. J Biol Chem. 2001;276:25212–25221. doi: 10.1074/jbc.M101426200
  • Ling Q, Jacovina AT, Deora A, et al. Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest. 2004;113:38–48. doi: 10.1172/JCI19684
  • LeBouder F, Morello E, Rimmelzwaan GF, et al. Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin. J Virol. 2008;82:6820–6828. doi: 10.1128/JVI.00246-08
  • Su H, Yang X, Wang S, et al. Effect of annexin II-mediated conversion of plasmin from plasminogen on airborne transmission of H9N2 avian influenza virus. Vet Microbiol. 2018;223:100–106. doi: 10.1016/j.vetmic.2018.08.002
  • Ma Y, Sun J, Gu L, et al. Annexin A2 (ANXA2) interacts with nonstructural protein 1 and promotes the replication of highly pathogenic H5N1 avian influenza virus. BMC Microbiol. 2017;17:191. doi: 10.1186/s12866-017-1097-0
  • Koga R, Kubota M, Hashiguchi T, et al. Annexin A2 mediates the localization of measles virus matrix protein at the plasma membrane. J Virol. 2018;92(10):e00181–18. doi: 10.1128/JVI.00181-18
  • Han R, Liang L, Qin T, et al. Encephalomyocarditis Virus 2A Protein Inhibited Apoptosis by Interaction with Annexin A2 through JNK/c-Jun Pathway. Viruses. 2022;14:359. doi: 10.3390/v14020359
  • Yang S-L, Chou Y-T, Wu C-N, et al. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol. 2011;85:11809–11820. doi: 10.1128/JVI.00297-11
  • Zhang Q, Li S, Lei P, et al. ANXA2 Facilitates Enterovirus 71 Infection by Interacting with 3D Polymerase and PI4KB to Assist the Assembly of Replication Organelles. Virol Sin. 2021;36:1387–1399. doi: 10.1007/s12250-021-00417-4
  • Su Z, Chang Q, Drelich A, et al. Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Negl Trop Dis. 2020;14(7):e0007960. doi: 10.1371/journal.pntd.0007960
  • Díaz A, Ibarguren S, Breijo M, et al. Host-derived annexin II at the host-parasite interface of the Echinococcus granulosus hydatid cyst. Mol Biochem Parasitol. 2000;110:171–176. doi: 10.1016/s0166-6851(00)00256-5
  • Zhang F, Hu C, Cheng S, et al. The Investigation of the Effect and Mechanism of Sophora moorcroftiana Alkaloids in Combination with Albendazole on Echinococcosis in an Experimental Rats Model. Evid Based Complement Alternat Med. 2018;2018:3523126. doi: 10.1155/2018/3523126
  • Tararam CA, Farias LP, Wilson RA, et al. Schistosoma mansoni Annexin 2: molecular characterization and immunolocalization. Exp Parasitol. 2010;126:146–155. doi: 10.1016/j.exppara.2010.04.008
  • Gobert GN, Moertel L, Brindley PJ, et al. Developmental gene expression profiles of the human pathogen Schistosoma japonicum. BMC Genomics. 2009;10:128. doi: 10.1186/1471-2164-10-128
  • Deng B, Gong P, Li J, et al. Identification of the differentially expressed genes in SP2/0 myeloma cells from Balb/c mice infected with Trichinella spiralis. Vet Parasitol. 2013;194:179–182. doi: 10.1016/j.vetpar.2013.01.050
  • Teixeira TL, Cruz L, Mortara RA, et al. Revealing Annexin A2 and ARF-6 enrollment during Trypanosoma cruzi extracellular amastigote-host cell interaction. Parasites Vectors. 2015;8:493. doi: 10.1186/s13071-015-1097-6
  • Onofre TS, Loch L, Ferreira Rodrigues JP, et al. Gp35/50 mucin molecules of Trypanosoma cruzi metacyclic forms that mediate host cell invasion interact with annexin A2. PLoS Negl Trop Dis. 2022;16(10):e0010788. doi: 10.1371/journal.pntd.0010788
  • Shi X, Xiao M, Xie Z, et al. Angiostrongylus cantonensis Galectin-1 interacts with Annexin A2 to impair the viability of macrophages via activating JNK pathway. Parasites Vectors. 2020;13:183. doi: 10.1186/s13071-020-04038-w
  • He X, Zhang W, Chang Q, et al. A new role for host annexin A2 in establishing bacterial adhesion to vascular endothelial cells: lines of evidence from atomic force microscopy and an in vivo study. Lab Invest. 2019;99:1650–1660. doi: 10.1038/s41374-019-0284-z
  • Su Z, Shelite TR, Qiu Y, et al. Host EPAC1 Modulates Rickettsial Adhesion to Vascular Endothelial Cells via Regulation of ANXA2 Y23 Phosphorylation. Pathogens. 2021;10:1307. doi: 10.3390/pathogens10101307
  • Zobiack N, Rescher U, Laarmann S, et al. Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J Cell Sci. 2002;115:91–98. doi: 10.1242/jcs.115.1.91
  • Miyahara A, Nakanishi N, Ooka T, et al. Enterohemorrhagic Escherichia coli effector EspL2 induces actin microfilament aggregation through annexin 2 activation. Cell Microbiol. 2009;11:337–350. doi: 10.1111/j.1462-5822.2008.01256.x
  • Jolly C, Winfree S, Hansen B, et al. The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells. Cell Microbiol. 2014;16:64–77. doi: 10.1111/cmi.12180
  • Kirschnek S, Adams C, Gulbins E. Annexin II is a novel receptor for Pseudomonas aeruginosa. Biochem Biophys Res Commun. 2005;327:900–906. doi: 10.1016/j.bbrc.2004.12.089
  • Li R, Tan S, Yu M, et al. Annexin A2 Regulates Autophagy in Pseudomonas aeruginosa Infection through the Akt1-Mtor-ULK1/2 Signaling Pathway. J Immunol. 2015;195:3901–3911. doi: 10.4049/jimmunol.1500967
  • He S, Li X, Li R, et al. Annexin A2 Modulates ROS and Impacts Inflammatory Response via IL-17 Signaling in Polymicrobial Sepsis Mice. PLOS Pathog. 2016;12(7):e1005743. doi: 10.1371/journal.ppat.1005743
  • Duan H, Chen L, Qu L, et al. Mycoplasma hyorhinis infection promotes NF-κB-dependent migration of gastric cancer cells. Cancer Res. 2014;74:5782–5794. doi: 10.1158/0008-5472.CAN-14-0650
  • Liu D, Hu Y, Guo Y, et al. Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One. 2017;12(10):e0184578. doi: 10.1371/journal.pone.0184578
  • Yuan S, Qu L, Shou C, et al. N-Terminal Polypeptide of Annexin A2 Decreases Infection of Mycoplasma hyorhinis to Gastric Cancer Cells. PLoS One. 2016;11(1):e0147776. doi: 10.1371/journal.pone.0147776
  • Somarajan SR, Al-Asadi F, Ramasamy K, et al. Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. MBio. 2014;5(4):e01497–14. doi: 10.1128/mBio.01497-14
  • Yu Y, Zhang L, Chen Y, et al. GroEL Protein (Heat Shock Protein 60) of Mycoplasma gallisepticum Induces Apoptosis in Host Cells by Interacting with Annexin A2. Infect Immun. 2019;87(9):e00248–19. doi: 10.1128/IAI.00248-19
  • Zhang H, Lu D, Zhang Y, et al. Annexin A2 regulates Mycoplasma bovis adhesion and invasion to embryo bovine lung cells affecting molecular expression essential to inflammatory response. Front Immunol. 2022;13:974006. doi: 10.3389/fimmu.2022.974006
  • May RC, Stone NRH, Wiesner DL, et al. Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol. 2016;14:106–117. doi: 10.1038/nrmicro.2015.6
  • Vu K, Eigenheer RA, Phinney BS, et al. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells. Infect Immun. 2013;81(9):3139–3147. doi: 10.1128/IAI.00554-13
  • Fang W, Fa Z-Z, Xie Q, et al. Complex Roles of Annexin A2 in Host Blood-Brain Barrier Invasion by Cryptococcus neoformans. CNS Neurosci Ther. 2017;23:291–300. doi: 10.1111/cns.12673
  • Na Pombejra S, Salemi M, Phinney BS, et al. The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier. Front Cell Infect Microbiol. 2017;7:296. doi: 10.3389/fcimb.2017.00296
  • Stukes S, Coelho C, Rivera J, et al. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection. J Immunol. 2016;197:1252–1261. doi: 10.4049/jimmunol.1501855