787
Views
0
CrossRef citations to date
0
Altmetric
Research article

Lambda-free light chain: A serum marker of dengue disease via NS3 protease-mediated antibody cleavage

, , , , , , , , & show all
Article: 2279355 | Received 18 Jul 2023, Accepted 30 Oct 2023, Published online: 20 Nov 2023

References

  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504–15. doi: 10.1038/nature12060
  • Guzman MG, Halstead SB, Artsob H, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010 Dec;8(12 Suppl):S7–16. doi: 10.1038/nrmicro2460
  • St John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol. 2019 Apr;19(4):218–230. doi: 10.1038/s41577-019-0123-x
  • Screaton G, Mongkolsapaya J, Yacoub S, et al. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol. 2015 Dec;15(12):745–759. doi: 10.1038/nri3916
  • Bhatt P, Sabeena SP, Varma M, et al. Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol. 2021 Jan;78(1):17–32. doi: 10.1007/s00284-020-02284-w
  • World Health Organization. Dengue and severe dengue. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  • Bhole MV, Sadler R, Ramasamy K. Serum-free light-chain assay: clinical utility and limitations. Ann Clin Biochem. 2014 Sep;51(Pt 5):528–542. doi: 10.1177/0004563213518758
  • Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006 Sep;20(9):1467–1473. doi: 10.1038/sj.leu.2404284
  • Jenner E. Serum free light chains in clinical laboratory diagnostics. Clin Chim Acta. 2014 Jan 1;427:15–20. doi: 10.1016/j.cca.2013.08.018
  • Hepojoki J, Cabrera LE, Hepojoki S, et al. Hantavirus infection-induced B cell activation elevates free light chains levels in circulation. PLOS Pathog. 2021 Aug;17(8):e1009843. doi: 10.1371/journal.ppat.1009843
  • Malecka-Gieldowska M, Folta M, Wisniewska A, et al. Cell population data and serum polyclonal immunoglobulin free light chains in the assessment of COVID-19 severity. Viruses. 2021 Jul 15;13(7):1381. doi: 10.3390/v13071381
  • Guzman MG, Harris E. Dengue. Lancet (London, England). 2015 Jan 31;385(9966):453–465. doi: 10.1016/S0140-6736(14)60572-9
  • Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008 Aug;11(4):369–377. doi: 10.1016/j.mib.2008.06.004
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005 Jan;3(1):13–22. doi: 10.1038/nrmicro1067
  • Yamshchikov VF, Compans RW. Formation of the flavivirus envelope: role of the viral NS2B-NS3 protease. J Virol. 1995 Apr;69(4):1995–2003. doi: 10.1128/jvi.69.4.1995-2003.1995
  • Yamshchikov VF, Trent DW, Compans RW. Upregulation of signalase processing and induction of prM-E secretion by the flavivirus NS2B-NS3 protease: roles of protease components. J Virol. 1997 Jun;71(6):4364–4371. doi: 10.1128/jvi.71.6.4364-4371.1997
  • Falgout B, Pethel M, Zhang YM, et al. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol. 1991 May;65(5):2467–2475. doi: 10.1128/jvi.65.5.2467-2475.1991
  • Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, et al. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol. 2010 Oct;84(19):9760–9774. doi: 10.1128/JVI.01051-10
  • Aguirre S, Maestre AM, Pagni S, et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLOS Pathog. 2012;8(10):e1002934.
  • Lin JC, Lin SC, Chen WY, et al. Dengue viral protease interaction with NF-kappaB inhibitor alpha/beta results in endothelial cell apoptosis and hemorrhage development. J Immunol. 2014 Aug 1;193(3):1258–1267. doi: 10.4049/jimmunol.1302675
  • Travis J, Potempa J. Bacterial proteinases as targets for the development of second-generation antibiotics. Biochim Biophys Acta. 2000 Mar 7;1477(1–2):35–50. doi: 10.1016/S0167-4838(99)00278-2
  • von Pawel-Rammingen U, Johansson BP, Tapper H, et al. Streptococcus pyogenes and phagocytic killing. Nat Med. 2002 Oct;8(10):1044–1045. author reply 1045-6. doi: 10.1038/nm1002-1044
  • Wenig K, Chatwell L, von Pawel-Rammingen U, et al. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17371–17376. doi: 10.1073/pnas.0407965101
  • Vindebro R, Spoerry C, von Pawel-Rammingen U. Rapid IgG heavy chain cleavage by the streptococcal IgG endopeptidase IdeS is mediated by IdeS monomers and is not due to enzyme dimerization. FEBS Lett. 2013 Jun 19;587(12):1818–1822. doi: 10.1016/j.febslet.2013.04.039
  • Leborgne C, Barbon E, Alexander JM, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020 Jul;26(7):1096–1101. doi: 10.1038/s41591-020-0911-7
  • Prokesova L, Potuznikova B, Potempa J, et al. Cleavage of human immunoglobulins by serine proteinase from staphylococcus aureus. Immunol Lett. 1992 Feb 15;31(3):259–265. doi: 10.1016/0165-2478(92)90124-7
  • Ryan MH, Petrone D, Nemeth JF, et al. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol. 2008 Apr;45(7):1837–1846. doi: 10.1016/j.molimm.2007.10.043
  • Siegel SJ, Weiser JN. Mechanisms of bacterial colonization of the respiratory tract. Annu Rev Microbiol. 2015;69(1):425–444. doi: 10.1146/annurev-micro-091014-104209
  • World Health O. Dengue guidelines for diagnosis, treatment, prevention and control : new edition. Geneva: World Health Organization; 2009.
  • Shiels MS, Landgren O, Costello R, et al. Free light chains and the risk of AIDS-defining opportunistic infections in HIV-infected individuals. Clin Infect Dis. 2012 Nov 15;55(10):e103–8. doi: 10.1093/cid/cis692
  • Shen WF, Galula JU, Liu JH, et al. Epitope resurfacing on dengue virus-like particle vaccine preparation to induce broad neutralizing antibody. Elife. [2018 Oct 18];7. doi: 10.7554/eLife.38970
  • Renner M, Flanagan A, Dejnirattisai W, et al. Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. Nat Immunol. 2018 Nov;19(11):1248–1256. doi: 10.1038/s41590-018-0227-7
  • Katzmann JA, Abraham RS, Dispenzieri A, et al. Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin Chem. 2005 May;51(5):878–881. doi: 10.1373/clinchem.2004.046870
  • Aggarwal R, Sequeira W, Kokebie R, et al. Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care Res (Hoboken). 2011 Jun;63(6):891–898. doi: 10.1002/acr.20446
  • Bettacchioli E, Le Gaffric C, Mazeas M, et al. An elevated polyclonal free light chain level reflects a strong interferon signature in patients with systemic autoimmune diseases. J Transl Autoimmun. 2021;4:100090. doi: 10.1016/j.jtauto.2021.100090
  • Basile U, Napodano C, Pocino K, et al. Lack of association between vitamin D status and free light chains profile with different chronic HCV-related liver and extrahepatic disorders. Eur Rev Med Pharmacol Sci. 2019 Oct;23(19):8506–8514. doi: 10.26355/eurrev_201910_19164
  • Chen B, Wang W, Xu W, et al. Serum free light chain is associated with histological activity and cirrhosis in patients with chronic hepatitis B. Int Immunopharmacol. 2021 Oct;99:107881.
  • Deng X, Crowson CS, Rajkumar SV, et al. Elevation of serum immunoglobulin free light chains during the preclinical period of rheumatoid arthritis. J Rheumatol. 2015 Feb;42(2):181–187. doi: 10.3899/jrheum.140543
  • Virella G, Parkhouse RM. Papain sensitivity of heavy chain sub-classes in normal human IgG and localizaton of antigenic determinants for the sub-classes. Immunochemistry. 1971 Mar;8(3):243–250. doi: 10.1016/0019-2791(71)90478-2
  • Turner MW, Bennich HH, Natvig JB. Pepsin digestion of human G-myeloma proteins of different subclasses. II. Immunochemical investigations of the products of peptic digestion. Clin Exp Immunol. 1970 Nov;7(5):627–640.
  • Li H, Clum S, You S, et al. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol. 1999 Apr;73(4):3108–3116. doi: 10.1128/JVI.73.4.3108-3116.1999
  • Gandikota C, Gandhi L, Maisnam D, et al. A novel anti-NS2BNS3pro antibody-based indirect ELISA test for the diagnosis of dengue virus infections. J Med Virol. 2021 Jun;93(6):3312–3321. doi: 10.1002/jmv.26024
  • Jesús-González LA D, Cervantes-Salazar M, Reyes-Ruiz JM, et al. The nuclear pore complex: a target for NS3 protease of dengue and Zika Viruses. Viruses. 2020;12(6):583.
  • Palacios-Rapalo SN, De Jesus-Gonzalez LA, Reyes-Ruiz JM, et al. Nuclear localization of non-structural protein 3 (NS3) during dengue virus infection. Arch Virol. 2021 May;166(5):1439–1446. doi: 10.1007/s00705-021-05026-w
  • Khromykh AA, Varnavski AN, Sedlak PL, et al. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of kunjin virus. J Virol. 2001 May;75(10):4633–4640. doi: 10.1128/JVI.75.10.4633-4640.2001
  • Patkar CG, Kuhn RJ. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J Virol. 2008 Apr;82(7):3342–3352. doi: 10.1128/JVI.02447-07
  • Gandikota C, Mohammed F, Gandhi L, et al. Mitochondrial import of dengue virus NS3 protease and cleavage of GrpEL1, a cochaperone of mitochondrial Hsp70. J Virol. 2020 Aug 17;94(17). doi: 10.1128/JVI.01178-20