611
Views
0
CrossRef citations to date
0
Altmetric
Research article

One-step preparation of a self-assembled bioconjugate nanovaccine against Brucella

, , , , , , , , & show all
Article: 2280377 | Received 27 Jun 2023, Accepted 31 Oct 2023, Published online: 19 Nov 2023

References

  • Oliveira SC, Giambartolomei GH, Cassataro J. Confronting the barriers to develop novel vaccines against brucellosis. Expert Rev Vaccines. 2011;10(9):1291–11. doi: 10.1586/erv.11.110
  • Avila-Calderon ED, Lopez-Merino A, Sriranganathan N, et al. A history of the development of Brucella vaccines. Biomed Res Int. 2013;2013:743509. doi: 10.1155/2013/743509
  • Pandey A, Cabello A, Akoolo L, et al. The case for live attenuated vaccines against the neglected zoonotic diseases brucellosis and bovine tuberculosis. PLoS Negl Trop Dis. 2016;10(8):e0004572. doi: 10.1371/journal.pntd.0004572
  • Ganesh NV, Sadowska JM, Sarkar S, et al. Molecular recognition of Brucella a and M antigens dissected by synthetic oligosaccharide glycoconjugates leads to a disaccharide diagnostic for brucellosis. J Am Chem Soc. 2014;136(46):16260–16269. doi: 10.1021/ja5081184
  • Gao S, Wei X, Liu A, et al. Establishment of an analytical method for direct economic loss caused by sheep brucellosis and cost-effectiveness of its control with empirical research. AQSIQ. 2022;39:1–6.
  • Mandal SS, Duncombe L, Ganesh NV, et al. Novel solutions for vaccines and diagnostics to combat brucellosis. ACS Cent Sci. 2017;3(3):224–231. doi: 10.1021/acscentsci.7b00019
  • Singh D, Somani VK, Aggarwal S, et al. PLGA (85: 15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: a promising alternate to traditional adjuvants. Mol Immunol. 2015;68(2):272–279. doi: 10.1016/j.molimm.2015.09.011
  • Abkar M, Lotfi AS, Amani J, et al. Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun. 2015;39(4):217–228. doi: 10.1007/s11259-015-9645-2
  • Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Nanoparticle-based vaccines for brucellosis: calcium phosphate nanoparticles-adsorbed antigens induce cross protective response in mice. Int J Nanomedicine. 2020;15:3877–3886. doi: 10.2147/IJN.S249942
  • Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev. 2010;34(3):379–394. doi: 10.1111/j.1574-6976.2010.00211.x
  • Kay E, Cuccui J, Wren BW. Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines. 2019;4(1):16. doi: 10.1038/s41541-019-0110-z
  • Dow JM, Mauri M, Scott TA, et al. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev Vaccines. 2020;19(6):507–527. doi: 10.1080/14760584.2020.1775077
  • Fernandez-Prada CM, Zelazowska EB, Nikolich M, et al. Interactions between Brucella melitensis and human phagocytes: bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun. 2003;71(4):2110–2119. doi: 10.1128/IAI.71.4.2110-2119.2003
  • Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restricting NF-κB activation in murine macrophages. Microbes Infect. 2008;10(6):582–590. doi: 10.1016/j.micinf.2008.01.005
  • Duncombe L, Howells L, Haughey A, et al. The tip of Brucella O-Polysaccharide is a potent epitope in response to brucellosis infection and enables short synthetic antigens to be Superior diagnostic reagents. Microorganisms. 2022;10(4):708. doi: 10.3390/microorganisms10040708
  • Mathur S, Banai M, Cohen D. Natural Brucella melitensis infection and Rev. 1 vaccination induce specific Brucella O-Polysaccharide antibodies involved in complement mediated Brucella cell killing. Vaccines (Basel). 2022;10(2):10. doi: 10.3390/vaccines10020317
  • Ducrotoy MJ, Conde-Alvarez R, Blasco JM, et al. A review of the basis of the immunological diagnosis of ruminant brucellosis. Vet Immunol Immunopathol. 2016;171:81–102. doi: 10.1016/j.vetimm.2016.02.002
  • McGiven J, Howells L, Duncombe L, et al. Improved serodiagnosis of bovine brucellosis by novel synthetic oligosaccharide antigens representing the capping m epitope elements of Brucella O-polysaccharide. J Clin Microbiol. 2015;53(4):1204–1210. doi: 10.1128/JCM.03185-14
  • Huang J, Pan C, Sun P, et al. Application of an O-Linked glycosylation system in Yersinia enterocolitica serotype O: 9 to generate a New Candidate vaccine against Brucella abortus. Microorganisms. 2020;8(3):8. doi: 10.3390/microorganisms8030436
  • Liu ZG, Wang M, Zhao HY, et al. Investigation of the molecular characteristics of Brucella isolates from Guangxi Province, China. BMC Microbiol. 2019;19(1):292. doi: 10.1186/s12866-019-1665-6
  • Zhou J, Kroll AV, Holay M, et al. Biomimetic Nanotechnology toward personalized vaccines. Adv Mater. 2020;32(13):e1901255. doi: 10.1002/adma.201901255
  • Azharuddin M, Zhu GH, Sengupta A, et al. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol. 2022;40(10):1195–1212. doi: 10.1016/j.tibtech.2022.03.011
  • Bezbaruah R, Chavda VP, Nongrang L, et al. Nanoparticle-based delivery systems for vaccines. Vaccines (Basel). 2022;10(11):10. doi: 10.3390/vaccines10111946
  • Shi Y, Pan C, Wang K, et al. Construction of orthogonal modular proteinaceous nanovaccine delivery vectors based on mSA-Biotin binding. Nanomaterials (Basel). 2022;12(5):12. doi: 10.3390/nano12050734
  • Pan C, Wu J, Qing S, et al. Biosynthesis of self-assembled proteinaceous nanoparticles for vaccination. Adv Mater. 2020;32(42):e2002940. doi: 10.1002/adma.202002940
  • Li X, Pan C, Sun P, et al. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res. 2022;15(2):1645–1653. doi: 10.1007/s12274-021-3713-4
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–3154. doi: 10.4049/jimmunol.173.5.3148
  • Peng Z, Wu J, Wang K, et al. Production of a promising Biosynthetic self-assembled Nanoconjugate vaccine against Klebsiella Pneumoniae serotype O2 in a General Escherichia Coli host. Adv Sci. 2021;8(14):e2100549. doi: 10.1002/advs.202100549
  • Pan C, Sun P, Liu B, et al. Biosynthesis of conjugate vaccines using an O-Linked glycosylation system. MBio. 2016;7(2):e00443–16. doi: 10.1128/mBio.00443-16
  • Pisarenko SV, Kovalev DA, Volynkina AS, et al. Global evolution and phylogeography of Brucella melitensis strains. BMC Genomics. 2018;19(1):353. doi: 10.1186/s12864-018-4762-2
  • Huang J, Wang Y, Wang K, et al. Biosynthesis and Immunological Evaluation of a Dual-Antigen Nanoconjugate Vaccine against Brucella melitensis. Eng. 2023;5. doi: 10.1016/j.eng.2023.04.007
  • Saez D, Fernandez P, Rivera A, et al. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu,Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine. 2012;30(7):1283–1290. doi: 10.1016/j.vaccine.2011.12.088
  • Cassataro J, Estein SM, Pasquevich KA, et al. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun. 2005;73(12):8079–8088. doi: 10.1128/IAI.73.12.8079-8088.2005
  • Pan C, Yue H, Zhu L, et al. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev. 2021;176:113867. doi: 10.1016/j.addr.2021.113867
  • Gomez G, Adams LG, Rice-Ficht A, et al. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol. 2013;3:17. doi: 10.3389/fcimb.2013.00017
  • Vetro M, Safari D, Fallarini S, et al. Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine (Lond). 2017;12(1):13–23. doi: 10.2217/nnm-2016-0306
  • Brune KD, Howarth M. New routes and opportunities for modular Construction of particulate vaccines: stick, Click, and glue. Front Immunol. 2018;9:1432. doi: 10.3389/fimmu.2018.01432
  • Gomes AC, Mohsen M, Bachmann MF. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines (Basel). 2017;5(1):6. doi: 10.3390/vaccines5010006
  • Zhao Y, Zhang Z, Pan Z, et al. Advanced bioactive nanomaterials for biomedical applications. Exploration. 2021;1(3):12. doi: https://doi.org/10.1002/EXP.20210089