683
Views
0
CrossRef citations to date
0
Altmetric
Research article

A Drosophila melanogaster model shows that fast growing Metarhizium species are the deadliest despite eliciting a strong immune response

, , & ORCID Icon
Article: 2275493 | Received 10 Jul 2023, Accepted 19 Oct 2023, Published online: 08 Nov 2023

References

  • Barrett LG, Kniskern JM, Bodenhausen N, et al. Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences. New Phytol. 2009;183(3):513–17. doi: 10.1111/j.1469-8137.2009.02927.x
  • Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):186–194. doi: 10.1038/nature10947
  • Kniskern JM, Barrett LG, Bergelson J. Maladaptation in wild populations of the generalist plant pathogen pseudomonas syringae. Evolution (N Y). 2011;65(3):818–830. doi: 10.1111/j.1558-5646.2010.01157.x
  • McGonigle JE, Leitão AB, Ommeslag S, et al. Parallel and costly changes to cellular immunity underlie the evolution of parasitoid resistance in three Drosophila species. PLOS Pathog. 2017;13(10):e1006683. doi: 10.1371/journal.ppat.1006683
  • Lu HL, St Leger RJ. 2016 Insect immunity to entomopathogenic fungi. In: Lovett B, and R St Leger, editors. Advances in Genetics 94 (pp. 251–285). Cambridge, MA: Academic Press. doi:10.1016/bs.adgen.2015.11.002.
  • Lazzaro BP, Little TJ. Immunity in a variable world. Philos Trans R Soc B. 2009;364(1513):15–26. doi: 10.1098/rstb.2008.0141
  • Wang JB, Lu HL, St Leger RJ, et al. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel. PLOS Pathog. 2017;13(3):e1006260. doi: 10.1371/journal.ppat.1006260
  • Wang JB, Elya C, St Leger RJ. Genetic variation for resistance to the specific fly pathogen entomophtora muscae. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-71262-w
  • Roberts DW, St Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Adv Appl Microbiol. 2004;54(1):1–70.
  • St LR, Wang JB. Metarhizium: jack of all trades, master of many. Open Biol. 2020;10. doi: 10.1098/rsob.200307 10 12
  • St Leger RJ, Wang C. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol Internet. 2010 Jan;85(4):901–907. doi: 10.1007/s00253-009-2306-z
  • Wang C, Feng MG. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol Control. 2014;68:129–135. doi: 10.1016/j.biocontrol.2013.06.017
  • Hu X, Xiao G, Zheng P, et al. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Nat Acad Sci [Internet]. 2014 Nov;111(47):16796–16801. [cited 2014 Nov 25]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250126/.
  • Rombach MC, Humber RA, Evans HC. Metarhizium album, a fungal pathogen of leaf- and planthoppers of rice. Transactions Of The British Mycological Society. 1987;88(4):451–459. doi: 10.1016/S0007-1536(87)80028-1
  • Wang B, Kang Q, Lu Y. et al. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci U S A. 2012;109: 1287–1292. doi:10.1073/pnas.111598309.
  • Wang S, Fang W, Wang C, et al. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLOS Pathog. 2011;7(6):e1002097. doi: 10.1371/journal.ppat.1002097
  • Wang C, St Leger RJ. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell. 2005 May;4(5):937–947. doi: 10.1128/EC.4.5.937-947.2005
  • St Leger RJ, Roberts DW, Staples RC. A model to explain differentiation of appressoria by germlings of Metarhizium anisopliae. Journal Of Invertebrate Pathology. 1991 May;57(3):299–310. doi: 10.1016/0022-2011(91)90134-C
  • Wang C, St Leger RJ. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci U S A Internet. 2006 Apr [cited 2014 Nov 17];103(17):6647–6652 doi: 10.1073/pnas.0601951103
  • Butt TM, Coates CJ, Dubovskiy IM. et al. Entomopathogenic fungi: new insights into host-pathogen interactions. Adv Genet. 2016; 94: 307–364.
  • Wang J, Lovett B, St Leger RJ. The secretome and chemistry of Metarhizium; a genus of entomopathogenic fungi. Fungal Ecol. 2019;38:7–11. doi: 10.1016/j.funeco.2018.04.001
  • Gao Q, Jin K, Ying SHH, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 2011 Jan;7(1):e1001264. doi: 10.1371/journal.pgen.1001264
  • St Leger RJ, May B, Allee LL, et al. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae. Journal Of Invertebrate Pathology. 1992;60(1):89–101. doi: 10.1016/0022-2011(92)90159-2
  • Samuels RI, Charnley AK, Reynolds SE. The role of destruxins in the pathogenicity of 3 strains of Metarhizium anisopliae for the tobacco hornworm Manduca sexta. Mycopathologia. 1988;104(1):51–58. doi: 10.1007/BF00437924
  • Igboin CO, Griffen AL, Leys EJ. The Drosophila melanogaster host model. J Oral Microbiol. 2012;4(1):10368. doi: 10.3402/jom.v4i0.10368
  • Govind S. Innate immunity in Drosophila: pathogens and pathways. Insect Sci. 2008;15(1):29–43. doi: 10.1111/j.1744-7917.2008.00185.x
  • Stokes BA, Yadav S, Shokal U, et al. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol. 2015;6: doi: 10.3389/fmicb.2015.00019
  • Issa N, Guillaumot N, Lauret E, et al. The circulating protease Persephone is an immune sensor for microbial proteolytic activities upstream of the Drosophila Toll pathway. Mol Cell. 2018;69(4):539–550.e6. doi: 10.1016/j.molcel.2018.01.029
  • Gottar M, Gobert V, Matskevich AA, et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell. 2006;127(7):1425–1437. doi: 10.1016/j.cell.2006.10.046
  • Lu HL, Wang JB, Brown MA, et al. Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci Rep Internet. 2015 Jul;5(1):12350. doi: http://dx.doi.org/10.1038/srep12350
  • Leggett HC, Cornwallis CK, Buckling A, et al. Growth rate, transmission mode and virulence in human pathogens. Philos Trans R Soc B. 2017;372(1719):20160094. doi: 10.1098/rstb.2016.0094
  • Sharififard M, Mossadegh MS, Vazirianzadeh B. Effects of temperature and humidity on the pathogenicity of the entomopathogenic fungi in control of the house fly, Musca domestica L. (Diptera: muscidae) under laboratory conditions. Journal Of Entomology. 2012;9(5):282–288. doi: 10.3923/je.2012.282.288
  • Taylor K, Kimbrell DA. Host immune response and differential survival of the sexes in Drosophila. Fly (Austin). 2007;1(4):197–204. doi: 10.4161/fly.5082
  • Bidochka MJ, St Leger RJ, Roberts DW. Mechanisms of deuteromycete fungal infections in grasshoppers and locusts: an overview. Mem Entomol Soc Can. 1997;129(S171):213–224. doi: 10.4039/entm129171213-1
  • Pal S, St Leger RJ, Wu LP. Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. Journal Of Biological Chemistry. 2007;282(12):8969–8977. doi: 10.1074/jbc.M605927200
  • Golo PS, Gardner DR, Grilley MM, et al. Production of destruxins from Metarhizium spp. Fungi in Artificial medium and in endophytically colonized cowpea plants. PLoS One [Internet]. 2014 Aug 15 [cited 2022 Mar 6];9(8):e104946. doi: 10.1371/journal.pone.0104946
  • Donzelli BGG, Krasnoff SB, Sun-Moon Y, et al. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet. 2012;58(2):79–92. doi: 10.1007/s00294-012-0366-6
  • Dudzic JP, Hanson MA, Iatsenko I, et al. More than black or white: melanization and Toll share regulatory serine proteases in Drosophila. Cell Rep. 2019;27(4):1050–1061.e3. doi: 10.1016/j.celrep.2019.03.101
  • Le Bourg É. The NF-kB like factor DIF has weaker effects on Drosophila melanogaster immune defenses than previously thought. J Comp Physiol B. 2011;181(6):741–750. doi: 10.1007/s00360-011-0567-1
  • Valanne S, Wang JH, Ramet M. The Drosophila Toll signaling pathway. J Immunol. 2011;186(2):649–656. doi: 10.4049/jimmunol.1002302
  • Clemmons AW, Lindsay SA, Wasserman SA, et al. An effector peptide family required for Drosophila Toll-mediated immunity. PLOS Pathog. 2015;11(4):e1004876. doi: 10.1371/journal.ppat.1004876
  • Lindsay SA, Lin SJH, Wasserman SA. Short-Form Bomanins Mediate Humoral Immunity in Drosophila. J Innate Immun. 2018;10(4):306–314. doi: 10.1159/000489831
  • Shahrestani P, Chambers M, Vandenberg J, et al. Sexual dimorphism in Drosophila melanogaster survival of Beauveria bassiana infection depends on core immune signaling. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-30527-1
  • Duneau DF, Kondolf HC, Im JH, et al. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila. BMC Biol. 2017;15(1). doi: 10.1186/s12915-017-0466-3
  • de Gregorio E, Spellman PT, Tzou P, et al. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 2002;21(11):2568–2579. doi: 10.1093/emboj/21.11.2568
  • Meyer SE, Stewart TE, Clement S. The quick and the deadly: growth vs virulence in a seed bank pathogen. New Phytol. 2010;187(1):209–216. doi: 10.1111/j.1469-8137.2010.03255.x
  • Watson RJ, Joyce SA, Spencer GV, et al. The exbD gene of photorhabdus temperata is required for full virulence in insects and symbiosis with the nematode Heterorhabditis. Mol Microbiol. 2005;56(3):763–773. doi: 10.1111/j.1365-2958.2005.04574.x
  • Valero-Jiménez CA, Debets AJM, van Kan JAL, et al. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar J. 2014;13(1). doi: 10.1186/1475-2875-13-479
  • Talaei-Hassanloui R, Kharazi-Pakdel A, Goettel M, et al. Variation in virulence of Beauveria bassiana isolates and its relatedness to some morphological characteristics. Biocontrol Sci Technol. 2006;16(5):525–534. doi: 10.1080/09583150500532758
  • Zhan F, Xie Y, Zhu W, et al. Linear correlation analysis of Zymoseptoria tritici aggressiveness with in vitro growth rate. Phytopathology®. 2016;106(11):1255–1261. doi: 10.1094/PHYTO-12-15-0338-R
  • Thrall PH, Barrett LG, Burdon JJ, et al. Variation in pathogen aggressiveness within a metapopulation of the Cakile maritima – Alternaria brassicicola host–pathogen association. Plant Pathol. 2005;54(3):265–274. doi: 10.1111/j.1365-3059.2005.01190.x
  • Rutschmann S, Jung AC, Hetru C, et al. The rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity. 2000;12(5):569–580. doi: 10.1016/S1074-7613(00)80208-3
  • Xiao G, Ying SH, Zheng P, et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2012 Jan;2(1):483. doi: 10.1038/srep00483
  • Chen XR, Hu QB, Yu XQ, et al. Effects of destruxins on free calcium and hydrogen ions in insect hemocytes. Insect Sci. 2014 Feb;21(1):31–38. doi: 10.1111/1744-7917.12028
  • Tzou P, Reichhart JM, Lemaitre B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci U S A. 2002;99(4):2152–2157. doi: 10.1073/pnas.042411999
  • Fang W, Vega-Rodríguez J, Ghosh AK, et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 1979;2011(6020):1074–1077. doi: 10.1126/science.1199115
  • Binggeli O, Neyen C, Poidevin M, et al. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. Schneider DS, editor. PLoS Pathog [Internet]. 2014 May 1 [cited 2019 Oct 3];10(5):e1004067. doi: 10.1371/journal.ppat.1004067
  • St Leger RJ, Butt TM, Goettel MS, et al. Production in vitro of appressoria by the entomopathogenic fungusMetarhizium anisopliae. Exp Mycol. 1989;13(3):274–288. doi: 10.1016/0147-5975(89)90049-2
  • Fang W, Lu HL, King GF, et al. Construction of a hypervirulent and specific mycoinsecticide for locust control. Sci Rep. 2014;4(1). doi: 10.1038/srep07345
  • Ferrandon D, Jung AC, Criqui MC, et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 1998;17(5):1217–1227. doi: 10.1093/emboj/17.5.1217
  • Cohen L, Moran Y, Sharon A, et al. Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel. J Biol Chem. 2009;284(35):23558–23563. doi: 10.1074/jbc.M109.023358