674
Views
0
CrossRef citations to date
0
Altmetric
Research article

The pseudokinase MLKL contributes to host defense against Streptococcus pluranimalium infection by mediating NLRP3 inflammasome activation and extracellular trap formation

, , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2258057 | Received 18 Apr 2023, Accepted 29 Aug 2023, Published online: 24 Sep 2023

References

  • Devriese LA, Vandamme P, Collins MD, et al. Streptococcus pluranimalium sp. nov., from cattle and other animals.Int. J Syst Bacteriol. 1999;49(3):t31221–15. doi: 10.1099/00207713-49-3-1221
  • Fu DJ, Ramachandran A, Miller C. Miller C Streptococcus pluranimalium meningoencephalitis in a horse.Journal of veterinary diagnostic investigation: official publication of the American Association of veterinary Laboratory Diagnosticians. J Vet Diagn Invest. 2021;33(5):956–960. doi: 10.1177/10406387211023465
  • Hedegaard L, Christensen H, Chadfield MS, et al. Association of Streptococcus pluranimalium with valvular endocarditis and septicaemia in adult broiler parents. Avian Patholo. 2009;38(2):155–160. doi: 10.1080/03079450902737763
  • Pan Y, An H, Fu T, et al. Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation. BMC Microbiol. 2018;18(1):182. doi: 10.1186/s12866-018-1327-0
  • Foster G, Barley J, Howie F, et al. Streptococcus pluranimalium in bovine reproductive disease. Vet Rec. 2008;163(21):638. doi: 10.1136/vr.163.21.638
  • Aryasinghe L, Sabbar S, Kazim Y, et al. Streptococcus pluranimalium: a novel human pathogen? Int J Surg Case Rep. 2014;5(12):1242–1246. doi: 10.1016/j.ijscr.2014.11.029
  • Duriseti P, Fleisher J. Streptococcus pluranimalium infective endocarditis and brain abscess. IDCases. 2019;18(e00587): doi: 10.1016/j.idcr.2019.e00587
  • Maher G, Beniwal M, Bahubali V, et al. Streptococcus pluranimalium: emerging animal streptococcal species as causative agent of human brain abscess. World Neurosurg. 2018;115:115208–115212. doi: 10.1016/j.wneu.2018.04.099
  • George K, Jacob G, B JS, et al. Pneumonia with synpneumonic effusion and bacteraemia: streptococcus pluranimalium infection in a healthy adult. Br J Hosp Med. 2020;81(2):1–3. (London, England: 2005). doi: 10.12968/hmed.2019.0275
  • Ghazvini K, Karbalaei M, Kianifar H, et al. The first report of Streptococcus pluranimalium infection from Iran: a case report and literature review. Clin Case Rep. 2019;7(10):1858–1862. doi: 10.1002/ccr3.2374
  • Zindel J, Kubes P. Damps, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol Mech Dis. 2020;15(1):15493–15518. doi: 10.1146/annurev-pathmechdis-012419-032847
  • De Lorenzo G, Ferrari S, Cervone F, et al. Extracellular DAMPs in plants and mammals: immunity, tissue damage and repair. Trends Immunol. 2018;39(11):937–950. doi: 10.1016/j.it.2018.09.006
  • Ohto U. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front Immunol. 2022;13: doi: 10.3389/fimmu.2022.953530
  • Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology. 2013;218(11):1312–1321. doi: 10.1016/j.imbio.2013.07.007
  • Majer O, Liu B, Barton GM. Nucleic acid-sensing TLRs: trafficking and regulation. Curr Opin Immunol. 2017;44:4426–4433. doi: 10.1016/j.coi.2016.10.003
  • Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20(9):537–551. doi: 10.1038/s41577-020-0288-3
  • Mnich ME, van Dalen R, van Sorge NM. C-Type lectin receptors in host defense against bacterial pathogens. Front Cell Infect Microbiol. 2020;10309: doi: 10.3389/fcimb.2020.00309
  • Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–227. doi: 10.1016/j.cell.2011.11.031
  • Wu J, Huang Z, Ren J, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23(8):994–1006. doi: 10.1038/cr.2013.91
  • Yu SX, Zhou FH, Chen W, et al. Decidual stromal cell necroptosis contributes to polyinosinic-polycytidylic acid-triggered abnormal murine pregnancy. Front Immunol. 2017;8916: doi: 10.3389/fimmu.2017.00916
  • Galluzzi L, Kepp O, Chan FK, et al. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol. 2017;12103–12130. doi: 10.1146/annurev-pathol-052016-100247
  • Choi ME, Price DR, Ryter SW, et al. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 2019;4(15): doi: 10.1172/jci.insight.128834
  • Nogusa S, Thapa RJ, Dillon CP, et al. RIPK3 activates parallel pathways of MLKL-Driven necroptosis and FADD-Mediated apoptosis to protect against influenza a virus. Cell Host Microbe. 2016;20(1):13–24. doi: 10.1016/j.chom.2016.05.011
  • Ashida H, Mimuro H, Ogawa M, et al. Cell death and infection: a double-edged sword for host and pathogen survival. The J Cell Bio. 2011;195(6):931–942. doi: 10.1083/jcb.201108081
  • Liu Y, Xing LH, Li FX, et al. Mixed lineage kinase-like protein protects against Clostridium perfringens infection by enhancing NLRP3 inflammasome-extracellular traps axis. I Sci. 2022;25(10):105121. doi: 10.1016/j.isci.2022.105121
  • Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol. 2014;35:3514–3523. doi: 10.1016/j.semcdb.2014.07.013
  • Yu SX, Chen W, Liu ZZ, et al. Non-hematopoietic MLKL protects against salmonella mucosal infection by enhancing inflammasome activation. Front Immunol. 2018;9119: doi: 10.3389/fimmu.2018.00119
  • Martens S, Bridelance J, Roelandt R, et al. MLKL in cancer: more than a necroptosis regulator. Cell Death Diff. 2021;28(6):1757–1772. doi: 10.1038/s41418-021-00785-0
  • Ying Z, Pan C, Shao T, et al. Mixed lineage kinase domain-like protein MLKL breaks down myelin following nerve injury. Molecular Cell. 2018;72(3):457–468.e455. doi: 10.1016/j.molcel.2018.09.011
  • Zhan C, Huang M, Yang X, et al. MLKL: functions beyond serving as the executioner of necroptosis. Theranostics. 2021;11(10):4759–4769. doi: 10.7150/thno.54072
  • Huang H, Harris R, Yun H, et al. RIPK3 Activates MLKL-Driven Necroptosis and NLRP3 Inflammasome in Macrophages to Protect Against Streptococcus Pneumoniae. Am J Respir Criti Care Med. 2019;199:A5914.
  • Huang H-R, Cho SJ, Harris RM, et al. RIPK3 activates MLKL-mediated necroptosis and inflammasome signaling during Streptococcus infection. Am J Respir Cell Mol Biol. 2021;64(5):579–591. doi: 10.1165/rcmb.2020-0312OC
  • Gutierrez KD, Davis MA, Daniels BP, et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 2017;198(5):2156–2164. doi: 10.4049/jimmunol.1601757
  • Conos SA, Chen KW, De Nardo D, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Nat Acad Sci. 2017;114(6):E961–E969. doi: 10.1073/pnas.1613305114
  • Yan B, Guo Y, Wang J, et al. Identification and histopathological analysis of Streptococcus pluranimalium caused pneumonia in sheep. J Biotech Res. 2022;13:10–17.
  • Kalhoro DH, Luo S, Xie X, et al. Streptococcus pluranimalium isolated from a canine respiratory case: identification and experimental infection in mice. Pak Vet J. 2015;35(3):388–390.
  • Duriseti P, Fleisher JJI. Streptococcus pluranimalium infective endocarditis and brain abscess. IDCases. 2019;18:18e00587. doi: 10.1016/j.idcr.2019.e00587
  • Clare B. Inflammasome activation by Salmonella. Curr Opin Microbiol. 2021;6427–6432. doi:10.1016/j.mib.2021.09.004
  • Costa Franco MMS, Marim FM, Alves-Silva J, et al. AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice. Microbes And Infection. 2019;21(2):85–93. doi: 10.1016/j.micinf.2018.09.001
  • Wegiel B, Larsen R, Gallo D, et al. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. The J Clin Investig. 2014;124(11):4926–4940. doi: 10.1172/jci72853
  • Naseer N, Egan MS, Reyes Ruiz VM, et al. Human NAIP/NLRC4 and NLRP3 inflammasomes detect salmonella type III secretion system activities to restrict intracellular bacterial replication. PLOS Pathogens. 2022;18(1):e1009718. doi: 10.1371/journal.ppat.1009718
  • Conos SA, Chen KW, De Nardo D, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA. 2017;114(6):E961–e969. doi: 10.1073/pnas.1613305114
  • Gutierrez KD, Davis MA, Daniels BP, et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 2017;198(5):2156–2164. (Baltimore, Md: 1950). doi: 10.4049/jimmunol.1601757
  • Chambers ED, White A, Vang A, et al. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa–induced acute lung injury and NLRP3 inflammasome activation. FASEB J. 2020;34(1):1516–1531. doi: 10.1096/fj.201902286R
  • Deng Q, Wang Y, Zhang Y, et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect Immun. 2016;84(1):56–66. doi: 10.1128/iai.00945-15
  • Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176(7):3877–3883. (Baltimore, Md. 1950). doi: 10.4049/jimmunol.176.7.3877
  • Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?Nature reviews. Immunology. 2010;10(3):210–215. doi: 10.1038/nri2725
  • Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–856. doi: 10.1038/ni.1631
  • Muñoz-Planillo R, Kuffa P, Martínez-Colón G, et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–1153. doi: 10.1016/j.immuni.2013.05.016
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Sci. 2004;303(5663):1532–1535. doi: 10.1126/science.1092385
  • Doster RS, Rogers LM, Gaddy JA, et al. Macrophage extracellular traps: a scoping review. J Innate Immun. 2018;10(1):3–13. doi: 10.1159/000480373
  • Yousefi S, Morshed M, Amini P, et al. Basophils exhibit antibacterial activity through extracellular trap formation. Allergy. 2015;70(9):1184–1188. doi: 10.1111/all.12662
  • Yousefi S, Gold JA, Andina N, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nature Med. 2008;14(9):949–953. doi: 10.1038/nm.1855
  • Elieh Ali Komi D, Kuebler WM. Significance of mast cell formed extracellular traps in microbial defense. Clin Rev Allergy Immunol. 2022;62(1):160–179. doi: 10.1007/s12016-021-08861-6
  • Rasmussen KH, Hawkins CL. Hawkins C L role of macrophage extracellular traps in innate immunity and inflammatory disease. Biochem Soc Trans. 2022;50(1):21–32. doi: 10.1042/bst20210962
  • D’Cruz AA, Speir M, Bliss-Moreau M, et al. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signaling. 2018;11(546):eaao1716. doi: 10.1126/scisignal.aao1716
  • Huang W, Jiao J, Liu J, et al. MFG-E8 accelerates wound healing in diabetes by regulating “NLRP3 inflammasome-neutrophil extracellular traps” axis. Cell Death Discovery. 2020;6(1):84. doi: 10.1038/s41420-020-00318-7
  • Cao Y, Shi M, Liu L, et al. Inhibition of neutrophil extracellular trap formation attenuates NLRP1-dependent neuronal pyroptosis via STING/IRE1α pathway after traumatic brain injury in mice. Front Immunol. 2023;14:141125759. doi: 10.3389/fimmu.2023.1125759
  • Liu Y, Xing L-H, Li F-X, et al. Mixed lineage kinase-like protein protects against Clostridium perfringens infection by enhancing NLRP3 inflammasome-extracellular traps axis. i Sci. 2022;25(10):105121. doi: 10.1016/j.isci.2022.105121
  • Singh P, Kumar N, Singh M, et al. Neutrophil extracellular traps and NLRP3 inflammasome: a disturbing duo in atherosclerosis. Inflammation And Atherothrombosis. 2023;11(2):261. doi: 10.3390/vaccines11020261