4,727
Views
0
CrossRef citations to date
0
Altmetric
Review article

Pathogenicity and virulence of Borrelia burgdorferi

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2265015 | Received 09 Nov 2022, Accepted 25 Sep 2023, Published online: 09 Oct 2023

References

  • Kugeler KJ, Schwartz AM, Delorey MJ, et al. Estimating the frequency of Lyme disease Diagnoses, United States, 2010–2018. Emerg Infect Dis. 2021;27(2):616–31. doi: 10.3201/eid2702.202731
  • Sylvie Goddyn WF, Peterle A, Octavia Sârbu D, et al. MOTION for a RESOLUTION on Lyme disease (borreliosis) | B8-0514/2018 | European Parliament [Internet]. [cited 2022 Oct 27]. Available from: https://www.europarl.europa.eu/doceo/document/B-8-2018-0514_EN.html
  • Stanek G, Strle F. Lyme borreliosis–from tick bite to diagnosis and treatment. FEMS Microbiol Rev. 2018;42(3):233–258. doi: 10.1093/femsre/fux047
  • Strnad M, Grubhoffer L, Rego ROM. Novel targets and strategies to combat borreliosis. Appl Microbiol Biotechnol. 2020;104(5):1915–1925. doi: 10.1007/s00253-020-10375-8
  • Jauris-Heipke S, Fuchs R, Motz M, et al. Genetic heterogenity of the genes coding for the outer surface protein C (OspC) and the flagellin of Borrelia burgdorferi. Med Microbiol Immunol. 1993;182(1):37–50. doi: 10.1007/BF00195949
  • Roberts WC, Mullikin BA, Lathigra R, et al. Molecular analysis of sequence heterogeneity among genes encoding decorin binding proteins a and B of Borrelia burgdorferi Sensu Lato. Infect Immun. 1998;66(11):5275–5285. doi: 10.1128/IAI.66.11.5275-5285.1998
  • Comstedt P, Schüler W, Meinke A, et al. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS One. 2017;12(9):e0184357. doi: 10.1371/journal.pone.0184357
  • Coburn J, Garcia B, Hu LT, et al. Lyme disease pathogenesis. Curr Issues Mol Biol. 2021;42:473–518. doi: 10.21775/cimb.042.473
  • Strnad M, Rego ROM. The need to unravel the twisted nature of the Borrelia burgdorferi sensu lato complex across Europe. Microbiol (Reading). 2020;166(5):428–435. doi: 10.1099/mic.0.000899
  • Stewart PE, Byram R, Grimm D, et al. The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid. 2005;53(1):1–13. doi: 10.1016/j.plasmid.2004.10.006
  • Vancová M, Bílý T, Šimo L, et al. Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: ixodidae): a new insight into the mechanism of blood-feeding. Sci Rep. 2020;10(1):165. doi: 10.1038/s41598-019-56811-2
  • Dunham-Ems SM, Caimano MJ, Pal U, et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest. 2009;119(12):3652–3665. doi: 10.1172/JCI39401
  • Strnad M, Oh YJ, Vancová M, et al. Nanomechanical mechanisms of Lyme disease spirochete motility enhancement in extracellular matrix. Commun Biol. 2021;4(1):1–9. doi: 10.1038/s42003-021-01783-1
  • Moriarty TJ, Norman MU, Colarusso P, et al. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLOS Pathog. 2008;4(6):e1000090. doi: 10.1371/journal.ppat.1000090
  • Fraser CM, Casjens S, Huang WM, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390(6660):580–586. doi: 10.1038/37551
  • Casjens SR, Mongodin EF, Qiu W-G, et al. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol. 2011;193(24):6995–6996. doi: 10.1128/JB.05951-11
  • Meriläinen L, Herranen A, Schwarzbach A, et al. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology (Reading). 2015;161(3):516–527. doi: 10.1099/mic.0.000027
  • Rudenko N, Golovchenko M, Kybicova K, et al. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasites Vectors. 2019;12(1):237. doi: 10.1186/s13071-019-3495-7
  • Karvonen K, Nykky J, Marjomäki V, et al. Distinctive evasion mechanisms to allow persistence of Borrelia burgdorferi in different human cell lines. Front Microbiol. 2021;12:711291. doi: 10.3389/fmicb.2021.711291
  • Karvonen K, Tammisto H, Nykky J, et al. Borrelia burgdorferi Outer Membrane Vesicles Contain Antigenic Proteins, but Do Not Induce Cell Death in Human Cells. Microorganisms. 2022;10(2):212. doi: 10.3390/microorganisms10020212
  • Kuhn HW, Lasseter AG, Adams PP, et al. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLOS Pathogens. 2021;17(8):e1009869. doi: 10.1371/journal.ppat.1009869
  • Klose M, Scheungrab M, Luckner M, et al. FIB-SEM-based analysis of Borrelia intracellular processing by human macrophages. J Cell Sci. 2021;134:jcs252320. doi: 10.1242/jcs.252320
  • Narasimhan S, Rajeevan N, Liu L, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15(1):58–71. doi: 10.1016/j.chom.2013.12.001
  • Herrmann C, Gern L. Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasites Vectors. 2015;8(1):6. doi: 10.1186/s13071-014-0526-2
  • Yuste RA, Muenkel M, Axarlis K, et al. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience. 2022;25(8):104793. doi: 10.1016/j.isci.2022.104793
  • Lin Y-P, Diuk-Wasser MA, Stevenson B, et al. Complement evasion contributes to Lyme borreliae–host associations. Trends Parasitol. 2020;36(7):634–645. doi: 10.1016/j.pt.2020.04.011
  • Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol. 2013;21(8):372–379. doi: 10.1016/j.tim.2013.06.005
  • Hyde JA. Borrelia burgdorferi keeps moving and carries on: a review of borrelial dissemination and invasion. Front Immunol. 2017;8:114. doi: 10.3389/fimmu.2017.00114
  • Kurokawa C, Lynn GE, Pedra JHF, et al. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol. 2020;18(10):587–600. doi: 10.1038/s41579-020-0400-5
  • Schutzer SE, Berger BW, Krueger JG, et al. Atypical erythema migrans in patients with PCR-Positive Lyme disease. Emerg Infect Dis. 2013;19(5):815–817. doi: 10.3201/eid1905.120796
  • Waddell LA, Greig J, Mascarenhas M, et al. The accuracy of diagnostic tests for Lyme disease in humans, a Systematic review and meta-analysis of North American research. PLoS One. 2016;11(12):e0168613. doi: 10.1371/journal.pone.0168613
  • Baarsma ME, Schellekens J, Meijer BC, et al. Diagnostic parameters of modified two-tier testing in European patients with early Lyme disease. Eur J Clin Microbiol Infect Dis. 2020;39(11):2143–2152. doi: 10.1007/s10096-020-03946-0
  • Davis IRC, McNeil SA, Allen W, et al. Performance of a modified two-tiered testing enzyme immunoassay algorithm for serologic diagnosis of Lyme disease in Nova Scotia. J Clin Microbiol. 2020;58(7):e01841–19. doi: 10.1128/JCM.01841-19
  • Branda JA, Steere AC. Laboratory Diagnosis of Lyme Borreliosis. Clin Microbiol Rev. 2021;34(2):e00018–19. doi: 10.1128/CMR.00018-19
  • Ang CW, Brandenburg AH, van Burgel ND, et al. A Dutch nationwide evaluation of serological assays for detection of Borrelia antibodies in clinically well-defined patients. Diagn Microbiol Infect Dis. 2015;83(3):222–228. doi: 10.1016/j.diagmicrobio.2015.07.007
  • Joyner G, Mavin S, Milner R, et al. Introduction of IgM testing for the diagnosis of acute Lyme borreliosis: a study of the benefits, limitations and costs. Eur J Clin Microbiol Infect Dis. 2022;41(4):671–675. doi: 10.1007/s10096-021-04366-4
  • Sabin AP, Scholze BP, Lovrich SD, et al. Clinical evaluation of a Borrelia modified two-tiered testing (MTTT) shows increased early sensitivity for Borrelia burgdorferi but not other endemic Borrelia species in a high incidence region for Lyme disease in Wisconsin. Diagn Microbiol Infect Dis. 2023;105(1):115837. doi: 10.1016/j.diagmicrobio.2022.115837
  • Wilske B, Fingerle V, Schulte-Spechtel U. Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol Med Microbiol. 2007;49(1):13–21. doi: 10.1111/j.1574-695X.2006.00139.x
  • Kalish RA, McHugh G, Granquist J, et al. Persistence of Immunoglobulin M or Immunoglobulin G Antibody Responses to Borrelia burgdorferi 10–20 Years after Active Lyme Disease. Clin Infect Dis. 2001;33(6):780–785. doi: 10.1086/322669
  • Krogen I, Skarphédinsson S, Jensen TG, et al. No correlation between symptom duration and intrathecal production of IgM and/or IgG antibodies in Lyme neuroborreliosis – a retrospective cohort study in Denmark. J Infect. 2022;85(5):507–512. doi: 10.1016/j.jinf.2022.08.045
  • Lantos PM, Rumbaugh J, Bockenstedt LK, et al. Clinical practice guidelines by the infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 guidelines for the Prevention, diagnosis, and treatment of Lyme disease. Arthritis Care Res (Hoboken). 2021;73(1):1–9. doi: 10.1002/acr.24495
  • Crossland NA, Alvarez X, Embers ME. Late disseminated Lyme disease. Am J Pathol. 2018;188(3):672–682. doi: 10.1016/j.ajpath.2017.11.005
  • Stanek G, Fingerle V, Hunfeld K-P, et al. Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect. 2011;17(1):69–79. doi: 10.1111/j.1469-0691.2010.03175.x
  • Bobe JR, Jutras BL, Horn EJ, et al. Recent Progress in Lyme Disease and Remaining Challenges. Front Med. 2021;8:666554. doi: 10.3389/fmed.2021.666554
  • Wong KH, Shapiro ED, Soffer GK. A review of post-treatment Lyme disease syndrome and chronic Lyme disease for the practicing immunologist. Clin Rev Allergy Immunol. 2022;62(1):264–271. doi: 10.1007/s12016-021-08906-w
  • Jutras BL, Lochhead RB, Kloos ZA, et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A. 2019;116(27):13498–13507. doi: 10.1073/pnas.1904170116
  • Rudenko N, Golovchenko M. Sexual transmission of Lyme Borreliosis? The question that calls for an answer. Trop Med Infect Dis. 2021;6(2):87. doi: 10.3390/tropicalmed6020087
  • Majerová K, Hönig V, Houda M, et al. Hedgehogs, squirrels, and blackbirds as sentinel hosts for active surveillance of Borrelia miyamotoi and Borrelia burgdorferi complex in urban and rural environments. Microorganisms. 2020;8(12):E1908. doi: 10.3390/microorganisms8121908
  • Rudenko N, Golovchenko M, Grubhoffer L, et al. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2(3):123–128. doi: 10.1016/j.ttbdis.2011.04.002
  • Clark KL, Leydet B, Hartman S. Lyme borreliosis in human patients in Florida and Georgia, USA. Int J Med Sci. 2013;10(7):915–931. doi: 10.7150/ijms.6273
  • Steere AC. Lyme disease. N Engl J Med. 1989;321(9):586–596. doi: 10.1056/NEJM198908313210906
  • Oschmann P, Dorndorf W, Hornig C, et al. Stages and syndromes of neuroborreliosis. J Neurol. 1998;245(5):262–272. doi: 10.1007/s004150050216
  • Ornstein K, Berglund J, Nilsson I, et al. Characterization of Lyme borreliosis isolates from patients with erythema migrans and neuroborreliosis in southern Sweden. J Clin Microbiol. 2001;39(4):1294–1298. doi: 10.1128/JCM.39.4.1294-1298.2001
  • Ruzić-Sabljić E, Maraspin V, Lotric-Furlan S, et al. Characterization of Borrelia burgdorferi sensu lato strains isolated from human material in Slovenia. Wien Klin Wochenschr. 2002;114:544–550.
  • Steere AC, Strle F, Wormser GP, et al. Lyme borreliosis. Nat Rev Dis Primers. 2016;2(1):16090. doi: 10.1038/nrdp.2016.90
  • Grange F, Wechsler J, Guillaume J-C, et al. Borrelia burgdorferi-associated lymphocytoma cutis simulating a primary cutaneous large B-cell lymphoma. J Am Acad Dermatol. 2002;47(4):530–534. doi: 10.1067/mjd.2002.120475
  • Smetanick MT, Zellis SL, Ermolovich T. Acrodermatitis chronica atrophicans: a case report and review of the literature. Cutis. 2010;85:247–252.
  • Picken RN, Strle F, Picken MM, et al. Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii, and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. J Invest Dermatol. 1998;110(3):211–214. doi: 10.1046/j.1523-1747.1998.00130.x
  • Strle F, Picken RN, Cheng Y, et al. Clinical findings for patients with Lyme borreliosis caused by Borrelia burgdorferi sensu lato with genotypic and phenotypic similarities to strain 25015. Clin Infect Dis. 1997;25(2):273–280. doi: 10.1086/514551
  • Margos G, Lane RS, Fedorova N, et al. Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int J Syst Evol Microbiol. 2016;66(3):1447–1452. doi: 10.1099/ijsem.0.000897
  • Rudenko N, Golovchenko M, Růzek D, et al. Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol Lett. 2009;292(2):274–281. doi: 10.1111/j.1574-6968.2009.01498.x
  • Rudenko N, Golovchenko M, Mokrácek A, et al. Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J Clin Microbiol. 2008;46(10):3540–3543. doi: 10.1128/JCM.01032-08
  • Collares-Pereira M, Couceiro S, Franca I, et al. First isolation of Borrelia lusitaniae from a human patient. J Clin Microbiol. 2004;42(3):1316–1318. doi: 10.1128/JCM.42.3.1316-1318.2004
  • Diza E, Papa A, Vezyri E, et al. Borrelia valaisiana in cerebrospinal fluid. Emerging Infect Dis. 2004;10(9):1692–1693. doi: 10.3201/eid1009.030439
  • Margos G, Sing A, Fingerle V. Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection. 2017;45(4):567–569. doi: 10.1007/s15010-017-1032-1
  • Eliassen KE, Ocias LF, Krogfelt KA, et al. Tick-transmitted co-infections among erythema migrans patients in a general practice setting in Norway: a clinical and laboratory follow-up study. BMC Infect Dis. 2021;21(1):1044. doi: 10.1186/s12879-021-06755-8
  • Cassatt DR, Patel NK, Ulbrandt ND, et al. DbpA, but not OspA, is expressed by Borrelia burgdorferi during spirochetemia and is a target for protective antibodies. Infect Immun. 1998;66(11):5379–5387. doi: 10.1128/IAI.66.11.5379-5387.1998
  • Hanson MS, Cassatt DR, Guo BP, et al. Active and passive immunity against Borrelia burgdorferi decorin binding protein a (DbpA) protects against infection. Infect Immun. 1998;66(5):2143–2153. doi: 10.1128/IAI.66.5.2143-2153.1998
  • Brown EL, Kim JH, Reisenbichler ES, et al. Multicomponent Lyme vaccine: three is not a crowd. Vaccine. 2005;23(28):3687–3696. doi: 10.1016/j.vaccine.2005.02.006
  • Earnhart CG, Marconi RT. An octavalent lyme disease vaccine induces antibodies that recognize all incorporated OspC type-specific sequences. Hum Vaccin. 2007;3(6):281–289. doi: 10.4161/hv.4661
  • Kumar M, Kaur S, Kariu T, et al. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine. 2011;29(48):9012–9019. doi: 10.1016/j.vaccine.2011.09.035
  • Klouwens MJ, Trentelman JJ, Ersoz JI, et al. Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis. Sci Rep. 2021;11(1):4775. doi: 10.1038/s41598-021-84130-y
  • Singh P, Verma D, Backstedt BT, et al. Borrelia burgdorferi BBI39 paralogs, targets of protective immunity, reduce pathogen persistence either in hosts or in the vector. J Infect Dis. 2017;215(6):1000–1009. doi: 10.1093/infdis/jix036
  • Nigrovic LE, Thompson KM. The Lyme vaccine: a cautionary tale. Epidemiol Infect. 2007;135(1):1–8. doi: 10.1017/S0950268806007096
  • Shaffer L. Inner workings: lyme disease vaccines face familiar challenges, both societal and scientific. Proc Natl Acad Sci U S A. 2019;116(39):19214–19217. doi: 10.1073/pnas.1913923116
  • Bézay N, Hochreiter R, Kadlecek V, et al. Safety and immunogenicity of a novel multivalent OspA-based vaccine candidate against Lyme borreliosis: a randomised, phase 1 study in healthy adults. Lancet Infect Dis. 2023;S1473-3099(23):210–214. doi: 10.1016/S1473-3099(23)00210-4
  • Earnhart CG, Buckles EL, Marconi RT. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine. 2007;25(3):466–480. doi: 10.1016/j.vaccine.2006.07.052
  • Wressnigg N, Pöllabauer E-M, Aichinger G, et al. Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: a double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect Dis. 2013;13(8):680–689. doi: 10.1016/S1473-3099(13)70110-5
  • Kamp HD, Swanson KA, Wei RR, et al. Design of a broadly reactive Lyme disease vaccine. NPJ Vaccines. 2020;5(1):33. doi: 10.1038/s41541-020-0183-8
  • Nayak A, Schüler W, Seidel S, et al. Broadly protective multivalent OspA vaccine against Lyme borreliosis, developed based on surface shaping of the C-Terminal fragment. Infect Immun. 2020;88(4):e00917–19. doi: 10.1128/IAI.00917-19
  • Klouwens MJ, Trentelman JJA, Wagemakers A, et al. Tick-Tattoo: DNA vaccination against B. burgdorferi or Ixodes scapularis Tick proteins. Front Immunol. 2021;12:615011. doi: 10.3389/fimmu.2021.615011
  • Wagemakers A, Mason LMK, Oei A, et al. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther. 2014;21(12):1051–1057. doi: 10.1038/gt.2014.87
  • Pfeifle A, Thulasi Raman SN, Lansdell C, et al. DNA lipid nanoparticle vaccine targeting outer surface protein C affords protection against homologous Borrelia burgdorferi needle challenge in mice. Front Immunol. 2023;14:1020134. doi: 10.3389/fimmu.2023.1020134
  • Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012;11(2):189–209. doi: 10.1586/erv.11.188
  • Rosa PA, Jewett MW. Genetic manipulation of Borrelia. Curr Issues Mol Biol. 2021;42:307–332. doi: 10.21775/cimb.042.307
  • Samuels DS. Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol. 1995;47:253–259.
  • Rosa PA, Tilly K, Stewart PE. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol. 2005;3(2):129–143. doi: 10.1038/nrmicro1086
  • Stewart PE, Hoff J, Fischer E, et al. Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol. 2004;70(10):5973–5979. doi: 10.1128/AEM.70.10.5973-5979.2004
  • Botkin DJ, Abbott AN, Stewart PE, et al. Identification of potential virulence determinants by Himar1 transposition of infectious Borrelia burgdorferi B31. Infect Immun. 2006;74(12):6690–6699. doi: 10.1128/IAI.00993-06
  • Lin T, Gao L, Zhang C, et al. Analysis of an ordered, Comprehensive STM mutant Library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One. 2012;7(10):e47532. doi: 10.1371/journal.pone.0047532
  • Bose JL. Chemical and UV mutagenesis. Methods Mol Biol. 2016;1373:111–115.
  • Lin T, Gao L. Genome-Wide Mutagenesis in Borrelia burgdorferi. Methods Mol Biol. 2018;1690:201–223.
  • Revel AT, Talaat AM, Norgard MV. DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A. 2002;99(3):1562–1567. doi: 10.1073/pnas.032667699
  • Liang FT, Nelson FK, Fikrig E. DNA microarray assessment of putative Borrelia burgdorferi lipoprotein genes. Infect Immun. 2002;70(6):3300–3303. doi: 10.1128/IAI.70.6.3300-3303.2002
  • Akins DR, Bourell KW, Caimano MJ, et al. A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest. 1998;101(10):2240–2250. doi: 10.1172/JCI2325
  • Caimano MJ. Cultivation of Borrelia burgdorferi in dialysis membrane chambers in rat peritonea. Curr Protoc Microbiol. 2005;(1). doi: 10.1002/9780471729259.mc12c03s00
  • Arnold WK, Savage CR, Brissette CA, et al. RNA-Seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS One. 2016;11(10):e0164165. doi: 10.1371/journal.pone.0164165
  • Lybecker MC, Samuels DS. Small RNAs of Borrelia burgdorferi: characterizing functional regulators in a sea of sRnas. Yale J Biol Med. 2017;90(2):317–323.
  • Ellis TC, Jain S, Linowski AK, et al. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLOS Pathog. 2013;9(8):e1003567. doi: 10.1371/journal.ppat.1003567
  • Casselli T, Bankhead T. Use of in vivo expression technology for the identification of putative host adaptation factors of the Lyme disease spirochete. J Mol Microbiol Biotechnol. 2015;25(5):349–361. doi: 10.1159/000439305
  • Hyde JA, Weening EH, Chang M, et al. Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol. 2011;82(1):99–113. doi: 10.1111/j.1365-2958.2011.07801.x
  • Hejduk L, Rathner P, Strnad M, et al. Resonance assignment and secondary structure of DbpA protein from the European species, Borrelia afzelii. Biomol NMR Assign. 2021;15(2):415–420. doi: 10.1007/s12104-021-10039-2
  • Niddam AF, Ebady R, Bansal A, et al. Plasma fibronectin stabilizes Borrelia burgdorferi–endothelial interactions under vascular shear stress by a catch-bond mechanism. PNAS. 2017;114(17):E3490–8. doi: 10.1073/pnas.1615007114
  • Harman MW, Dunham-Ems SM, Caimano MJ, et al. The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc Natl Acad Sci, USA. 2012;109(8):3059–3064. doi: 10.1073/pnas.1114362109
  • Bockenstedt LK, Gonzalez D, Mao J, et al. What ticks do under your skin: Two-Photon intravital imaging of Ixodes scapularis feeding in the presence of the Lyme disease spirochete. Yale J Biol Med. 2014;87:3–13.
  • Hillman C, Stewart PE, Strnad M, et al. Visualization of spirochetes by labeling membrane proteins with fluorescent biarsenical dyes. Front Cell Infect Microbiol. 2019;9:287. doi: 10.3389/fcimb.2019.00287
  • Strnad M, Elsterová J, Schrenková J, et al. Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci Rep. 2015;5(1):18029. doi: 10.1038/srep18029
  • Wang X. Solution structure of decorin-binding protein a from Borrelia burgdorferi. Biochemistry. 2012;51(42):8353–8362. doi: 10.1021/bi3007093
  • Ante VM, Farris LC, Saputra EP, et al. The Borrelia burgdorferi adenylate cyclase, CyaB, is important for virulence factor production and mammalian infection. Front Microbiol. 2021;12:676192. doi: 10.3389/fmicb.2021.676192
  • Topal H, Fulcher NB, Bitterman J, et al. Crystal structure and Regulation mechanisms of the CyaB Adenylyl cyclase from the human pathogen Pseudomonas aeruginosa. J Mol Biol. 2012;416(2):271–286. doi: 10.1016/j.jmb.2011.12.045
  • Kim YR, Kim SY, Kim CM, et al. Essential role of an adenylate cyclase in regulating Vibrio vulnificus virulence. FEMS Microbiol Lett. 2005;243(2):497–503. doi: 10.1016/j.femsle.2005.01.016
  • Galperin MY, Chou S-H, Stock AM. Structural Conservation and diversity of PilZ-Related Domains. J Bacteriol. 2020;202(4):10.1128/JB.00664-19. doi: 10.1128/JB.00664-19
  • Hong Y, Zhou X, Fang H, et al. Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis (Edinb). 2013;93(6):625–634. doi: 10.1016/j.tube.2013.09.002
  • Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22(1):3–6. doi: 10.1093/bioinformatics/bti739
  • Jusufovic N, Savage CR, Saylor TC, et al. Borrelia burgdorferi PlzA is a c-di-GMP dependent DNA and RNA binding protein. bioRxiv. 2023.
  • Groshong AM, Grassmann AA, Luthra A, et al. PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation of Borrelia burgdorferi. PLOS Pathog. 2021;17(7):e1009725. doi: 10.1371/journal.ppat.1009725
  • Stevenson B, Babb K. LuxS-Mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun. 2002;70(8):4099–4105. doi: 10.1128/IAI.70.8.4099-4105.2002
  • Jones MB, Peterson SN, Benn R, et al. Role of luxS in bacillus anthracis growth and virulence factor expression. Virulence. 2010;1(2):72–83. doi: 10.4161/viru.1.2.10752
  • Xu L, Li H, Vuong C, et al. Role of the luxS Quorum-Sensing System in Biofilm Formation and Virulence of Staphylococcus epidermidis. Infect Immun. 2006;74(1):488–496. doi: 10.1128/IAI.74.1.488-496.2006
  • Zhang B, Ku X, Zhang X, et al. The AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of haemophilus parasuis. Front Cell Infect Microbiol. 2019;9:62. doi: 10.3389/fcimb.2019.00062
  • Taga ME, Bassler BL. Chemical communication among bacteria. Proc Natl Acad Sci U S A. 2003;100(2):14549–14554. doi: 10.1073/pnas.1934514100
  • Stevenson B, von Lackum K, Wattier RL, et al. Quorum sensing by the Lyme disease spirochete. Microbes Infect. 2003;5(11):991–997. doi: 10.1016/S1286-4579(03)00184-9
  • Blevins JS, Revel AT, Caimano MJ, et al. The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun. 2004;72(8):4864–4867. doi: 10.1128/IAI.72.8.4864-4867.2004
  • Arnold WK, Savage CR, Antonicello AD, et al. Apparent Role for Borrelia burgdorferi LuxS during Mammalian Infection. Infect Immun. 2015;83(4):1347–1353. doi: 10.1128/IAI.00032-15
  • Strnad M, Hönig V, Růžek D, et al. Europe-wide meta-analysis of Borrelia burgdorferi Sensu Lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol. 2017;83(15). doi: 10.1128/AEM.00609-17
  • van Duijvendijk G, Coipan C, Wagemakers A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites Vectors. 2016;9(1):97. doi: 10.1186/s13071-016-1389-5
  • Tonk M, Cabezas-Cruz A, Valdés JJ, et al. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasites Vectors. 2014;7(1):554. doi: 10.1186/s13071-014-0554-y
  • Cruz CE, Fogaça AC, Nakayasu ES, et al. Characterization of proteinases from the midgut of rhipicephalus (boophilus) microplus involved in the generation of antimicrobial peptides. Parasites Vectors. 2010;3(1):63. doi: 10.1186/1756-3305-3-63
  • Pereira LS, Oliveira PL, Barja-Fidalgo C, et al. Production of reactive oxygen species by hemocytes from the cattle tick boophilus microplus. Exp Parasitol. 2001;99(2):66–72. doi: 10.1006/expr.2001.4657
  • Eggenberger LR, Lamoreaux WJ, Coons LB. Hemocytic encapsulation of implants in the tick dermacentor variabilis. Exp Appl Acarol. 1990;9(3–4):279–287. doi: 10.1007/BF01193434
  • Fogaça AC, Sousa G, Pavanelo DB, et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front Immunol. 2021;12:628054. doi: 10.3389/fimmu.2021.628054
  • Tanaka T, Kawano S, Nakao S, et al. The identification and characterization of lysozyme from the hard tick haemaphysalis longicornis. Ticks Tick Borne Dis. 2010;1(4):178–185. doi: 10.1016/j.ttbdis.2010.09.001
  • De Silva AM, Fikrig E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg. 1995;53(4):397–404. doi: 10.4269/ajtmh.1995.53.397
  • Ribeiro JM, Mather TN, Piesman J, et al. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: ixodidae). J Med Entomol. 1987;24(2):201–205. doi: 10.1093/jmedent/24.2.201
  • Pospisilova T, Urbanova V, Hes O, et al. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus Nymphs to mice. Infect Immun. 2019;87(6):e00896–18. doi: 10.1128/IAI.00896-18
  • Lejal E, Moutailler S, Šimo L, et al. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasites Vectors. 2019;12(1):152. doi: 10.1186/s13071-019-3418-7
  • Yang XF, Pal U, Alani SM, et al. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med. 2004;199(5):641–648. doi: 10.1084/jem.20031960
  • Pal U, de Silva AM, Montgomery RR, et al. Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein a. J Clin Invest. 2000;106(4):561–569. doi: 10.1172/JCI9427
  • Pal U, Li X, Wang T, et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell. 2004;119(4):457–468. doi: 10.1016/j.cell.2004.10.027
  • Zhang L, Zhang Y, Adusumilli S, et al. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLOS Pathog. 2011;7(6):e1002079. doi: 10.1371/journal.ppat.1002079
  • Neelakanta G, Li X, Pal U, et al. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLOS Pathogens. 2007;3(3):e33. doi: 10.1371/journal.ppat.0030033
  • Revel AT, Blevins JS, Almazán C, et al. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A. 2005;102(19):6972–6977. doi: 10.1073/pnas.0502565102
  • Mason C, Thompson C, Ouyang Z. DksA plays an essential role in regulating the virulence of Borrelia burgdorferi. Mol Microbiol. 2020;114(1):172–183. doi: 10.1111/mmi.14504
  • Boyle WK, Groshong AM, Drecktrah D, et al. DksA controls the response of the Lyme disease spirochete Borrelia burgdorferi to starvation. J Bacteriol. 2019;201(4):e00582–18. doi: 10.1128/JB.00582-18
  • Kumar M, Yang X, Coleman AS, et al. BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis. 2010;201(7):1084–1095. doi: 10.1086/651172
  • Narasimhan S, Coumou J, Schuijt TJ, et al. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLOS Pathogens. 2014;10(8):e1004278. doi: 10.1371/journal.ppat.1004278
  • Coumou J, Narasimhan S, Trentelman JJ, et al. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut. J Mol Med (Berl). 2016;94(3):361–370. doi: 10.1007/s00109-015-1365-0
  • Pal U, Yang X, Chen M, et al. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest. 2004;113(2):220–230. doi: 10.1172/JCI200419894
  • Tilly K, Krum JG, Bestor A, et al. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun. 2006;74(6):3554–3564. doi: 10.1128/IAI.01950-05
  • Ramamoorthi N, Narasimhan S, Pal U, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436(7050):573–577. doi: 10.1038/nature03812
  • Bierwagen P, Sliwiak J, Jaskolski M, et al. Strong interactions between Salp15 homologues from the tick I. ricinus and distinct types of the outer surface OspC protein from Borrelia. Ticks Tick Borne Dis. 2021;12(2):101630. doi: 10.1016/j.ttbdis.2020.101630
  • Kotál J, Langhansová H, Lieskovská J, et al. Modulation of host immunity by tick saliva. J Proteomics. 2015;128:58–68. doi: 10.1016/j.jprot.2015.07.005
  • Murfin KE, Kleinbard R, Aydin M, et al. Borrelia burgdorferi chemotaxis toward tick protein Salp12 contributes to acquisition. Ticks Tick Borne Dis. 2019;10(5):1124–1134. doi: 10.1016/j.ttbdis.2019.06.002
  • Narasimhan S, Sukumaran B, Bozdogan U, et al. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe. 2007;2(1):7–18. doi: 10.1016/j.chom.2007.06.001
  • Coleman JL, Crowley JT, Toledo AM, et al. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol. 2013;88(3):619–633. doi: 10.1111/mmi.12213
  • Boylan JA, Lawrence KA, Downey JS, et al. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species. Mol Microbiol. 2008;68(3):786–799. doi: 10.1111/j.1365-2958.2008.06204.x
  • Radolf JD, Caimano MJ, Stevenson B, et al. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol. 2012;10(2):87–99. doi: 10.1038/nrmicro2714
  • Tracy KE, Baumgarth N. Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front Immunol. 2017;8:116. doi: 10.3389/fimmu.2017.00116
  • Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J Invest Dermatol. 1998;110(1):1–7. doi: 10.1046/j.1523-1747.1998.00084.x
  • Ma Y, Seiler KP, Tai KF, et al. Outer surface lipoproteins of Borrelia burgdorferi stimulate nitric oxide production by the cytokine-inducible pathway. Infect Immun. 1994;62(9):3663–3671. doi: 10.1128/iai.62.9.3663-3671.1994
  • Seiler KP, Vavrin Z, Eichwald E, et al. Nitric oxide production during murine Lyme disease: lack of involvement in host resistance or pathology. Infect Immun. 1995;63(10):3886–3895. doi: 10.1128/iai.63.10.3886-3895.1995
  • Kerstholt M, Vrijmoeth H, Lachmandas E, et al. Role of glutathione metabolism in host defense against Borrelia burgdorferi infection. Proc Natl Acad Sci U S A. 2018;115(10):E2320–8. doi: 10.1073/pnas.1720833115
  • Kerstholt M, Brouwer M, Te Vrugt M, et al. Borrelia burgdorferi inhibits NADPH-mediated reactive oxygen species production through the mTOR pathway. Ticks Tick Borne Dis. 2022;13(4):101943. doi: 10.1016/j.ttbdis.2022.101943
  • Ouyang Z, He M, Oman T, et al. A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2009;106(9):3449–3454. doi: 10.1073/pnas.0812999106
  • Esteve-Gassent MD, Elliott NL, Seshu J. sodA is essential for virulence of Borrelia burgdorferi in the murine model of Lyme disease. Mol Microbiol. 2009;71(3):594–612. doi: 10.1111/j.1365-2958.2008.06549.x
  • Phelan JP, Bourgeois JS, McCarthy JE, et al. A putative xanthine dehydrogenase is critical for Borrelia burgdorferi survival in ticks and mice. Microbiology (Reading). 2023;169(1):001286. doi: 10.1099/mic.0.001286
  • Ramsey ME, Hyde JA, Medina-Perez DN, et al. A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLOS Pathog. 2017;13(2):e1006225. doi: 10.1371/journal.ppat.1006225
  • Lusitani D, Malawista SE, Montgomery RR. Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J Infect Dis. 2002;185(6):797–804. doi: 10.1086/339341
  • Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. doi: 10.1038/cr.2009.139
  • Kurtenbach K, De Michelis S, Etti S, et al. Host association of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2002;10(2):74–79. doi: 10.1016/S0966-842X(01)02298-3
  • Stevenson B, El-Hage N, Hines MA, et al. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun. 2002;70(2):491–497. doi: 10.1128/IAI.70.2.491-497.2002
  • van Dam AP, Oei A, Jaspars R, et al. Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infect Immun. 1997;65:1228–1236. doi: 10.1128/iai.65.4.1228-1236.1997
  • Kurtenbach K, Peacey M, Rijpkema SG, et al. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol. 1998;64(4):1169–1174. doi: 10.1128/AEM.64.4.1169-1174.1998
  • Skare JT, Garcia BL. Complement evasion by Lyme disease spirochetes. Trends Microbiol. 2020;28(11):889–899. doi: 10.1016/j.tim.2020.05.004
  • Garcia BL, Zhi H, Wager B, et al. Borrelia burgdorferi BBK32 inhibits the classical pathway by blocking activation of the C1 complement complex. PLOS Pathog. 2016;12(1):e1005404. doi: 10.1371/journal.ppat.1005404
  • Caine JA, Lin Y-P, Kessler JR, et al. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol. 2017;19(12):e12786. doi: 10.1111/cmi.12786
  • Barthel D, Schindler S, Zipfel PF. Plasminogen Is a Complement Inhibitor. J Biol Chem. 2012;287(22):18831–18842. doi: 10.1074/jbc.M111.323287
  • Hammerschmidt C, Koenigs A, Siegel C, et al. Versatile roles of CspA orthologs in complement Inactivation of serum-resistant Lyme disease spirochetes. Infect Immun. 2014;82(1):380–392. doi: 10.1128/IAI.01094-13
  • Koenigs A, Hammerschmidt C, Jutras BL, et al. BBA70 of Borrelia burgdorferi is a novel plasminogen-binding protein. J Biol Chem. 2013;288(35):25229–25243. doi: 10.1074/jbc.M112.413872
  • Önder Ö, Humphrey PT, McOmber B, et al. OspC Is Potent Plasminogen Receptor on Surface of Borrelia burgdorferi. J Biol Chem. 2012;287(20):16860–16868. doi: 10.1074/jbc.M111.290775
  • Fuchs H, Wallich R, Simon MM, et al. The outer surface protein a of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natil Acad Sci. 1994;91:12594–12598.
  • Brissette CA, Haupt K, Barthel D, et al. Borrelia burgdorferi Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen. Infect Immun. 2009;77(1):300–306. doi: 10.1128/IAI.01133-08
  • Haupt K, Kraiczy P, Wallich R, et al. FHR-1, an additional human plasma protein, binds to complement regulator-acquiring surface proteins of Borrelia burgdorferi. Int J Med Microbiol. 2008;298:287–291. doi: 10.1016/j.ijmm.2007.11.010
  • Kraiczy P, Rossmann E, Brade V, et al. Binding of human complement regulators FHL-1 and factor H to CRASP-1 orthologs of Borrelia burgdorferi. Wien Klin Wochenschr. 2006;118(21–22):669–676. doi: 10.1007/s00508-006-0691-1
  • Hallström T, Siegel C, Mörgelin M, et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. MBio. 2013;4(4):4. doi: 10.1128/mBio.00481-13
  • Hammerschmidt C, Klevenhaus Y, Koenigs A, et al. BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex. Mol Microbiol. 2016;99(2):407–424. doi: 10.1111/mmi.13239
  • Hellwage J, Meri T, Heikkilä T, et al. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem. 2001;276(11):8427–8435. doi: 10.1074/jbc.M007994200
  • Kraiczy P, Hellwage J, Skerka C, et al. Immune evasion of Borrelia burgdorferi: mapping of a complement-inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur J Immunol. 2003;33(3):697–707. doi: 10.1002/eji.200323571
  • Zhang J-R, Norris SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun. 1998;66(8):3698–3704. doi: 10.1128/IAI.66.8.3698-3704.1998
  • Frank SA Benefits of antigenic variation [Internet]. Immunology and Evolution of infectious disease. Princeton University Press; 2002 [cited 2022 Oct 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2405/
  • Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol. 2013;89(2):216–227. doi: 10.1111/mmi.12271
  • Brisson D, DE D. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168(2):713–722. doi: 10.1534/genetics.104.028738
  • Brisson D, Baxamusa N, Schwartz I, et al. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS One. 2011;6(8):e22926. doi: 10.1371/journal.pone.0022926
  • Ivanova L, Christova I, Neves V, et al. Comprehensive seroprofiling of sixteen B. burgdorferi OspC: implications for Lyme disease diagnostics design. Clin Immunol. 2009;132(3):393–400. doi: 10.1016/j.clim.2009.05.017
  • Dykhuizen DE, Brisson D, Sandigursky S, et al. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78(5):806–810. doi: 10.4269/ajtmh.2008.78.806
  • Sadziene A, Wilske B, Ferdows MS, et al. The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect Immun. 1993;61(5):2192–2195. doi: 10.1128/iai.61.5.2192-2195.1993
  • Gilmore RD, Kappel KJ, Dolan MC, et al. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun. 1996;64(6):2234–2239. doi: 10.1128/iai.64.6.2234-2239.1996
  • Bockenstedt LK, Hodzic E, Feng S, et al. Borrelia burgdorferi strain-specific Osp C-mediated immunity in mice. Infect Immun. 1997;65(11):4661–4667. doi: 10.1128/iai.65.11.4661-4667.1997
  • Rudenko N, Golovchenko M, Hönig V, et al. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl Environ Microbiol. 2013;79(5):1444–1453. doi: 10.1128/AEM.02749-12
  • Lagal V, Portnoï D, Faure G, et al. Borrelia burgdorferi sensu stricto invasiveness is correlated with OspC–plasminogen affinity. Microbes Infect. 2006;8(3):645–652. doi: 10.1016/j.micinf.2005.08.017
  • Seemanapalli SV, Xu Q, McShan K, et al. Outer surface protein C is a dissemination-facilitating factor of Borrelia burgdorferi during mammalian infection. PLoS One. 2010;5(12):e15830. doi: 10.1371/journal.pone.0015830
  • Xu Q, McShan K, Liang FT. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol. 2008;69(1):15–29. doi: 10.1111/j.1365-2958.2008.06264.x
  • Hovius JW, Schuijt TJ, de Groot KA, et al. Preferential protection of Borrelia burgdorferi Sensu Stricto by a Salp15 homologue in Ixodes ricinus Saliva. J Infect Dis. 2008;198(8):1189–1197. doi: 10.1086/591917
  • Caine JA, Coburn J, Morrison RP. A short-term Borrelia burgdorferi infection model identifies tissue tropisms and bloodstream survival conferred by adhesion proteins. Infect Immun. 2015;83(8):3184–3194. doi: 10.1128/IAI.00349-15
  • Lin Y-P, Tan X, Caine JA, et al. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLOS Pathogens. 2020;16(5):e1008516. doi: 10.1371/journal.ppat.1008516
  • Carrasco SE, Troxell B, Yang Y, et al. Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun. 2015;83(12):4848–4860. doi: 10.1128/IAI.01215-15
  • Salo J, Jaatinen A, Söderström M, et al. Decorin binding proteins of Borrelia burgdorferi promote arthritis development and joint specific post-treatment DNA persistence in mice. PLoS One. 2015;10(3):e0121512. doi: 10.1371/journal.pone.0121512
  • Shi Y, Xu Q, McShan K, et al. Both decorin-binding proteins a and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun. 2008;76(3):1239–1246. doi: 10.1128/IAI.00897-07
  • Imai DM, Samuels DS, Feng S, et al. The early dissemination defect attributed to disruption of decorin-binding proteins is abolished in chronic murine Lyme borreliosis. Infect Immun. 2013;81(5):1663–1673. doi: 10.1128/IAI.01359-12
  • Weening EH, Parveen N, Trzeciakowski JP, et al. Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun. 2008;76(12):5694–5705. doi: 10.1128/IAI.00690-08
  • Benoit VM, Fischer JR, Lin Y-P, et al. Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to Decorin, dermatan sulfate, and mammalian cells. Infect Immun. 2011;79(9):3501–3509. doi: 10.1128/IAI.00163-11
  • Salo J, Loimaranta V, Lahdenne P, et al. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto. J Infect Dis. 2011;204(1):65–73. doi: 10.1093/infdis/jir207
  • Lin Y-P, Benoit V, Yang X, et al. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLOS Pathog. 2014;10(7):e1004238. doi: 10.1371/journal.ppat.1004238
  • Crother TR, Champion CI, Wu X-Y, et al. Antigenic composition of Borrelia burgdorferi during infection of SCID mice. Infect Immun. 2003;71(6):3419–3428. doi: 10.1128/IAI.71.6.3419-3428.2003
  • Crother TR, Champion CI, Whitelegge JP, et al. Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun. 2004;72(9):5063–5072. doi: 10.1128/IAI.72.9.5063-5072.2004
  • Coutte L, Botkin DJ, Gao L, et al. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLOS Pathog. 2009;5(2):e1000293. doi: 10.1371/journal.ppat.1000293
  • Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol. 2007;65(6):1547–1558. doi: 10.1111/j.1365-2958.2007.05895.x
  • Glöckner G, Schulte-Spechtel U, Schilhabel M, et al. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. BMC Genomics. 2006;7(1):211. doi: 10.1186/1471-2164-7-211
  • Zhang JR, Hardham JM, Barbour AG, et al. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell. 1997;89(2):275–285. doi: 10.1016/S0092-8674(00)80206-8
  • Wang D, Botkin DJ, Norris SJ. Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Mol Microbiol. 2003;47(5):1407–1417. doi: 10.1046/j.1365-2958.2003.03386.x
  • Verhey TB, Castellanos M, Chaconas G. Antigenic variation in the Lyme spirochete: insights into recombinational switching with a suggested role for error-prone repair. Cell Rep. 2018;23(9):2595–2605. doi: 10.1016/j.celrep.2018.04.117
  • Lin T, Gao L, Edmondson DG, et al. Central role of the holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLOS Pathog. 2009;5(12):e1000679. doi: 10.1371/journal.ppat.1000679
  • Lone AG, Bankhead T. The Borrelia burgdorferi VlsE lipoprotein prevents antibody binding to an arthritis-related surface Antigen. Cell Rep. 2020;30(11):3663–3670.e5. doi: 10.1016/j.celrep.2020.02.081
  • Kumar D, Ristow LC, Shi M, et al. Intravital imaging of vascular transmigration by the Lyme spirochete: requirement for the integrin binding residues of the B. burgdorferi P66 protein. PLOS Pathog. 2015;11(12):e1005333. doi: 10.1371/journal.ppat.1005333
  • Ebady R, Niddam AF, Boczula AE, et al. Biomechanics of Borrelia burgdorferi Vascular Interactions. Cell Rep. 2016;16(10):2593–2604. doi: 10.1016/j.celrep.2016.08.013
  • Tan X, Lin Y-P, Pereira MJ, et al. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLOS Pathog. 2022;18(5):e1010511. doi: 10.1371/journal.ppat.1010511
  • Tan X, Castellanos M, Chaconas G, et al. Choreography of Lyme disease spirochete adhesins to promote vascular escape. Microbiol Spectr. 2023;11(4):e0125423. doi: 10.1128/spectrum.01254-23
  • Sultan SZ, Manne A, Stewart PE, et al. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect Immun. 2013;81(6):2012–2021. doi: 10.1128/IAI.01228-12
  • Ge Y, Old I, Saint Girons I, et al. FliH and fliI of Borrelia burgdorferi are similar to flagellar and virulence factor export proteins of other bacteria. Gene. 1996;168(1):73–75. doi: 10.1016/0378-1119(95)00743-1
  • Li C, Xu H, Zhang K, et al. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Mol Microbiol. 2010;75(6):1563–1576. doi: 10.1111/j.1365-2958.2010.07078.x
  • Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann Rev Genet. 2002;36(1):47–73. doi: 10.1146/annurev.genet.36.041602.134359
  • Motaleb MA, Corum L, Bono JL, et al. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci, USA. 2000;97(20):10899–10904. doi: 10.1073/pnas.200221797
  • DeHart TG, Kushelman MR, Hildreth SB, et al. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat Microbiol. 2021;6(12):1583–1592. doi: 10.1038/s41564-021-01003-w
  • Chen Y, Vargas SM, Smith TC, et al. Borrelia peptidoglycan interacting protein (BpiP) contributes to the fitness of Borrelia burgdorferi against host-derived factors and influences virulence in mouse models of Lyme disease. PLOS Pathog. 2021;17(4):e1009535. doi: 10.1371/journal.ppat.1009535
  • Liang L, Wang J, Schorter L, et al. Rapid clearance of Borrelia burgdorferi from the blood circulation. Parasites Vectors. 2020;13(1):191. doi: 10.1186/s13071-020-04060-y
  • Hodzic E, Feng S, Freet KJ, et al. Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun. 2003;71(9):5042–5055. doi: 10.1128/IAI.71.9.5042-5055.2003
  • Tilly K, Rosa PA, Stewart PE. Biology of infection with Borrelia burgdorferi. Infect Dis Clin North Am. 2008;22(2):217–234. doi: 10.1016/j.idc.2007.12.013
  • Cabello FC, Godfrey HP, Newman SA. Hidden in plain sight: borrelia burgdorferi and the extracellular matrix. Trends Microbiol. 2007;15(8):350–354. doi: 10.1016/j.tim.2007.06.003
  • Paulsen F, Tillmann B. Composition of the extracellular matrix in human cricoarytenoid joint articular cartilage. Arch Histol Cytol. 1999;62(2):149–163. doi: 10.1679/aohc.62.149
  • Vechtova P, Sterbova J, Sterba J, et al. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasites Vectors. 2018;11(1):594. doi: 10.1186/s13071-018-3062-7
  • Salo J, Pietikäinen A, Söderström M, et al. Flow-tolerant adhesion of a bacterial pathogen to human endothelial cells through interaction with biglycan. J Infect Dis. 2016;213(10):1623–1631. doi: 10.1093/infdis/jiw003
  • Brissette CA, Bykowski T, Cooley AE, et al. Borrelia burgdorferi RevA antigen binds host fibronectin. Infect Immun. 2009;77(7):2802–2812. doi: 10.1128/IAI.00227-09
  • Hallström T, Haupt K, Kraiczy P, et al. Complement Regulator–Acquiring Surface Protein 1 of Borrelia burgdorferi Binds to Human Bone Morphogenic Protein 2, Several Extracellular Matrix Proteins, and Plasminogen. J Infect Dis. 2010;202(3):490–498. doi: 10.1086/653825
  • Zhi H, Weening EH, Barbu EM, et al. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis. Mol Microbiol. 2015;96(1):68–83. doi: 10.1111/mmi.12921
  • Guo BP, Norris SJ, Rosenberg LC, et al. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun. 1995;63(9):3467–3472. doi: 10.1128/iai.63.9.3467-3472.1995
  • Guo BP, Brown EL, Dorward DW, et al. Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol. 1998;30(4):711–723. doi: 10.1046/j.1365-2958.1998.01103.x
  • Fischer JR, LeBlanc KT, Leong JM. Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun. 2006;74(1):435–441. doi: 10.1128/IAI.74.1.435-441.2006
  • Moriarty TJ, Shi M, Lin Y-P, et al. Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol. 2012;86(5):1116–1131. doi: 10.1111/mmi.12045
  • Gaultney RA, Gonzalez T, Floden AM, et al. BB0347, from the lyme disease spirochete Borrelia burgdorferi, is surface exposed and interacts with the CS1 heparin-binding domain of human fibronectin. PLoS One. 2013;8(9):e75643. doi: 10.1371/journal.pone.0075643
  • Coburn J, Magoun L, Bodary SC, et al. Integrins αvβ3 and α5β1 mediate attachment of Lyme disease spirochetes to human cells. Infect Immun. 1998;66(5):1946–1952. doi: 10.1128/IAI.66.5.1946-1952.1998
  • Behera AK, Durand E, Cugini C, et al. Borrelia burgdorferi BBB07 interaction with integrin alpha3beta1 stimulates production of pro-inflammatory mediators in primary human chondrocytes. Cell Microbiol. 2008;10:320–331. doi: 10.1111/j.1462-5822.2007.01043.x
  • Ristow LC, Bonde M, Lin Y, et al. Integrin binding by B orrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol. 2015;17:1021–1036. doi: 10.1111/cmi.12418
  • Wood E, Tamborero S, Mingarro I, et al. BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin α3β1. J Bacteriol. 2013;195(15):3320–3330. doi: 10.1128/JB.00187-13
  • Verma A, Brissette CA, Bowman A, et al. Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun. 2009;77(11):4940–4946. doi: 10.1128/IAI.01420-08
  • Brissette CA, Verma A, Bowman A, et al. The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiol (Reading). 2009;55:863–872.
  • Bista S, Singh P, Bernard Q, et al. A novel laminin-binding protein mediates microbial-endothelial cell interactions and facilitates dissemination of Lyme disease pathogens. J Infect Dis. 2020;221(9):1438–1447. doi: 10.1093/infdis/jiz626
  • Lin Y-P, Chen Q, Ritchie JA, et al. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization. Cell Microbiol. 2015;17(6):860–875. doi: 10.1111/cmi.12407
  • Parveen N, Leong JM. Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000;35(5):1220–1234. doi: 10.1046/j.1365-2958.2000.01792.x
  • Fischer JR, Parveen N, Magoun L, et al. Decorin-binding proteins a and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A. 2003;100(12):7307–7312. doi: 10.1073/pnas.1231043100
  • Yang X, Lin Y-P, Heselpoth RD, et al. Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection. Cell Microbiol. 2016;18(1):97–110. doi: 10.1111/cmi.12487
  • Dowdell AS, Murphy MD, Azodi C, et al. Comprehensive spatial analysis of the Borrelia burgdorferi lipoproteome reveals a Compartmentalization Bias toward the bacterial surface. J Bacteriol. 2017;199(6):e00658–16. doi: 10.1128/JB.00658-16
  • Setubal JC, Reis M, Matsunaga J, et al. Lipoprotein computational prediction in spirochaetal genomes. Microbiology (Reading). 2006;152(1):113–121. doi: 10.1099/mic.0.28317-0
  • Leong JM, Robbins D, Rosenfeld L, et al. Structural requirements for glycosaminoglycan recognition by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1998;66(12):6045–6048. doi: 10.1128/IAI.66.12.6045-6048.1998
  • Seshu J, Esteve‐Gassent MD, Labandeira‐Rey M, et al. Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol. 2006;59(5):1591–1601. doi: 10.1111/j.1365-2958.2005.05042.x
  • Li X, Liu X, Beck DS, et al. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun. 2006;74(6):3305–3313. doi: 10.1128/IAI.02035-05
  • Byram R, Gaultney RA, Floden AM, et al. Borrelia burgdorferi RevA significantly affects pathogenicity and host response in the mouse model of Lyme disease. Infect Immun. 2015;83(9):3675–3683. doi: 10.1128/IAI.00530-15
  • Norman MU, Moriarty TJ, Dresser AR, et al. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLOS Pathog. 2008;4(10):e1000169. doi: 10.1371/journal.ppat.1000169
  • Meriläinen L, Brander H, Herranen A, et al. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses. Microbes Infect. 2016;18(7–8):484–495. doi: 10.1016/j.micinf.2016.04.002
  • Vancová M, Rudenko N, Vaněček J, et al. Pleomorphism and viability of the Lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: a correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front Microbiol. 2017;8:596. doi: 10.3389/fmicb.2017.00596
  • Brorson O, Brorson SH. Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes. Infection. 1997;25(4):240–246. doi: 10.1007/BF01713153
  • Brorson O, Brorson SH. In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection. 1998;26(3):144–150. doi: 10.1007/BF02771839
  • Dunham-Ems SM, Caimano MJ, Eggers CH, et al. Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-Mammal transmission. PLOS Pathog. 2012;8(2):e1002532. doi: 10.1371/journal.ppat.1002532
  • Lantos PM, Auwaerter PG, Wormser GP. A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin Infect Dis. 2014;58(5):663. doi: 10.1093/cid/cit810
  • Torres JP, Senejani AG, Gaur G, et al. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics. 2020;9(9):528. doi: 10.3390/antibiotics9090528
  • Sapi E, Bastian SL, Mpoy CM, et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One. 2012;7(10):e48277. doi: 10.1371/journal.pone.0048277
  • Wu J, Weening EH, Faske JB, et al. Invasion of Eukaryotic cells by Borrelia burgdorferi requires β1 Integrins and src kinase activity. Infect Immun. 2011;79(3):1338–1348. doi: 10.1128/IAI.01188-10
  • Klempner MS, Noring R, Rogers RA. Invasion of human skin fibroblasts by the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis. 1993;167(5):1074–1081. doi: 10.1093/infdis/167.5.1074
  • Aberer E, Surtov-Pudar M, Wilfinger D, et al. Co-culture of human fibroblasts and Borrelia burgdorferi enhances collagen and growth factor mRNA. Arch Dermatol Res. 2018;310(2):117–126. doi: 10.1007/s00403-017-1797-1
  • Girschick HJ, Huppertz HI, Rüssmann H, et al. Intracellular persistence of Borrelia burgdorferi in human synovial cells. Rheumatol Int. 1996;16(3):125–132. doi: 10.1007/BF01409985
  • Ma Y, Sturrock A, Weis JJ. Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect Immun. 1991;59(2):671–678. doi: 10.1128/iai.59.2.671-678.1991
  • Livengood JA, Gilmore RD. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect. 2006;8(14–15):2832–2840. doi: 10.1016/j.micinf.2006.08.014
  • Kerstholt M, Netea MG, Joosten LAB. Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks Tick Borne Dis. 2020;11(3):101386. doi: 10.1016/j.ttbdis.2020.101386
  • Mayer KA, Stöckl J, Zlabinger GJ, et al. Hijacking the supplies: metabolism as a novel facet of virus-host interaction. Front Immunol. 2019;10:1533. doi: 10.3389/fimmu.2019.01533
  • Eisenreich W, Rudel T, Heesemann J, et al. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol. 2019;9:42. doi: 10.3389/fcimb.2019.00042
  • Gehre L, Gorgette O, Perrinet S, et al. Sequestration of host metabolism by an intracellular pathogen. Elife. 2016;5:e12552. doi: 10.7554/eLife.12552
  • Linder S, Heimerl C, Fingerle V, et al. Coiling phagocytosis of Borrelia burgdorferi by primary human macrophages is controlled by CDC42Hs and Rac1 and involves recruitment of wiskott-aldrich syndrome protein and Arp2/3 complex. Infect Immun. 2001;69(3):1739–1746. doi: 10.1128/IAI.69.3.1739-1746.2001
  • Siryaporn A, Kuchma SL, O’Toole GA, et al. Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci U S A. 2014;111(47):16860–16865. doi: 10.1073/pnas.1415712111
  • Carapeto AP, Vitorino MV, Santos JD, et al. Mechanical properties of human bronchial epithelial cells expressing wt- and mutant CFTR. Int J Mol Sci. 2020;21(8):E2916. doi: 10.3390/ijms21082916
  • Patel NR, Bole M, Chen C, et al. Cell Elasticity Determines Macrophage Function. PLoS One. 2012;7(9):e41024. doi: 10.1371/journal.pone.0041024
  • Costa TRD, Felisberto-Rodrigues C, Meir A, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015;13(6):343–359. doi: 10.1038/nrmicro3456
  • Schulze RJ, Zückert WR. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol. 2006;59(5):1473–1484. doi: 10.1111/j.1365-2958.2006.05039.x
  • Jan AT. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol. 2017;8:1053. doi: 10.3389/fmicb.2017.01053
  • Anand D, Chaudhuri A. Bacterial outer membrane vesicles: new insights and applications. Mol Membr Biol. 2016;33(6–8):125–137. doi: 10.1080/09687688.2017.1400602
  • Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005;19:2645–2655. doi: 10.1101/gad.1299905
  • Kudryashev M, Cyrklaff M, Baumeister W, et al. Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol. 2009;71(6):1415–1434. doi: 10.1111/j.1365-2958.2009.06613.x
  • Karvonen K Mechanisms and elimination of Borrelia burgdorferi persistence in vitro. JYU Dissertations [Internet]. 2022 [cited 2022 Oct 11]. Available from: https://jyx.jyu.fi/handle/123456789/79467
  • Davis MM, Brock AM, DeHart TG, et al. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLOS Pathog. 2021;17(5):e1009546. doi: 10.1371/journal.ppat.1009546
  • Cluss RG, Silverman DA, Stafford TR. Extracellular secretion of the Borrelia burgdorferi Oms28 porin and Bgp, a glycosaminoglycan binding protein. Infect Immun. 2004;72(11):6279–6286. doi: 10.1128/IAI.72.11.6279-6286.2004
  • Skare JT, Shang ES, Foley DM, et al. Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest. 1995;96(5):2380–2392. doi: 10.1172/JCI118295
  • Parveen N, Cornell KA, Bono JL, et al. Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun. 2006;74(5):3016–3020. doi: 10.1128/IAI.74.5.3016-3020.2006
  • Garon CF, Dorward DW, Corwin MD. Structural features of Borrelia burgdorferi–the Lyme disease spirochete: silver staining for nucleic acids. Scanning Microsc Suppl. 1989;3:109–115.
  • Crowley JT, Toledo AM, LaRocca TJ, et al. Lipid Exchange between Borrelia burgdorferi and Host Cells. PLOS Pathog. 2013;9(1):e1003109. doi: 10.1371/journal.ppat.1003109
  • Groshong AM, McLain MA, Radolf JD, et al. Host-specific functional compartmentalization within the oligopeptide transporter during the Borrelia burgdorferi enzootic cycle. PLOS Pathogens. 2021;17(1):e1009180. doi: 10.1371/journal.ppat.1009180
  • LaRocca TJ, Crowley JT, Cusack BJ, et al. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal mechanism of a complement-independent antibody. Cell Host Microbe. 2010;8(4):331–342. doi: 10.1016/j.chom.2010.09.001
  • Jain S, Showman AC, Jewett MW, et al. Molecular Dissection of a Borrelia burgdorferi In Vivo Essential Purine Transport System. Infect Immun. 2015;83(6):2224–2233. doi: 10.1128/IAI.02859-14
  • Pappas CJ, Iyer R, Petzke MM, et al. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLOS Pathog. 2011;7(7):e1002102. doi: 10.1371/journal.ppat.1002102
  • Corona A, Schwartz I, Conway T, et al. Borrelia burgdorferi: Carbon metabolism and the tick-Mammal enzootic cycle. Microbiol Spectr. 2015;3(3):10.1128/microbiolspec.MBP-0011-2014. doi: 10.1128/microbiolspec.MBP-0011-2014
  • Skare JT, Mirzabekov TA, Shang ES, et al. The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun. 1997;65(9):3654–3661. doi: 10.1128/iai.65.9.3654-3661.1997
  • Skare JT, Champion CI, Mirzabekov TA, et al. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi. J Bacteriol. 1996;178(16):4909–4918. doi: 10.1128/jb.178.16.4909-4918.1996
  • von Lackum K, Stevenson B. Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett. 2005;243(1):173–179. doi: 10.1016/j.femsle.2004.12.002
  • Hoon-Hanks LL, Morton EA, Lybecker MC, et al. Borrelia burgdorferi malQ mutants utilize disaccharides and traverse the enzootic cycle. FEMS Immunol Med Microbiol. 2012;66(2):157–165. doi: 10.1111/j.1574-695X.2012.00996.x
  • Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6(8):613–624. doi: 10.1038/nrmicro1932
  • Zhang J-J, Ranghunandanan S, Wang Q, et al. Mechanism of repression of the glycerol utilization operon in Borrelia burgdorferi Internet]. bioRxivAvailable from. 2022 cited 2023 Jun 12:2022.11.01.514788. 10.1101/2022.11.01.514788v1.
  • Shaw DK, Hyde JA, Skare JT. The BB0646 protein demonstrates lipase and hemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol. 2012;83:319–334. doi: 10.1111/j.1365-2958.2011.07932.x
  • Wang X-G, Scagliotti JP, Hu LT. Phospholipid synthesis in Borrelia burgdorferi: BB0249 and BB0721 encode functional phosphatidylcholine synthase and phosphatidylglycerolphosphate synthase proteins. Microbiology (Reading). 2004;150(2):391–397. doi: 10.1099/mic.0.26752-0
  • Belisle JT, Brandt ME, Radolf JD, et al. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol. 1994;176(8):2151–2157. doi: 10.1128/jb.176.8.2151-2157.1994
  • Drecktrah D, Hall LS, Crouse B, et al. The glycerol-3-phosphate dehydrogenases GpsA and GlpD constitute the oxidoreductive metabolic linchpin for Lyme disease spirochete host infectivity and persistence in the tick. PLOS Pathog. 2022;18(3):e1010385. doi: 10.1371/journal.ppat.1010385
  • Purser JE, Lawrenz MB, Caimano MJ, et al. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol. 2003;48(3):753–764. doi: 10.1046/j.1365-2958.2003.03452.x
  • Schüler W, Bunikis I, Weber-Lehman J, et al. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One. 2015;10(3):e0120548. doi: 10.1371/journal.pone.0120548
  • Schutzer SE, Fraser-Liggett CM, Qiu W-G, et al. Whole-Genome Sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol. 2012;194(2):545–546. doi: 10.1128/JB.06263-11
  • Kingry LC, Batra D, Replogle A, et al. Whole genome sequence and Comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PLoS One. 2016;11(12):e0168994. doi: 10.1371/journal.pone.0168994
  • Rego ROM, Trentelman JJA, Anguita J, et al. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors. 2019;12(1):229. doi: 10.1186/s13071-019-3468-x