1,579
Views
0
CrossRef citations to date
0
Altmetric
Review article

Pathogenicity and virulence of Francisella tularensis

, , & ORCID Icon
Article: 2274638 | Received 16 May 2023, Accepted 18 Oct 2023, Published online: 08 Nov 2023

References

  • McCoy GW. Plague among ground squirrels in America. J Hyg (Lond). 1910;10(4):589–21. doi: 10.1017/S002217240004314X
  • Public Health Bulletin. U.S. Government printing office. 1911.
  • McCoy GW, Chapin CW. Further observations on a plague-like disease of rodents with a preliminary note on the causative agent, bacterium tularense. J Infect Dis. 1912;10(1):61–72. doi: 10.1093/infdis/10.1.61
  • Wherry WB, Lamb BH. Infection of man with bacterium tularense. J Infect Dis. 1914;15(2):331–340. doi: 10.1093/infdis/15.2.331
  • Francis E. Weekly reports for SEPTEMBER 12, 1919. Public Health Rep. 1919;34(37):2061–2103. doi: 10.2307/4575306
  • Francis E, Mayne B, Lake GC. Tularæmia Francis 1921. Public Health Rep. 1921;36(30):1731–1792. doi: 10.2307/4576069
  • Jellison WL. Tularemia: Dr. Edward Francis and his first 23 isolates of Francisella tularensis. Bull Hist Med. 1972;46(5):477–485.
  • Francis E. A SUMMARY OF PRESENT KNOWLEDGE OF TULARAEMIA1. Medicine. 1928;7(4):411–432. doi: 10.1097/00005792-192812000-00002
  • FRANCIS FE. SYMPTOMS, DIAGNOSIS and PATHOLOGY of TULAREMIA. JAMA. 1928;91(16):1155. doi: 10.1001/jama.1928.02700160007002
  • Vonderlehr RA. Weekly reports for JANUARY 22, 1937. Public Health Rep. 1937;52(4):95–123. doi: 10.2307/4582066
  • Philip CB, Owen CR. Comments on the nomenclature of the causative agent of tularemia. Int Bull Bacteriol Nomencl Taxon. 1961;11(3):67–72. doi: 10.1099/0096266X-11-3-67
  • Rider DR. Japan’s biological and chemical weapons programs. War Crimes And Atrocities: who’s Who, What’s What. And Where’s Where – 1928-1945. 2014 . 761. http://www.mansell.com/Resources/Rider_Whos_Who_in_Japanese_BW_2018-10-09_IN_PROCESS--SEEK-PERMISSION-TO-USE.pdf
  • Harris S. Japanese biological warfare research on humans: a case study of Microbiology and ethics. Ann N Y Acad Sci. 1992;666(1):21–52. doi: 10.1111/j.1749-6632.1992.tb38021.x
  • Saslaw S. Tularemia Vaccine Study: II. Respiratory Challenge. Arch Intern Med. 1961;107(5):702. doi: 10.1001/archinte.1961.03620050068007
  • Office of the Assistant Secretary of Defense (Health Affairs). Desert Test Center [Internet]. 2009 [cited 2022 Jan 26]; Available from: https://web.archive.org/web/20090309172516/http://fhp.osd.mil/CBexposures/pdfs/red_cloud.pdf
  • Engineering Bio-Terror Agents: Lessons from the Offensive U.S. and Russian Biological Weapons Programs [Internet]. [cited 2022 Jan 26]; Available from: https://irp.fas.org/congress/2005_hr/bioterror.html
  • Keim PS, Johansson A, Wagner DM. Molecular Epidemiology, Evolution, and Ecology of Francisella. Ann N Y Acad Sci. 2007. [Internet]: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17435120
  • Telford SR, Goethert HK. Ecology of Francisella tularensis. Annu Rev Entomol. 2020;65:351–372. doi: 10.1146/annurev-ento-011019-025134
  • Maurin M, Pelloux I, Brion JP, et al. Human tularemia in France, 2006-2010. Clin Infect Dis. 2011;53(10):e133–41. doi: 10.1093/cid/cir612
  • Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. Lancet Infect Dis. 2016;16(1):113–124. doi: 10.1016/S1473-3099(15)00355-2
  • Hestvik G, Warns-Petit E, Smith LA, et al. The status of tularemia in Europe in a one-health context: a review. Epidemiol Infect. 2015;143(10):2137–2160. doi: 10.1017/S0950268814002398
  • Ellis J, Oyston PCF, Green M, et al. Tularemia. Clin Microbiol Rev. 2002;15(4):631–646. doi: 10.1128/CMR.15.4.631-646.2002
  • Gehringer H, Schacht E, Maylaender N, et al. Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks Tick Borne Dis. 2013;4(1–2):93–100. doi: 10.1016/j.ttbdis.2012.09.001
  • Hauri AM, Hofstetter I, Seibold E, et al. Investigating an airborne tularemia outbreak, Germany. Emerg Infect Dis. 2010;16(2):238–243. doi: 10.3201/eid1602.081727
  • Sjostedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci. 2007;1105(1):1–29. doi: 10.1196/annals.1409.009
  • Larson MA, Nalbantoglu U, Sayood K, et al. Reclassification of Wolbachia persica as Francisella persica comb. nov. And emended description of the family francisellaceae. Int J Syst Evol Microbiol. 2016;66(3):1200–1205. doi: 10.1099/ijsem.0.000855
  • Wagner DM, Birdsell DN, McDonough RF, et al. Genomic characterization of Francisella tularensis and other diverse Francisella species from complex samples. PLoS One. 2022;17(10):e0273273. doi: 10.1371/journal.pone.0273273
  • Timofeev V, Titareva G, Bahtejeva I, et al. The Comparative virulence of Francisella tularensis Subsp. mediasiatica for vaccinated laboratory animals. Microorganisms. 2020;8(9):8. doi: 10.3390/microorganisms8091403
  • Hennebique A, Peyroux J, Brunet C, et al. Amoebae can promote the survival of Francisella species in the aquatic environment. Emerg Microbes Infect. 2021;10(1):277–290. doi: 10.1080/22221751.2021.1885999
  • Respicio-Kingry LB, Byrd L, Allison A, et al. Cutaneous infection caused by a novel Francisella sp. J Clin Microbiol. 2013;51(10):3456–3460. doi: 10.1128/JCM.01105-13
  • Johansson A, Celli J, Conlan W, et al. Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis. Int J Syst Evol Microbiol. 2010;60(8):1717–1718. author reply 1718-1720. doi: 10.1099/ijs.0.022830-0
  • Larsson P, Elfsmark D, Svensson K, et al. Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLOS Pathog. 2009;5(6):e1000472. doi: 10.1371/journal.ppat.1000472
  • Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 2014;4:35. doi: 10.3389/fcimb.2014.00035
  • Rohmer L, Fong C, Abmayr S, et al. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 2007;8(6):R102. doi: 10.1186/gb-2007-8-6-r102
  • Clemens DL, Lee B-Y, Horwitz MA. The Francisella type VI secretion system. Front Cell Infect Microbiol. 2018;8:121. doi: 10.3389/fcimb.2018.00121
  • Eshraghi A, Kim J, Walls AC, et al. Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth. Cell Host Microbe. 2016;20(5):573–583. doi: 10.1016/j.chom.2016.10.008
  • Ledvina HE, Kelly KA, Eshraghi A, et al. A phosphatidylinositol 3-kinase effector alters phagosomal maturation to promote intracellular growth of Francisella. Cell Host Microbe. 2018;24(2):285–295.e8. doi: 10.1016/j.chom.2018.07.003
  • Conlan JW. Tularemia vaccines: recent developments and remaining hurdles. Future Microbiol. 2011;6(4):391–405. doi: 10.2217/fmb.11.22
  • Kreitmann L, Terriou L, Launay D, et al. Disseminated infection caused by Francisella philomiragia, France, 2014. Emerg Infect Dis. 2015;21(12):2260–2261. doi: 10.3201/eid2112.150615
  • Zhou H, Yang Q, Shen L, et al. Seawater-associated highly pathogenic Francisella hispaniensis infections causing multiple organ failure. Emerg Infect Dis. 2020;26(10):2424–2428. doi: 10.3201/eid2610.190844
  • Dietrich EA, Kingry LC, Kugeler KJ, et al. Francisella opportunistica sp. nov., isolated from human blood and cerebrospinal fluid. Int J Syst Evol Microbiol. 2020;70(2):1145–1151. doi: 10.1099/ijsem.0.003891
  • Sridhar S, Sharma A, Kongshaug H, et al. Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity. BMC Genomics. 2012;13(1):598. doi: 10.1186/1471-2164-13-598
  • Mikalsen J, Olsen AB, Tengs T, et al. Francisella philomiragia subsp. noatunensis subsp. nov., isolated from farmed Atlantic cod (Gadus morhua L.). Int J Syst Evol Microbiol. 2007;57(9):1960–1965. doi: 10.1099/ijs.0.64765-0
  • Brevik OJ, Ottem KF, Kamaishi T, et al. Francisella halioticida sp. nov., a pathogen of farmed giant abalone (Haliotis gigantea) in Japan. J Appl Microbiol. 2011;111(5):1044–1056. doi: 10.1111/j.1365-2672.2011.05133.x
  • Soto E, Griffin MJ, Morales JA, et al. Francisella marina sp. nov., etiologic agent of systemic disease in cultured spotted rose snapper (Lutjanus guttatus) in central America. Appl Environ Microbiol. 2018;84(16):84. doi: 10.1128/AEM.00144-18
  • Challacombe JF, Petersen JM, Gallegos-Graves LV, et al. Correction for challacombe et al., whole-genome relationships among Francisella bacteria of diverse origins define new species and provide specific regions for detection. Appl Environ Microbiol. 2017;83(6). doi: 10.1128/AEM.00174-17
  • Li L-H, Luo H-M, Feng J-H, et al. Francisella salimarina sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol. 2020;70(5):3264–3272. doi: 10.1099/ijsem.0.004164
  • Hall JD, Woolard MD, Gunn BM, et al. Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun. 2008;76(12):5843–5852. doi: 10.1128/IAI.01176-08
  • Hall JD, Craven RR, Fuller JR, et al. Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect Immun. 2006;75(2):1034–1039. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17088343
  • Law HT, Lin A-J, Kim Y, et al. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep. 2011;1(1):192. doi: 10.1038/srep00192
  • Bokhari SM, Kim K-J, Pinson DM, et al. NK cells and gamma interferon coordinate the formation and function of hepatic granulomas in mice infected with the Francisella tularensis live vaccine strain. Infect Immun. 2008;76(4):1379–1389. doi: 10.1128/IAI.00745-07
  • Crane DD, Scott DP, Bosio CM, et al. Generation of a convalescent model of virulent Francisella tularensis infection for Assessment of host requirements for survival of tularemia. PLoS One. 2012;7(3):e33349. doi: 10.1371/journal.pone.0033349
  • Nicol MJ, Williamson DR, Place DE, et al. Differential immune response following intranasal and intradermal infection with Francisella tularensis: implications for vaccine development. Microorganisms. 2021;9(5):973. doi: 10.3390/microorganisms9050973
  • Geier H, Celli J, Morrison RP. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect Immun. 2011;79(6):2204–2214. doi: 10.1128/IAI.01382-10
  • Balagopal A, MacFarlane AS, Mohapatra N, et al. Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect Immun. 2006;74(9):5114–5125. doi: 10.1128/IAI.00795-06
  • Ben Nasr A, Haithcoat J, Masterson JE, et al. Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leukocyte Biol. 2006;80(4):774–786. doi: 10.1189/jlb.1205755
  • Clemens DL, Lee BY, Horwitz MA. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun. 2005;73(9):5892–5902. doi: 10.1128/IAI.73.9.5892-5902.2005
  • Pierini LM. Uptake of serum-opsonized Francisella tularensis by macrophages can be mediated by class a scavenger receptors. Cell Microbiol. 2006;8(8):1361–1370. doi: 10.1111/j.1462-5822.2006.00719.x
  • Schulert GS, Allen L-A. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J Leukocyte Biol. 2006;80(3):563–571. doi: 10.1189/jlb.0306219
  • Dai S, Rajaram MVS, Curry HM, et al. Fine tuning inflammation at the Front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLOS Pathogens. 2013;9(1):e1003114. doi: 10.1371/journal.ppat.1003114
  • Schwartz JT, Barker JH, Long ME, et al. Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via complement receptors 1 and 3 in nonimmune serum. J Immunol. 2012;189(6):3064–3077. doi: 10.4049/jimmunol.1200816
  • Checroun C, Wehrly TD, Fischer ER, et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A. 2006;103(39):14578–14583. doi: 10.1073/pnas.0601838103
  • Barker JR, Chong A, Wehrly TD, et al. The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 2009;74(6):1459–1470. doi: 10.1111/j.1365-2958.2009.06947.x
  • Golovliov I, Baranov V, Krocova Z, et al. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun. 2003;71(10):5940–5950. doi: 10.1128/IAI.71.10.5940-5950.2003
  • Nano FE, Schmerk C. The Francisella pathogenicity island. Ann N Y Acad Sci. 2007;1105(1):122–137. doi: 10.1196/annals.1409.000
  • Lindgren H, Golovliov I, Baranov V, et al. Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol. 2004;53(10):953–958. doi: 10.1099/jmm.0.45685-0
  • Ludu JS, de Bruin OM, Duplantis BN, et al. The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol. 2008;190:4584–4595. doi: 10.1128/JB.00198-08
  • de Bruin OM, Duplantis BN, Ludu JS, et al. The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology. 2011;157(12):3483–3491. doi: 10.1099/mic.0.052308-0
  • Gray CG, Cowley SC, Cheung KK, et al. The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett. 2002;215(1):53–56. doi: 10.1111/j.1574-6968.2002.tb11369.x
  • Napier BA, Meyer L, Bina JE, et al. Link between intraphagosomal biotin and rapid phagosomal escape in Francisella. Proc Natl Acad Sci U S A. 2012;109(44):18084–18089. doi: 10.1073/pnas.1206411109
  • Ramond E, Gesbert G, Rigard M, et al. Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape. PLOS Pathog. 2014;10(1):e1003893. doi: 10.1371/journal.ppat.1003893
  • Radlinski LC, Brunton J, Steele S, et al. Defining the metabolic pathways and host-derived carbon substrates required for Francisella tularensis intracellular growth. MBio. 2018;9(6). doi: 10.1128/mBio.01471-18
  • Ramond E, Gesbert G, Guerrera IC, et al. Importance of host cell arginine uptake in Francisella phagosomal escape and ribosomal protein amounts. Mol & Cell Proteomics. 2015;14(4):870–881. doi: 10.1074/mcp.M114.044552
  • Gesbert G, Ramond E, Tros F, et al. Importance of branched-chain amino acid utilization in Francisella intracellular adaptation. Infect Immun. 2015;83(1):173–183. doi: 10.1128/IAI.02579-14
  • Mohapatra NP, Soni S, Reilly TJ, et al. Combined Deletion of Four Francisella novicida Acid Phosphatases Attenuates Virulence and Macrophage Vacuolar Escape. Infect Immun. 2008;76(8):3690–3699. doi: 10.1128/IAI.00262-08
  • Mohapatra NP, Soni S, Rajaram MVS, et al. Type A Francisella tularensis Acid Phosphatases Contribute to Pathogenesis. PLoS One. 2013;8(2):e56834. doi: 10.1371/journal.pone.0056834
  • Mohapatra NP, Soni S, Rajaram MVS, et al. Francisella acid phosphatases inactivate the NADPH oxidase in human phagocytes. J Immunol. 2010;184(9):5141–5150. doi: 10.4049/jimmunol.0903413
  • Felix J, Siebert C, Ducassou JN, et al. Structural and functional analysis of the Francisella lysine decarboxylase as a key actor in oxidative stress resistance. Sci Rep. 2021;11(1):972. doi: 10.1038/s41598-020-79611-5
  • Larsson P, Oyston PC, Chain P, et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet. 2005;37(2):153–159. doi: 10.1038/ng1499
  • Mahawar M, Kirimanjeswara GS, Metzger DW, et al. Contribution of citrulline ureidase to Francisella tularensis strain Schu S4 pathogenesis. J Bacteriol. 2009;191(15):4798–4806. doi: 10.1128/JB.00212-09
  • Brissac T, Ziveri J, Ramond E, et al. Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella. Mol Microbiol. 2015;98(3):518–534. doi: 10.1111/mmi.13139
  • Gesbert G, Ramond E, Rigard M, et al. Asparagine assimilation is critical for intracellular replication and dissemination of Francisella. Cell Microbiol. 2014;16(3):434–449. doi: 10.1111/cmi.12227
  • Ziveri J, Barel M, Charbit A. Importance of metabolic adaptations in Francisella pathogenesis. Front Cell Infect Microbiol. 2017;7:96. doi: 10.3389/fcimb.2017.00096
  • Dominguez SR, Whiles S, Deobald KN, et al. Francisella tularensis exploits AMPK activation to harvest host-derived nutrients liberated from host Lipolysis. Infect Immun. 2022;90(8):e0015522. doi: 10.1128/iai.00155-22
  • Meibom KL, Charbit A. Francisella tularensis metabolism and its relation to virulence. Front Microbiol. 2010;1:140. doi: 10.3389/fmicb.2010.00140
  • Traub A, Mager J, Grossowicz N. STUDIES on the NUTRITION of PASTEURELLA TULARENSIS. J Bacteriol. 1955;70(1):60–69. doi: 10.1128/jb.70.1.60-69.1955
  • Wang Y, Ledvina HE, Tower CA et al. Discovery of a unique pathway for glutathione utilization in Francisella. Cell Host Microbe. 2023 Aug 9;31(8):1359-1370.e7. doi:10.1016/j.chom.2023.06.010.
  • Ramsey KM, Ledvina HE, Tresko TM, et al. Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in Francisella tularensis. PLOS Pathog. 2020;16(6):e1008566. doi: 10.1371/journal.ppat.1008566
  • Alkhuder K, Meibom KL, Dubail I, et al. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLOS Pathog. 2009;5(1):e1000284. doi: 10.1371/journal.ppat.1000284
  • Steele S, Brunton J, Ziehr B, et al. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLOS Pathog. 2013;9(8):e1003562. doi: 10.1371/journal.ppat.1003562
  • Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol. 2007;7(10):767–777. doi: 10.1038/nri2161
  • Case EDR, Chong A, Wehrly TD, et al. The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell Microbiol. 2014;16(6):862–877. doi: 10.1111/cmi.12246
  • Chong A, Wehrly TD, Child R, et al. Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy. 2012;8(9):1342–1356. doi: 10.4161/auto.20808
  • Kelava I, Mihelčić M, Ožanič M, et al. Atg5-deficient mice infected with Francisella tularensis LVS demonstrate increased survival and less severe pathology in internal organs. Microorganisms. 2020;8(10):8. doi: 10.3390/microorganisms8101531
  • Ray K, Marteyn B, Sansonetti PJ, et al. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 2009;7(5):333–340. doi: 10.1038/nrmicro2112
  • Jorgensen I, Zhang Y, Krantz BA, et al. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J Exp Med. 2016;213(10):2113–2128. doi: 10.1084/jem.20151613
  • Steele SP, Chamberlain Z, Park J, et al. Francisella tularensis enters a double membraned compartment following cell-cell transfer. Elife. 2019;8. doi: 10.7554/eLife.45252
  • Nano FE, Zhang N, Cowley SC, et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 2004;186(19):6430–6436. doi: 10.1128/JB.186.19.6430-6436.2004
  • Golovliov I, Ericsson M, Sandstrom G, et al. Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect Immun. 1997;65(6):2183–2189. doi: 10.1128/iai.65.6.2183-2189.1997
  • de Bruin OM, Ludu JS, Nano FE. The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 2007;7(1):1. doi: 10.1186/1471-2180-7-1
  • Bröms JE, Sjöstedt A, Lavander M. The role of the Francisella Tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol [Internet]. 2010 [[cited 2021 May 21]];1. doi: 10.3389/fmicb.2010.00136
  • Rigard M, Broms JE, Mosnier A, et al. Francisella tularensis IglG belongs to a novel family of PAAR-Like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLOS Pathog. 2016;12(9):e1005821. doi: 10.1371/journal.ppat.1005821
  • Broms JE, Sjostedt A, Lavander M. The role of the Francisella Tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol. 2010;1:1. doi: 10.3389/fmicb.2010.00136
  • Rigard M, Bröms JE, Mosnier A, et al. Francisella tularensis IglG belongs to a novel family of PAAR-Like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLOS Pathogens [Internet]. 2016 [[cited 2023 Apr 3]];12(9):e1005821. doi: 10.1371/journal.ppat.1005821
  • Rapisarda C, Cherrak Y, Kooger R, et al. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J. 2019;38(10). doi: 10.15252/embj.2018100886
  • Russell AB, Wexler AG, Harding BN, et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe. 2014;16(2):227–236. doi: 10.1016/j.chom.2014.07.007
  • Tian D, Uda A, Ami Y, et al. Protective effects of the Francisella tularensis ΔpdpC mutant against its virulent parental strain SCHU P9 in cynomolgus macaques. Sci Rep. 2019;9(1):9193. doi: 10.1038/s41598-019-45412-8
  • Brodmann M, Schnider ST, Basler M, et al. Type VI secretion system and its effectors PdpC, PdpD, and OpiA contribute to Francisella virulence in Galleria mellonella larvae. Infect Immun. 2021;89(7):e0057920. doi: 10.1128/IAI.00579-20
  • Brodmann M, Dreier RF, Broz P, et al. Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun. 2017;8(1):15853. doi: 10.1038/ncomms15853
  • Lindgren M, Broms JE, Meyer L, et al. The Francisella tularensis LVS ΔpdpCmutant exhibits a unique phenotype during intracellular infection. BMC Microbiol. 2013;13(1):20. doi: 10.1186/1471-2180-13-20
  • Meyer L, Broms JE, Liu X, et al. Microinjection of Francisella tularensis and listeria monocytogenes reveals the importance of bacterial and host factors for successful replication. Infect Immun. 2015;83(8):3233–3242. doi: 10.1128/IAI.00416-15
  • Steele S, Taft-Benz S, Kawula T, et al. A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 2014;9(2):e88194. doi: 10.1371/journal.pone.0088194
  • Liu X, Clemens DL, Lee B-Y, et al. Atomic structure of IglD demonstrates its role as a component of the baseplate complex of the Francisella type VI secretion system.mBio [Internet]. 2022 [[cited 2023 Apr 17]];13(5):e01277–22. doi: 10.1128/mbio.01277-22
  • Clemens DL, Ge P, Lee B-Y, et al. Atomic structure of T6SS reveals interlaced array essential to function. Cell. 2015;160(5):940–951. doi: 10.1016/j.cell.2015.02.005
  • Yang X, Clemens DL, Lee B-Y, et al. Atomic structure of the Francisella T6SS central spike reveals a unique α-helical lid and a putative cargo. Structure. 2019;27(12):1811–1819.e6. doi: 10.1016/j.str.2019.10.007
  • Cherrak Y, Flaugnatti N, Durand E, et al. Structure and activity of the type VI secretion system. Microbiol Spectr [Internet]. 2019 [cited 2023 Mar 31];7(4):7.4.11. doi: 10.1128/microbiolspec.PSIB-0031-2019
  • Robb CS, Nano FE, Boraston AB. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida. Acta Crystallogr Sect F. 2010;66(12):1596–1598. doi: 10.1107/S1744309110034378
  • Nguyen JQ, Gilley RP, Zogaj X, et al. Lipidation of the FPI protein IglE contributes to Francisella tularensis ssp. novicida intramacrophage replication and virulence.Pathog Dis [Internet]. 2014 [[cited 2023 Apr 6]];72(1):10–18. doi: 10.1111/2049-632X.12167
  • Broms JE, Meyer L, Sjostedt A. A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control type VI system-mediated secretion. Virulence. 2017;8(6):821–847. doi: 10.1080/21505594.2016.1258507
  • Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 2007;153(8):2689–2699. doi: 10.1099/mic.0.2007/006585-0
  • Durand E, Zoued A, Spinelli S, et al. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems *. J Biol Chem. 2012;287(17):14157–14168. doi: 10.1074/jbc.M111.338731
  • Robb CS, Nano FE, Boraston AB. The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida.J Mol Biol [Internet]. 2012 [[cited 2023 Apr 6]];419(5):277–283. doi: 10.1016/j.jmb.2012.04.003
  • Durand E, Nguyen VS, Zoued A, et al. Biogenesis and structure of a type VI secretion membrane core complex. Nat. 2015 [[cited 2023 Apr 6]];523(7562):555–560. doi: 10.1038/nature14667
  • Shneider MM, Buth SA, Ho BT, et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 2013;500(7462):350–353. doi: 10.1038/nature12453
  • Zhang Z, Liu Y, Zhang P, et al., . PAAR Proteins Are Versatile Clips That Enrich the Antimicrobial Weapon Arsenals of Prokaryotes. mSystems. 2021;6(6):e0095321. doi: 10.1128/mSystems.00953-21
  • Alam A, Golovliov I, Javed E, et al. ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication. Sci Rep. 2018;8(1):11324. doi: 10.1038/s41598-018-29745-4
  • Alam A, Golovliov I, Javed E, et al. Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence. PLOS Pathog. 2020;16(4):e1008466. doi: 10.1371/journal.ppat.1008466
  • Wehrly TD, Chong A, Virtaneva K, et al. Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol [Internet]. 2009 [[cited 2023 Apr 26]];11(7):1128–1150. doi: 10.1111/j.1462-5822.2009.01316.x
  • Brotcke A, Weiss DS, Kim CC, et al. Identification of MglA-Regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun. 2006;74(12):6642–6655. doi: 10.1128/IAI.01250-06
  • Baron GS, Nano FE. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 1998;29(1):247–259. doi: 10.1046/j.1365-2958.1998.00926.x
  • Lauriano CM, Barker JR, Yoon S-S, et al. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A. 2004;101(12):4246–4249. doi: 10.1073/pnas.0307690101
  • Travis BA, Ramsey KM, Prezioso SM, et al. Structural Basis for Virulence Activation of Francisella tularensis. Mol Cell[internet]. 2021 [[cited 2023 Apr 27]];81(1):139–152.e10. doi: 10.1016/j.molcel.2020.10.035
  • Charity JC, Blalock LT, Costante-Hamm MM, et al. Small molecule control of virulence gene expression in Francisella tularensis. PLOS Pathog. 2009;5(10):e1000641. doi: 10.1371/journal.ppat.1000641
  • Brotcke A, Monack DM. Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 2008;76(8):3473–3480. doi: 10.1128/IAI.00430-08
  • Cuthbert BJ, Ross W, Rohlfing AE, et al. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev. 2017;31(15):1549–1560. doi: 10.1101/gad.303701.117
  • Ramsey KM, Osborne ML, Vvedenskaya IO, et al. Ubiquitous promoter-localization of essential virulence regulators in Francisella tularensis. PLOS Pathog. 2015;11(4):e1004793. doi: 10.1371/journal.ppat.1004793
  • Ramsey KM, Osborne ML, Vvedenskaya IO, et al. Ubiquitous Promoter-Localization of Essential Virulence Regulators in Francisella tularensis.PLOS Pathogens [Internet]. 2015 [[cited 2023 Apr 27]];11(4):e1004793. doi: 10.1371/journal.ppat.1004793
  • Stojkova P, Spidlova P, Lenco J, et al. HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence. 2018;9(1):754–770. doi: 10.1080/21505594.2018.1441588
  • Pavlik P, Spidlova P. Arginine 58 is indispensable for proper function of the Francisella tularensis subsp. holarctica FSC200 HU protein, and its substitution alters virulence and mediates immunity against wild-type strain. Virulence. 2022;13(1):1790–1809. doi: 10.1080/21505594.2022.2132729
  • Deng K, Blick RJ, Liu W, et al. Identification of Francisella tularensis genes affected by iron limitation.Infect Immun [Internet]. 2006 [[cited 2023 Apr 26]];74(7):4224–4236. doi: 10.1128/IAI.01975-05
  • Ziveri J, Chhuon C, Jamet A, et al. Critical role of a sheath phosphorylation site on the assembly and function of an atypical type VI secretion system. Mol & Cell Proteomics. 2019;18(12):2418–2432. doi: 10.1074/mcp.RA119.001532
  • Wallet P, Lagrange B, Henry T. Francisella Inflammasomes: Integrated responses to a cytosolic stealth bacterium. Curr Top Microbiol Immunol. 2016;397:229–256.
  • Jones B, Faron M, Rasmussen J, et al. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol. 2014;4. doi: 10.3389/fcimb.2014.00032
  • Sjöstedt A. Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect. 2006;8(2):561–567. doi: 10.1016/j.micinf.2005.08.001
  • Okan NA, Kasper DL. The atypical lipopolysaccharide of Francisella. Carbohydr Res. 2013;378:79–83. doi: 10.1016/j.carres.2013.06.015
  • Hajjar AM, Harvey MD, Shaffer SA, et al. Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun. 2006;74(12):6730–6738. doi: 10.1128/IAI.00934-06
  • Lagrange B, Benaoudia S, Wallet P, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun. 2018;9(1):242. doi: 10.1038/s41467-017-02682-y
  • Tan Y, Zanoni I, Cullen TW, et al. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity. 2015;43(5):909–922. doi: 10.1016/j.immuni.2015.10.008
  • Hong K-J, Wickstrum JR, Yeh H-W, et al. Toll-like receptor 2 controls the gamma interferon response to Francisella tularensis by mouse liver lymphocytes. Infect Immun. 2007;75(11):5338–5345. doi: 10.1128/IAI.00561-07
  • Jones CL, Weiss DS, Moreno E. TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS One. 2011;6(6):e20609. doi: 10.1371/journal.pone.0020609
  • Katz J, Zhang P, Martin M, et al. Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun. 2006;74(5):2809–2816. doi: 10.1128/IAI.74.5.2809-2816.2006
  • Malik M, Bakshi CS, Sahay B, et al. Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis. Infect Immun. 2006;74(6):3657–3662. doi: 10.1128/IAI.02030-05
  • Li H, Nookala S, Bina XR, et al. Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation. J Leukocyte Biol. 2006;80(4):766–773. doi: 10.1189/jlb.0406294
  • Thakran S, Li H, Lavine CL, et al. Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J Biol Chem. 2008;283(7):3751–3760. doi: 10.1074/jbc.M706854200
  • Jones CL, Sampson TR, Nakaya HI, et al. Repression of bacterial lipoprotein production by Francisella novicida facilitates evasion of innate immune recognition. Cell Microbiol [Internet]. 2012;14(10):1531–1543. http://www.ncbi.nlm.nih.gov/pubmed/22632124
  • Sampson TR, Saroj SD, Llewellyn AC, et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature. 2013;497(7448):254–257. doi: 10.1038/nature12048
  • Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341(6151):1250–1253. doi: 10.1126/science.1240988
  • Vinogradov E, Perry MB, Conlan JW. Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem [Internet]. 2002;269(24):6112–6118. doi: 10.1046/j.1432-1033.2002.03321.x
  • García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci. 2021;78(1):17–29. doi: 10.1007/s00018-020-03577-w
  • Okan NA, Chalabaev S, Kim T-H, et al. Kdo hydrolase is required for Francisella tularensis virulence and evasion of TLR2-mediated innate immunity. MBio. 2013;4(1):e00638–00612. doi: 10.1128/mBio.00638-12
  • Wang X, Ribeiro AA, Guan Z, et al. Structure and biosynthesis of free lipid a molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry. 2006;45(48):14427–14440. doi: 10.1021/bi061767s
  • Wang X, Karbarz MJ, McGrath SC, et al. MsbA transporter-dependent lipid a 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of Francisella novicida LpxE expressed in Escherichia coli. J Biol Chem. 2004;279(47):49470–49478. doi: 10.1074/jbc.M409078200
  • Kanistanon D, Hajjar AM, Pelletier MR, et al. A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. PLOS Pathog. 2008;4(2):e24. doi: 10.1371/journal.ppat.0040024
  • Kanistanon D, Powell DA, Hajjar AM, et al. Role of Francisella lipid A phosphate modification in virulence and long-term protective immune responses. Infect Immun. 2012;80(3):943–951. doi: 10.1128/IAI.06109-11
  • Wang X, Ribeiro AA, Guan Z, et al. Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase. Proc Natl Acad Sci U S A. 2007;104(10):4136–4141. doi: 10.1073/pnas.0611606104
  • Llewellyn AC, Zhao J, Song F, et al. NaxD is a deacetylase required for lipid a modification and Francisella pathogenesis. Mol Microbiol. 2012;86(3):611–627. doi: 10.1111/mmi.12004
  • Rowe HM, Huntley JF. From the outside-in: the Francisella tularensis envelope and virulence. Front Cell Infect Microbiol. 2015;5:94. doi: 10.3389/fcimb.2015.00094
  • Hood AM. Virulence factors of Francisella tularensis. J Hyg (Lond). 1977;79(1):47–60. doi: 10.1017/S0022172400052840
  • Apicella MA, Post DMB, Fowler AC, et al. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One. 2010;5(7):e11060. doi: 10.1371/journal.pone.0011060
  • Ireland R, Wang R, Alinger JB, et al. Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8. J Immunol. 2013;191(3):1276–1286. doi: 10.4049/jimmunol.1300867
  • Ireland R, Schwarz B, Nardone G, et al. Unique Francisella phosphatidylethanolamine acts as a potent anti-inflammatory lipid. J Innate Immun. 2018;10(4):291–305. doi: 10.1159/000489504
  • Forsberg AKE, Guina T. Type II secretion and type IV pili of Francisella. Ann NY Acad Sci %R. 2007;101196(annals14090161105):187–201. doi: 10.1196/annals.1409.016
  • Gil H, Platz GJ, Forestal CA, et al. Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci, USA. 2006;103(34):12897–12902. Internet. doi: 10.1073/pnas.0602582103
  • Kopping EJ, Doyle CR, Sampath V, et al. Contributions of TolC orthologs to Francisella tularensis Schu S4 multidrug resistance, modulation of host cell responses, and virulence. Infect Immun. 2019;87(4). doi: 10.1128/IAI.00823-18
  • Peng K, Broz P, Jones J, et al. Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cell Microbiol. 2011;13(10):1586–1600. doi: 10.1111/j.1462-5822.2011.01643.x
  • Zogaj X, Chakraborty S, Liu J, et al. Characterization of the Francisella tularensis subsp. novicida type IV pilus. Microbiology. 2008;154(7):2139–2150. doi: 10.1099/mic.0.2008/018077-0
  • Hager AJ, Bolton DL, Pelletier MR, et al. Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol. 2006;62(1):227–237. doi: 10.1111/j.1365-2958.2006.05365.x
  • Ark NM, Mann BJ. Impact of Francisella tularensis pilin homologs on pilus formation and virulence. Microb Pathog. 2011;51(3):110–120. doi: 10.1016/j.micpath.2011.05.001
  • Spidlova P, Stojkova P, Sjöstedt A, et al. Control of Francisella tularensis virulence at Gene Level: network of transcription factors. Microorganisms. 2020;8(10):8. doi: 10.3390/microorganisms8101622
  • Moule MG, Monack DM, Schneider DS, et al. Reciprocal analysis of Francisella novicida infections of a drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLOS Pathog. 2010;6(8):e1001065. doi: 10.1371/journal.ppat.1001065
  • Dean SN, Milton ME, Cavanagh J, et al. Francisella novicida two-component system response regulator BfpR modulates iglC gene expression, antimicrobial peptide resistance, and biofilm production. Front Cell Infect Microbiol. 2020;10:82. doi: 10.3389/fcimb.2020.00082
  • Honn M, Lindgren H, Bharath GK, et al. Lack of OxyR and KatG results in extreme susceptibility of Francisella tularensis LVS to oxidative stress and marked attenuation in vivo. Front Cell Infect Microbiol. 2017;7:14. doi: 10.3389/fcimb.2017.00014
  • Bakshi CS, Malik M, Regan K, et al. Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence. J Bacteriol. 2006;188(17):6443–6448. doi: 10.1128/JB.00266-06
  • Alharbi A, Rabadi SM, Alqahtani M, et al. Role of peroxiredoxin of the AhpC/TSA family in antioxidant defense mechanisms of Francisella tularensis. PLoS One. 2019;14(3):e0213699. doi: 10.1371/journal.pone.0213699
  • Ma Z, Higgs M, Alqahtani M, et al. ThioredoxinA1 controls the oxidative stress response of Francisella tularensis live vaccine strain (LVS). J Bacteriol. 2022;204(5):e0008222. doi: 10.1128/jb.00082-22
  • Straskova A, Pavkova I, Link M, et al. Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res. 2009;8(11):5336–5346. doi: 10.1021/pr900570b
  • Chambers JR, Bender KS, Bereswill S. The RNA chaperone hfq is important for growth and stress tolerance in Francisella novicida. PLoS One. 2011;6(5):e19797. doi: 10.1371/journal.pone.0019797
  • Bina XR, Lavine CL, Miller MA, et al. The AcrAB RND efflux system from the live vaccine strain of Francisella tularensis is a multiple drug efflux system that is required for virulence in mice. FEMS Microbiol Lett [Internet]. 2008;279(2):226–233. doi: 10.1111/j.1574-6968.2007.01033.x
  • Bosio CM. The subversion of the immune system by Francisella tularensis. Front Microbiol. 2011;2:9. doi: 10.3389/fmicb.2011.00009
  • Jones JW, Kayagaki N, Broz P, et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A. 2010;107(21):9771–9776. doi: 10.1073/pnas.1003738107
  • Storek KM, Gertsvolf NA, Ohlson MB, et al. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J Immunol. 2015;194(7):3236–3245. doi: 10.4049/jimmunol.1402764
  • Henry T, Brotcke A, Weiss DS, et al. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J Exp Med. 2007;204(5):987–994. doi: 10.1084/jem.20062665
  • Henry T, Kirimanjeswara GS, Ruby T, et al. Type I IFN signaling constrains IL-17A/F secretion by γδ T cells during bacterial infections. J Immunol. 2010;184(7):3755–3767. doi: 10.4049/jimmunol.0902065
  • Peignier A, Parker D. Impact of type I interferons on susceptibility to bacterial pathogens. Trends Microbiol. 2021;29(9):823–835. doi: 10.1016/j.tim.2021.01.007
  • Bauler TJ, Chase JC, Bosio CM. IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. J Immunol. 2011;187(4):1845–1855. doi: 10.4049/jimmunol.1100377
  • Mohammadi N, Lindgren H, Yamamoto M, et al. Macrophages demonstrate guanylate-binding protein-dependent and bacterial strain-dependent responses to Francisella tularensis. Front Cell Infect Microbiol. 2021;11:784101. doi: 10.3389/fcimb.2021.784101
  • Meunier E, Wallet P, Dreier RF, et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol. 2015;16(5):476–484. doi: 10.1038/ni.3119
  • Feng S, Enosi Tuipulotu D, Pandey A, et al. Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat Commun. 2022;13(1):4395. doi: 10.1038/s41467-022-32127-0
  • Man SM, Karki R, Malireddi RKS, et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol. 2015;16(5):467–475. doi: 10.1038/ni.3118
  • Wallet P, Benaoudia S, Mosnier A, et al. IFN-γ extends the immune functions of guanylate binding proteins to inflammasome-independent antibacterial activities during Francisella novicida infection. PLOS Pathog. 2017;13(10):e1006630. doi: 10.1371/journal.ppat.1006630
  • Fernandes-Alnemri T, Yu JW, Juliana C, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol. 2010;11(5):385–393. doi: 10.1038/ni.1859
  • Periasamy S, Le HT, Duffy EB, et al. Inflammasome-independent NLRP3 restriction of a protective Early neutrophil response to pulmonary tularemia. PLOS Pathog. 2016;12(12):e1006059. doi: 10.1371/journal.ppat.1006059
  • Valeva SV, Degabriel M, Michal F, et al. Comparative study of GBP recruitment on two cytosol-dwelling pathogens, Francisella novicida and shigella flexneri highlights differences in GBP repertoire and in GBP1 motif requirements. Pathog Dis. 2023;81:ftad005. doi: 10.1093/femspd/ftad005
  • Mohammadi N, Lindgren H, Golovliov I, et al. Guanylate-binding proteins are critical for effective control of Francisella tularensis strains in a mouse co-culture system of Adaptive immunity. Front Cell Infect Microbiol. 2020;10:594063. doi: 10.3389/fcimb.2020.594063
  • Elkins KL, Rhinehart-Jones TR, Culkin SJ, et al. Minimal requirements for murine resistance to infection with Francisella tularensis LVS. Infect Immun. 1996;64(8):3288–3293. doi: 10.1128/iai.64.8.3288-3293.1996
  • Anthony LS, Morrissey PJ, Nano FE. Growth inhibition of Francisella tularensis live vaccine strain by IFN-gamma-activated macrophages is mediated by reactive nitrogen intermediates derived from L-arginine metabolism. J Immunol. 1992;148(6):1829–1834. doi: 10.4049/jimmunol.148.6.1829
  • Lindgren H, Stenman L, Tarnvik A, et al. The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages. Microbes Infect. 2005;7(3):467–475. doi: 10.1016/j.micinf.2004.11.020
  • Lindgren H, Stenmark S, Chen W, et al. Distinct roles of reactive nitrogen and oxygen species to control infection with the facultative intracellular bacterium Francisella tularensis. Infect Immun. 2004;72(12):7172–7182. doi: 10.1128/IAI.72.12.7172-7182.2004
  • Golovliov I, Lindgren H, Eneslätt K, et al. An In Vitro Co-culture Mouse Model Demonstrates Efficient Vaccine-Mediated Control of Francisella tularensis SCHU S4 and Identifies Nitric Oxide as a Predictor of Efficacy. Front Cell Infect Microbiol. 2016;6:152. doi: 10.3389/fcimb.2016.00152
  • Edwards JA, Rockx-Brouwer D, Nair V, et al. Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-γ activation of macrophages. Microbiol [Internet]. 2009;156(2):327–339. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19926654
  • Jessop F, Buntyn R, Schwarz B, et al. Interferon gamma reprograms host mitochondrial metabolism through inhibition of complex II to control intracellular bacterial replication. Infect Immun. 2020;88(2):88. doi: 10.1128/IAI.00744-19
  • Sarria JC, Vidal AM, Kimbrough RC, et al. Fatal infection caused by Francisella tularensis in a neutropenic bone marrow transplant recipient. Ann Hematol. 2003;82(1):41–43. doi: 10.1007/s00277-002-0570-4
  • Kinkead LC, Allen L-A. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev. 2016;273(1):266–281. doi: 10.1111/imr.12445
  • Sharma J, Mares CA, Li Q, et al. Features of sepsis caused by pulmonary infection with Francisella tularensis type a strain. Microb Pathog. 2011;51(1–2):39–47. doi: 10.1016/j.micpath.2011.03.007
  • Roberts LM, Powell DA, Frelinger JA. Adaptive immunity to Francisella tularensis and considerations for vaccine development. Front Cell Infect Microbiol. 2018;8:115. doi: 10.3389/fcimb.2018.00115
  • Kubelkova K, Macela A. Francisella and Antibodies. Microorganisms. 2021;9(10):2136. doi: 10.3390/microorganisms9102136
  • Del Barrio L, Sahoo M, Lantier L, et al. Production of anti-LPS IgM by B1a B cells depends on IL-1β and is protective against lung infection with Francisella tularensis LVS. PLOS Pathog. 2015;11(3):e1004706. doi: 10.1371/journal.ppat.1004706
  • Elkins KL, Cowley SC, Bosio CM. Innate and Adaptive immunity to Francisella. Ann NY Acad Sci %R. 2007;101196(annals14090141105):284–324. doi: 10.1196/annals.1409.014
  • Fortier AH, Polsinelli T, Green SJ, et al. Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules. Infect Immun. 1992;60(3):817–825. doi: 10.1128/iai.60.3.817-825.1992
  • Sjostedt A, North RJ, Conlan JW. The requirement of tumour necrosis factor-alpha and interferon-gamma for the expression of protective immunity to secondary murine tularaemia depends on the size of the challenge inoculum. Microbiology. 1996;142(Pt 6):1369–1374. doi: 10.1099/13500872-142-6-1369