736
Views
0
CrossRef citations to date
0
Altmetric
Research article

Amphibian Hymenochirus boettgeri as an experimental model for infection studies with the chytrid fungus Batrachochytrium dendrobatidis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2270252 | Received 03 Jul 2023, Accepted 09 Oct 2023, Published online: 27 Oct 2023

References

  • Ankeny RA, Leonelli S. Model organisms. Cambridge: Cambridge University Press;2020.
  • Müller B, Grossniklaus U. Model organisms — a historical perspective. J Proteomics. 2010;73(11):2054–13. doi: 10.1016/j.jprot.2010.08.002
  • Fisher MC, Garner TWJ. Chytrid fungi and global amphibian declines. Nat Rev Microbiol. 2020;18(6):332–343. doi: 10.1038/s41579-020-0335-x
  • Scheele BC, Pasmans F, Skerratt LF, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363(6434):1459–1463. doi: 10.1126/science.aav0379
  • Fisher MC, Pasmans F, Martel A. Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annu Rev Microbiol. 2021;75(1):673–693. doi: 10.1146/annurev-micro-052621-124212
  • Ramsey JP, Reinert LK, Harper LK, et al. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African Clawed frog, Xenopus laevis. Infect Immun. 2010;78(9):3981–3992. doi: 10.1128/IAI.00402-10
  • Betancourt-Román CM, O’neil CC, James TY. Rethinking the role of invertebrate hosts in the life cycle of the amphibian chytridiomycosis pathogen. Parasitology. 2016;143(13):1723–1729. doi: 10.1017/S0031182016001360
  • Liew N, Mazon Moya MJ, Wierzbicki CJ, et al. Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nat Commun. 2017;8(1):15048. doi: 10.1038/ncomms15048
  • Belasen AM, Russell ID, Zamudio KR, et al. Endemic lineages of Batrachochytrium dendrobatidis are associated with reduced chytridiomycosis-induced mortality in amphibians: evidence from a meta-analysis of experimental infection studies. Front Vet Sci. 2022;9. doi: 10.3389/fvets.2022.756686
  • Blaustein AR, Urbina J, Snyder PW, et al. Effects of emerging infectious diseases on amphibians: a review of experimental studies. Diversity. 2018;10(3):81. doi: 10.3390/d10030081
  • Tornier G. Reptilien, Amphibien. In: Möbius K, editor. Deutsch Ost-Afrika. Die Thierwelt Ost-Afrikas (Part 4). Vol. 3. Berlin: Dietrich Reimer; 1896. p. 1–164.
  • Jenkinson TS, Rodriguez D, Clemons RA, et al. Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proc R Soc B Biol Sci. 2018;285(1893):20181894. doi: 10.1098/rspb.2018.1894
  • Murphy BG, Hillman C, Groff JM. Chytridiomycosis in dwarf African frogs Hymenochirus curtipes. Dis Aquat Org. 2015;114(1):69–75. doi: 10.3354/dao02851
  • Raverty S, Reynolds T. Cutaneous chytridiomycosis in dwarf aquatic frogs (Hymenochirus boettgeri) originating from southeast Asia and in a western toad (bufo boreas) from northeastern British Columbia. Can Vet J. 2001;42(5):385–386.
  • Chatfield MWH, Richards-Zawacki CL. Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Dis Aquat Org. 2011;94(3):235–238. doi: 10.3354/dao02337
  • Rabb GB, Rabb MS. On the behavior and breeding biology of the African pipid frog: hymenochirus boettgeri. Zeitschrift für Tierpsychologie. 1963;20(2):215–241. doi: 10.1111/j.1439-0310.1963.tb01151.x
  • Sokol OM. The tadpole of Hymenochirus boettgeri. Copeia. 1962;1962(2):272–284. doi: 10.2307/1440890
  • Mudd AB. Comparative genomics and chromosome evolution. eScholarship, University of California, Berkeley. 2019. https://escholarship.org/uc/item/1sp703wf
  • Daudin F. “An. XI”. Histoire Naturelle des Rainettes, des Grenouilles et des Crapauds. Quarto version. Paris: Levrault Quarto version; 1802.
  • Matthijs S, Ye L, Stijlemans B, et al. Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (pipidae). PLoS One. 2014;9(1):e86339. doi: 10.1371/journal.pone.0086339
  • Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc B. 2023;378(1882):20220123. doi: 10.1098/rstb.2022.0123
  • Greenspan SE, Lambertini C, Carvalho T, et al. Hybrids of amphibian chytrid show high virulence in native hosts. Sci Rep. 2018;8(1):9600. doi: 10.1038/s41598-018-27828-w
  • Noble GK. Contributions to the herpetology of the Belgian Congo based on the collection of the American Museum Congo Expedition, 1909-1915. Part 3, amphibia. Bull AMNH. 1924;49:147–347.
  • Channing A, Rödel M-O. Field guide to the frogs & other amphibians of Africa. Cape Town, South Africa: Struik Nature; 2019. p. 40.
  • Hyatt AD, Boyle DG, Olsen V, et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Org. 2007;73:175–192. doi: 10.3354/dao073175
  • Evans BJ, Brown RM, McGuire JA, et al. Phylogenetics of fanged frogs: Testing biogeographical hypotheses at the Interface of the Asian and Australian Faunal Zones. Syst Biol. 2003;52(6):794–819. doi: 10.1080/10635150390251063
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340
  • Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–224. doi: 10.1093/molbev/msp259
  • Guindon S, Dufayard J-F, Lefort V, et al. New algorithms and Methods to estimate Maximum-Likelihood Phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. doi: 10.1093/sysbio/syq010
  • Boyle DG, Boyle DB, Olsen V, et al. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org. 2004 Aug 9;60(2):141–148. doi: 10.3354/dao060141
  • Cragg MM, Balinsky JB, Baldwin E. A comparative study of nitrogen excretion in some amphibia and reptiles. Comp Biochem Physiol. 1961;3(4):227–235. doi: 10.1016/0010-406X(61)90008-1
  • Lees H. The biochemistry of the nitrifying organisms. 1. The ammonia-oxidizing systems of Nitrosomonas. Biochem J. 1952;52(1):134–139. doi: 10.1042/bj0520134
  • Voyles J, Young S, Berger L, et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science. 2009;326(5952):582–585. doi: 10.1126/science.1176765
  • Therneau TM. A package for survival analysis in R. 2021.
  • Kassambara A, Kosinski M, Biecek P, et al. Survminer: drawing survival curves using “ggplot2. 2021.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  • R Core Team. R: a language and environment for statistical computing. 2020.
  • Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50(3):346–363. doi: 10.1002/bimj.200810425
  • Jenkinson TS, Betancourt Román CM, Lambertini C, et al. Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Mol Ecol. 2016;25(13):2978–2996. doi: 10.1111/mec.13599
  • Carvalho T, Medina D, P. Ribeiro L, et al. Coinfection with chytrid genotypes drives divergent infection dynamics reflecting regional distribution patterns. Commun Biol. 2023;6(1). doi: 10.1038/s42003-023-05314-y
  • Becker CG, Greenspan SE, Tracy KE, et al. Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecol. 2017;26:45–50. doi: 10.1016/j.funeco.2016.11.007
  • Fu M, Waldman B. Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts. Proc R Soc B. 2019;286(1904):20190833. doi: 10.1098/rspb.2019.0833
  • Greener MS, Verbrugghe E, Kelly M, et al. Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains. Nat Commun. 2020;11(1):5393. doi: 10.1038/s41467-020-19241-7
  • Grogan LF, Robert J, Berger L, et al. Review of the amphibian immune response to chytridiomycosis, and future directions. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.02536
  • Buck JC, Truong L, Blaustein AR. Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus? Biodivers Conserv. 2011;20(14):3549–3553. doi: 10.1007/s10531-011-0147-4
  • De Troyer N, Bruneel S, Lock K, et al. Ratio-dependent functional response of two common cladocera present in farmland ponds to Batrachochytrium dendrobatidis. Fungal Ecol. 2021;53:101089. doi: 10.1016/j.funeco.2021.101089
  • Hamilton PT, Richardson JML, Anholt BR. Daphnia in tadpole mesocosms: trophic links and interactions with Batrachochytrium dendrobatidis. Freshwater Biol. 2012;57(4):676–683. doi: 10.1111/j.1365-2427.2011.02731.x
  • Schmeller DS, Blooi M, Martel A, et al. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr Biol. 2014;24(2):176–180. doi: 10.1016/j.cub.2013.11.032
  • McMahon TA, Brannelly LA, Chatfield MWH, et al. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proc Natl Acad Sci, USA. 2013;110(1):210–215. doi: 10.1073/pnas.1200592110
  • Humphries JE, Lanctôt CM, Robert J, et al. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. Dev Comp Immunol. 2022;136:104510. doi: 10.1016/j.dci.2022.104510
  • Carvalho T, Becker CG, Toledo LF. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc B. 2017;284(1848):20162254. doi: 10.1098/rspb.2016.2254
  • Venesky MD, Parris MJ, Storfer A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. Ecohealth. 2009;6(4):565–575. doi: 10.1007/s10393-009-0272-7
  • Marantelli G, Berger L, Speare R, et al. Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pac Conserv Biol. 2004;10(3):173–179. doi: 10.1071/PC040173
  • Angilletta MJ. Thermal adaptation: a theoretical and Empirical Synthesis. Oxford, UK: Oxford Univ. Press; 2009.
  • Greenspan SE, Migliorini GH, Lyra ML, et al. Warming drives ecological community changes linked to host-associated microbiome dysbiosis. Nat Clim Chang. 2020;10(11):1057–1061. doi: 10.1038/s41558-020-0899-5
  • Neely WJ, Greenspan SE, Ribeiro LP, et al. Synergistic effects of warming and disease linked to high mortality in cool-adapted terrestrial frogs. Biol Conserv. 2020;245:108521. doi: 10.1016/j.biocon.2020.108521
  • Rollins-Smith LA, Ramsey JP, Pask JD, et al. Amphibian immune Defenses against Chytridiomycosis: impacts of changing environments. Integr Comp Biol. 2011;51(4):552–562. doi: 10.1093/icb/icr095
  • Ujszegi J, Bertalan R, Ujhegyi N, et al. “Heat waves” experienced during larval life have species-specific consequences on life-history traits and sexual development in anuran amphibians. Sci Total Environ. 2022;835:155297. doi: 10.1016/j.scitotenv.2022.155297
  • Rollins-Smith LA, Le Sage EH. Batrachochytrium fungi: stealth invaders in amphibian skin. Curr Opin Microbiol. 2021;61:124–132. doi: 10.1016/j.mib.2021.04.002
  • Medina D, Greenspan SE, Carvalho T, et al. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol. 2021;97(4):fiab030. doi: 10.1093/femsec/fiab030
  • Wlizla M, McNamara S, Horb ME. Generation and care of Xenopus laevis and Xenopus tropicalis embryos. Methods Mol Biol. 2018;1865:19–32.
  • Byrne AQ, Vredenburg VT, Martel A, et al. Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proc Natl Acad Sci, USA. 2019;116(41):20382–20387. doi: 10.1073/pnas.1908289116
  • O’Hanlon SJ, Rieux A, Farrer RA, et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science. 2018;360(6389):621–627. doi: 10.1126/science.aar1965