2,305
Views
0
CrossRef citations to date
0
Altmetric
Review article

Pathogenicity and virulence of Shigella sonnei: A highly drug-resistant pathogen of increasing prevalence

ORCID Icon & ORCID Icon
Article: 2280838 | Received 25 Jul 2023, Accepted 01 Nov 2023, Published online: 23 Nov 2023

References

  • Das JK, Salam RA, Bhutta ZA. Global burden of childhood diarrhea and interventions. Curr Opin Infect Dis. 2014;27(5):451–21. doi: 10.1097/QCO.0000000000000096
  • World Health Organization. Diarrhoeal disease. https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease.
  • Kotloff KL, Riddle MS, Platts-Mills J, et al. Shigellosis. Lancet. 2018;391(10122):801–812. doi: 10.1016/S0140-6736(17)33296-8
  • Baker S, The HC. Recent insights into Shigella: a major contributor to the global diarrhoeal disease burden. Curr Opin Infect Dis. 2018;31(5):449. doi: 10.1097/QCO.0000000000000475
  • Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet (London, England). 2013;382(9888):209-222. 10.1016/S0140-6736(13)60844–2.
  • Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the global burden of disease study 1990–2016. Lancet Infect Dis. 2018;18(11):1229–1240.
  • Rogawski ET, Liu J, Platts-Mills J, et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health. 2018;6(12):e1319–e1328.
  • Anderson JD, Bagamian KH, Pecenka CJ, et al. Potential impact and cost-effectiveness of Shigella vaccination in 102 low-income and middle-income countries in children aged 5 years or younger: a modelling study. The Lancet Global Health. 2023;11(6):e880–e891. doi: 10.1016/S2214-109X(23)00192-4
  • Niyogi SK. Shigellosis. J Microbiol. 2005;43(2):133–143.
  • The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nature Rev Microbiol. 2016;14(4):235–250. doi: 10.1038/nrmicro.2016.10
  • Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clinl Infect Dis. 2014;59(7):933–941.
  • Kahsay AG, Muthupandian S. A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001–2014. BMC Res Notes. 2016;9(1):1–6. doi: 10.1186/s13104-016-2236-7
  • Holt KE, Baker S, Weill F, et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet. 2012;44(9):1056–1059.
  • Thompson CN, Duy PT, Baker S, Clements ACA. The rising dominance of Shigella sonnei: an intercontinental shift in the etiology of bacillary dysentery. PLoS negl trop dis. 2015;9(6):e0003708. doi: 10.1371/journal.pntd.0003708
  • Mattock E, Blocker AJ. How do the virulence factors of Shigella work together to cause disease? Front Cell Infect Microbiol. 2017;7:64. doi: 10.3389/fcimb.2017.00064
  • Kotloff KL. Shigella infection in children and adults: a formidable foe. Lancet Glob Health. 2017;5(12):e1166–e1167. doi: 10.1016/S2214-109X(17)30431-X
  • Melton-Celsa A, Sperandio V, Hovde CJ. Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr. 2014;2(4):2–4. doi: 10.1128/microbiolspec.EHEC-0024-2013
  • Kotloff KL, Winickoff JP, Ivanoff B, et al. Global burden of shigella infections: implications for vaccine development and implementation of control strategies. Bullet World Health Organ. 1999;77(8):651.
  • Gu B, Cao Y, Pan S, et al. Comparison of the prevalence and changing resistance to nalidixic acid and ciprofloxacin of Shigella between Europe–America and Asia–Africa from 1998 to 2009. Int J Antimicrob Agents. 2012;40(1):9–17.
  • Bardsley M, Jenkins C, Mitchell HD, et al. Persistent transmission of shigellosis in England is associated with a recently emerged multidrug-resistant strain of Shigella sonnei. J Clin Microbiol. 2020;58(4):1692.
  • Lefèvre S, Njamkepo E, Feldman S, Ruckly C, Carle I, Lejay-Collin M, et al. Rapid emergence of extensively drug-resistant Shigella sonnei in France. Nat Commun. 2023;14(1):462.
  • Qu M, Zhang X, Liu G, Huang Y, Jia L, Liang W, et al. An eight-year study of Shigella species in Beijing, China: serodiversity, virulence genes, and antimicrobial resistance. J Infect Developing Countries. 2014;8(7):904–908.
  • Vinh H, Baker S, Campbell J, et al. Rapid emergence of third generation cephalosporin resistant Shigella spp. In southern Vietnam. J Med Microbiol. 2009;58(2):281–283.
  • Nuzhat S, Das R, Das S, et al. Antimicrobial resistance in shigellosis: a surveillance study among urban and rural children over 20 years in Bangladesh. PLoS One. 2022;17(11):e0277574.
  • Sousa MÂB, Mendes EN, Collares GB, et al. Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes. Mem Inst Oswaldo Cruz. 2013;108(1):108 30–35. doi: 10.1590/S0074-02762013000100005
  • Das A, Natarajan M, Mandal J, et al. The emergence of quinolone resistant Shigella sonnei, Pondicherry, India. PLoS One. 2016;11(8):e0160290. doi: 10.1371/journal.pone.0160290
  • Moez-Ardalan K, Zali MR, Dallal MM, et al. Prevalence and pattern of antimicrobial resistance of Shigella species among patients with acute diarrhea in Karaj Tehran. Iran J Health Popul Nutr. 2003;21:96–102.
  • Ram PK, Crump JA, Gupta SK, Miller MA, Mintz EP II. Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol Infect. 2008;136(5):577–603. doi: 10.1017/S0950268807009351
  • Wang H, Edwards M, Falkinham IJ, et al. Molecular survey of the occurrence of legionella spp., mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol. 2012;78(17):6285–6294. doi: 10.1128/AEM.01492-12
  • Shi Y, Queller DC, Tian Y, Zhang S, Yan Q, He Z, Liu S-J, et al. The ecology and evolution of amoeba-bacterium interactions. Appl environ microbiol. 2021;87(2):1866.
  • Rowbotham TJ. Preliminary report on the pathogenicity of legionella pneumophila for freshwater and soil amoebae. J Clin Pathol. 1980;33(12):1179–1183. doi: 10.1136/jcp.33.12.1179
  • Hoffmann C, Harrison CF, Hilbi H. The natural alternative: protozoa as cellular models for L egionella infection. Cell Microbiol. 2014;16(1):15–26. doi: 10.1111/cmi.12235
  • Strassmann JE, Shu L. Ancient bacteria–amoeba relationships and pathogenic animal bacteria. PLoS Biol. 2017;15(5):e2002460. doi: 10.1371/journal.pbio.2002460
  • Watson J, Jenkins C, Clements A, Schottel JL. Shigella sonnei does not use amoebae as protective hosts. Appl environ microbiol. 2018;84(9):2679. doi: 10.1128/AEM.02679-17
  • Shepherd JG, Wang L, Reeves PR, et al. Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immun. 2000;68(10):6056–6061. doi: 10.1128/IAI.68.10.6056-6061.2000
  • Ascari A, Tran ENH, Eijkelkamp BA, Morona R, Comstock LE. Identification of the Shigella flexneri Wzy domain modulating WzzpHS-2 interaction and detection of the Wzy/Wzz/Oag complex. J Bacteriol. 2022;204(9):224. doi: 10.1128/jb.00224-22
  • Sack DA, Hoque S, Etheridge M, Huq A. Is protection against shigellosis induced by natural infection with Plesiomonas shigelloides? Lancet. 1994;343(8910):1413–1415. doi: 10.1016/S0140-6736(94)92531-3
  • Jiang Y, Yang F, Zhang X, et al. The complete sequence and analysis of the large virulence plasmid pSS of Shigella sonnei. Plasmid. 2005;54(2):149–159.
  • Van De Verg L,L, Herrington DA, Boslego J, et al. Age-specific prevalence of serum antibodies to the invasion plasmid and lipopolysaccharide antigens of Shigella species in Chilean and North American populations. J Infect Dis. 1992;166(1):158–161. doi: 10.1093/infdis/166.1.158
  • Pupo GM, Lan R, Reeves PR. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci, USA. 2000;97(19):10567–10572. doi: 10.1073/pnas.180094797
  • Sahl JW, Morris CR, Emberger J, et al. Defining the phylogenomics of Shigella species: a pathway to diagnostics. J Clin Microbiol. 2015;53(3):951–960.
  • Yang F, Yang J, Zhang X, et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 2005;33(19):6445–6458.
  • Feng Y, Chen Z, Liu S, et al. Gene decay in Shigella as an incipient stage of host-adaptation. PLoS One. 2011;6(11):e27754. doi: 10.1371/journal.pone.0027754
  • Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;409(6823):1007–1011.
  • Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nature Genet. 2003;35(1):32–40.
  • Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill F, Goodhead I, et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nature Genet. 2008;40(8):987–993.
  • Sentausa E, Basso P, Berry A, et al. Insertion sequences drive the emergence of a highly adapted human pathogen. Microb Genom. 2020;6(9). doi: 10.1099/mgen.0.000265
  • Wagner A, De la Chaux N. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences. Mol Genet Genomic. 2008;280(5):280 397–408. doi: 10.1007/s00438-008-0373-y
  • Hawkey J, Monk JM, Billman-Jacobe H, et al. Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genet. 2020;16(7):e1008931. doi: 10.1371/journal.pgen.1008931
  • Ito H, Kido N, Arakawa Y, Ohta M, Sugiyama T, Kato N. Possible mechanisms underlying the slow lactose fermentation phenotype in Shigella spp. Appl environ microbiol. 1991;57(10):2912–2917. doi: 10.1128/aem.57.10.2912-2917.1991
  • Rezwan F, Lan R, Reeves PR. Molecular basis of the indole-negative reaction in Shigella strains: extensive damages to the tna operon by insertion sequences. J Bacteriol. 2004;186(21):7460–7465. doi: 10.1128/JB.186.21.7460-7465.2004
  • Day W,A Jr, Fernández R,E, Maurelli AT, et al. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect Immun. 2001;69(12):7471–7480. doi: 10.1128/IAI.69.12.7471-7480.2001
  • Bliven KA, Maurelli AT, Andrews-Polymenis HL. Antivirulence genes: insights into pathogen evolution through gene loss. Infect Immun. 2012;80(12):4061–4070. doi: 10.1128/IAI.00740-12
  • Prosseda G, Di Martino ML, Campilongo R, et al. Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model. Res Microbiol. 2012;163(6–7):399–406. doi: 10.1016/j.resmic.2012.07.004
  • Chung the H, Boinett C, Pham Thanh D, Jenkins C, Weill F, Howden BP, et al. Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun. 2019;10(1):4828.
  • Venkatesan MM, Goldberg MB, Rose DJ, et al. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun. 2001;69(5):3271–3285. doi: 10.1128/iai.69.5.3271-3285.2001
  • Ruiting L, Brad L, David R, et al. Molecular Evolution of Large Virulence Plasmid inShigella Clones and EnteroinvasiveEscherichia coli. Infect Immun. 2001;69(10):6303–6309. doi: 10.1128/iai.69.10.6303-6309.2001
  • Makino S, Sasakawa C, Yoshikawa M. Genetic relatedness of the basic replicon of the virulence plasmid in shigellae and enteroinvasive Escherichia coli. Microbial Pathogenesis. 1988;5(4):267–274. doi: 10.1016/0882-4010(88)90099-X
  • Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect Immun. 2004;72(9):5080–5088. doi: 10.1128/IAI.72.9.5080-5088.2004
  • Martyn JE, Pilla G, Hollingshead S, Winther KS, Lea S, McVicker G, Comstock LE, et al. Maintenance of the Shigella sonnei virulence plasmid is dependent on its repertoire and amino acid sequence of toxin-antitoxin systems. J Bacteriol. 2022;204(3):519.
  • McVicker G, Tang CM. Deletion of toxin–antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat Microbiol. 2016;2(2):1–8. doi: 10.1038/nmicrobiol.2016.204
  • Baker KS, Campos J, Pichel M, Della Gaspera A, Duarte-Martínez F, Campos-Chacón E, et al. Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean: advancing global surveillance of foodborne illnesses. Clin Microbiol Infect. 2017;23(11):845–853. doi: 10.1016/j.cmi.2017.03.021
  • Hawkey J, Paranagama K, Baker KS, Bengtsson RJ, Weill F, Thomson NR, et al. Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei. Nat Commun. 2021;12(1):2684.
  • Pakbin B, Didban A, Brück W,M, et al. Phylogenetic analysis and antibiotic resistance of Shigella sonnei isolates. FEMS Microbiol Lett. 2022;369(1):fnac042. doi: 10.1093/femsle/fnac042
  • DuPont HL, Levine MM, Hornick RB, Formal SB. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis. 1989;159(6):1126–1128. http://www.jstor.org/stable/30137443
  • ALAMANOS Y, MAIPA V, LEVIDIOTOU S, GESSOULI E. A community waterborne outbreak of gastro-enteritis attributed to Shigella sonnei. Epidemiol Infect. 2000;125(3):499–503. doi: 10.1017/S0950268800004866
  • Vanden Esschert K, L Mattioli, Hilborn ED, et al. Outbreaks associated with untreated recreational water — California, Maine, and Minnesota, 2018–2019. MMWR Morb Mortal Wkly Rep. 2020;69(25):781–783.
  • Qiu S, Liu K, Yang C, Xiang Y, Min K, Zhu K, et al. A Shigella sonnei clone with extensive drug resistance associated with waterborne outbreaks in China. Nat Commun. 2022;13(1):7365.
  • Smith JL. Shigella as a food borne pathogen. J Food Prot. 1987;50(9):788–801. doi: 10.4315/0362-028X-50.9.788
  • NYGREN BL, SCHILLING KA, BLANTON EM, SILK BJ, COLE DJ, MINTZ ED. Foodborne outbreaks of shigellosis in the USA, 1998–2008. Epidemiol Infect. 2013;141(2):233–241. doi: 10.1017/S0950268812000222
  • Lee LA, Ostroff SM, McGee HB, et al. An outbreak of shigellosis at an outdoor music festival. Am J Epidemiol. 1991;133(6):608–615.
  • Farag TH, Faruque AS, Wu Y, Das SK, Hossain A, Ahmed S, Kosek M, et al. Housefly population density correlates with shigellosis among children in Mirzapur, Bangladesh: a time series analysis. PLoS negl trop dis. 2013;7(6):e2280.
  • Simms I, Field N, Jenkins C, Childs T, Gilbart VL, Dallman TJ, et al. Intensified shigellosis epidemic associated with sexual transmission in men who have sex with men-Shigella flexneri and S. sonnei in England, 2004 to end of February 2015. Eurosurveillance. 2015;20(15). doi: 10.2807/1560-7917.ES2015.20.15.21097
  • Ingle DJ, Easton M, Valcanis M, Seemann T, Kwong JC, Stephens N, et al. Co-circulation of multidrug-resistant Shigella among men who have sex with men in Australia. Clinl Infect Dis. 2019;69(9):1535–1544.
  • Khan WA, Griffiths JK, Bennish ML, et al. Gastrointestinal and extra-intestinal manifestations of childhood shigellosis in a region where all four species of Shigella are endemic. PLoS One. 2013;8(5):e64097. doi: 10.1371/journal.pone.0064097
  • Hamer DH, Gill CJ, Chilengi R. Intestinal infections: overview. In: Quah SRBT ed. International Encyclopedia of Public Health. 2nd ed. Oxford:Academic Press;2017. pp. 322–335
  • Thompson CN, Thieu NTV, Vinh PV, Duc AN, Wolbers M, Vinh H, et al. Clinical implications of reduced susceptibility to fluoroquinolones in paediatric Shigella sonnei and Shigella flexneri infections. J Antimicrob Chemother. 2016;71(3):807–815.
  • Tansarli GS, Long DR, Waalkes A, Bourassa LA, Libby SJ, Penewit K, et al. Genomic reconstruction and directed interventions in a multidrug-resistant shigellosis outbreak in Seattle, WA, USA: a genomic surveillance study. Lancet Infect Dis. 2023;23(6):740–750.
  • Levine MM, DuPont HL, Formal SB, Hornick RB, Takeuchi A, Gangarosa EJ, et al. Pathogenesis of Shigella dysenteriae 1 (Shiga) dysentery. J Infect Dis. 1973;127(3):261–270.
  • Ghosh S, Pazhani GP, Niyogi SK, et al. Genetic characterization of Shigella spp. isolated from diarrhoeal and asymptomatic children. J Med Microbiol. 2014;63(7):903–910. doi: 10.1099/jmm.0.070912-0
  • Khalil I, Troeger CE, Blacker BF, Reiner RC. Capturing the true burden of Shigella and ETEC: the way forward. Vaccine. 2019;37(34):4784–4786. doi: 10.1016/j.vaccine.2019.01.031
  • Kotloff KL. Bacterial diarrhoea. Curr Opin Pediatr. 2022;34(2):147–155. doi: 10.1097/MOP.0000000000001107
  • Afroze F, Ahmed T, Sarmin M, Shahid SA, Shahunja KM, Shahrin L, et al. Risk factors and outcome of Shigella encephalopathy in Bangladeshi children. PLoS neglected tropical diseases. 2017; 11 (4): e0005561.
  • Grondin C, Imbert P, Ficko C, et al. Shigella flexneri Bacteremia in Two Immune‐Competent Adult Travelers. J Travel Med. 2012;19(4):258–260.
  • Miti S, Chilyabanyama ON, Chisenga CC, et al. Sensitivity and predictive value of dysentery in diagnosing shigellosis among under five children in Zambia. PLoS One. 2023;18(2):e0279012.
  • Liu J, Platts-Mills J, Juma J, Kabir F, Nkeze J, Okoi C, et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet. 2016;388(10051):1291–1301. doi: 10.1016/S0140-6736(16)31529-X
  • Tickell KD, Brander RL, Atlas HE, Pernica JM, Walson JL, Pavlinac PB. Identification and management of Shigella infection in children with diarrhoea: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1235–e1248. doi: 10.1016/S2214-109X(17)30392-3
  • Platts-Mills J, Houpt ER, Liu J, et al. Etiology and incidence of moderate-to-severe diarrhea in Young children in Niger. J Pediatric Infect Dis Soc. 2021;10(12):1062–1070. doi: 10.1093/jpids/piab080
  • Mohle-Boetani J, Stapleton M, Finger R, Bean NH, Poundstone J, Blake PA, et al. Communitywide shigellosis: control of an outbreak and risk factors in child day-care centers. Am J Public Health. 1995;85(6):812–816. doi: 10.2105/AJPH.85.6.812
  • Arvelo W, Hinkle CJ, Nguyen TA, Weiser T, Steinmuller N, Khan F, et al. Transmission risk factors and treatment of pediatric shigellosis during a large daycare center-associated outbreak of multidrug resistant Shigella sonnei: implications for the management of shigellosis outbreaks among children. Pediatr Infect Dis J. 2009;28(11):976–980. doi: 10.1097/INF.0b013e3181a76eab
  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17(1):7–15.
  • Cohen D, Korin H, Bassal R, Perry Markovich M, Sivan Y, Goren S, et al. Burden and risk factors of Shigella sonnei shigellosis among children aged 0–59 months in hyperendemic communities in Israel. Inter J Infect Dis. 2019;82:117–123. doi: 10.1016/j.ijid.2019.02.031
  • Siddiq M, O’Flanagan H, Richardson D, et al. Factors associated with sexually transmitted shigella in men who have sex with men: a systematic review. sexually transmitted infections. Sex Transm Infect. 2023;99(1):58 LP–63. doi: 10.1136/sextrans-2022-055583
  • Zayet S, Klopfenstein T, Pierron A, et al. Shigella sonnei, an emerging multidrug-resistant sexually transmitted pathogen in Franche-Comté, France. Emerg Microbes Infect. 2021;10(1):1702–1705.
  • Fischer N, Maex M, Mattheus W, Van den Bossche A, Van Cauteren D, Laisnez V, et al. Genomic epidemiology of persistently circulating MDR Shigella sonnei strains associated with men who have sex with men (MSM) in Belgium (2013–19). J Antimicrob Chemother. 2021;77(1):89–97. doi: 10.1093/JAC/DKAB377
  • Braam JF, Bruisten SM, Hoogeland M, et al. Shigella is common in symptomatic and asymptomatic men who have sex with men visiting a sexual health clinic in Amsterdam. sexually transmitted infections. Sex Transm Infect. 2022;98(8):564 LP–569. doi: 10.1136/sextrans-2021-055274
  • Moreno-Mingorance A, Mir-Cros A, Goterris L, Rodriguez-Garrido V, Sulleiro E, Barberà MJ, et al. Increasing trend of antimicrobial resistance in Shigella associated with MSM transmission in Barcelona, 2020–21: outbreak of XRD Shigella sonnei and dissemination of ESBL-producing Shigella flexneri. J Antimicrob Chemother. 2023;78(4):975–982.
  • Mitchell HD, Whitlock G, Zdravkov J, Olsson J, Silalang P, Bardsley M, et al. Prevalence and risk factors of bacterial enteric pathogens in men who have sex with men: a cross-sectional study at the UK’s largest sexual health service. J Infect. 2023;86(1):33–40. doi: 10.1016/j.jinf.2022.10.033
  • Gaufin T, Blumenthal J, Ramirez-Sanchez C, et al. Antimicrobial-Resistant Shigella spp. in San Diego, California, USA, 2017–2020. Emerg Infect Dis. 2022;28(6):1110–1116.
  • UK Health Security Agency. Sexually transmitted Shigella spp. In England – data up to quarter 2. 2022. https://www.gov.uk/government/publications/non-travel-associated-shigella-infections/sexually-transmitted-shigella-spp-in-england-data-up-to-quarter-2-2022.
  • Allen H, Mitchell HD, Simms I, et al. Evidence for re-infection and persistent carriage of Shigella species in adult males reporting domestically acquired infection in England. Clin Microbiol Infect. 2021;27(1):.e126.7–.e126.13. doi: 10.1016/j.cmi.2020.03.036
  • Stefanovic A, Matic N, Ritchie G, et al. Multidrug resistant Shigella sonnei bacteremia among persons experiencing homelessness, Vancouver, British Columbia, Canada. Emerg Infect Dis. 2023;29(8):1668.
  • Hines JZ. Notes from the field: shigellosis outbreak among men who have sex with men and homeless persons—Oregon, 2015–2016. MMWR Morbidity And Mortality Weekly Report. 2016;65.
  • Centers for Disease Control and Prevention, (CDC). Shigellosis among people experiencing homelessness. https://www.cdc.gov/shigella/specific_groups/people-experiencing-homelessness.html.
  • Hines JZ, Jagger MA, Jeanne TL, West N, Winquist A, Robinson BF, et al. Heavy precipitation as a risk factor for shigellosis among homeless persons during an outbreak — Oregon, 2015–2016. J Infect. 2018;76(3):280–285. doi: 10.1016/j.jinf.2017.11.010
  • Kozyreva VK, Jospin G, Greninger AL, et al. Recent outbreaks of shigellosis in California caused by two distinct populations of Shigella sonnei with either increased virulence or fluoroquinolone resistance. mSphere. 2016;1(6):00344–16. doi: 10.1128/mSphere.00344-16
  • Murti M, Louie K, Bigham M, et al. Outbreak of shigellosis in a homeless shelter with healthcare worker transmission—British Columbia, April 2015. Infect Control Hosp Epidemiol. 2015;36(11):1372–1373.
  • Riddle MS, Chen WH, Kirkwood CD, MacLennan CA. Update on vaccines for enteric pathogens. Clin Microbiol Infect. 2018;24(10):1039–1045. doi: 10.1016/j.cmi.2018.06.023
  • Adler AV, Ciccotti HR, Trivitt SJH, et al. What’s new in travellers’ diarrhoea: updates on epidemiology, diagnostics, treatment and long-term consequences. J Travel Med. 2022;29(1):taab099. doi: 10.1093/jtm/taab099
  • Cohen D, Sela T, Slepon R, et al. Prospective cohort studies of shigellosis during military field training. Eur J Clin Microbiol Infect Dis. 2001;20(2):123–126. doi: 10.1007/s100960000428
  • Porter CK, Olson S, Hall A, et al. Travelers’ diarrhea: an update on the incidence, Etiology, and risk in military deployments and similar travel populations. Mil Med. 2017;182(suppl_2):4–10. doi: 10.7205/MILMED-D-17-00064
  • Chandani Y, Ghosh V, Suresh V, et al. An outbreak of shigellosis in European travellers returning from Cape Verde. New Microbes New Infect. 2023;52:101091. doi: 10.1016/j.nmni.2023.101091
  • Bowen A, Hurd J, Hoover C, et al. Importation and domestic transmission of Shigella sonnei resistant to ciprofloxacin—United States, May 2014–February 2015. Morbidity Mortality Weekly Rep. 2015;64(12):318.
  • Medeiro QP, Ledwaba SE, Bolick DT, et al. A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes. 2019;10(5):615–630.
  • Sansonetti PJ, Arondel J, Cantey JR, et al. Infection of rabbit Peyer’s patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect Immun. 1996;64(7):2752–2764. doi: 10.1128/iai.64.7.2752-2764.1996
  • Fernandez MI, Sansonetti PJ. Shigella interaction with intestinal epithelial cells determines the innate immune response in shigellosis. Int J Med Microbiol. 2003;293(1):55–67. doi: 10.1078/1438-4221-00244
  • Shim D, Suzuki T, Chang S, Park S, Sansonetti PJ, Sasakawa C, et al. New animal model of shigellosis in the Guinea Pig: its usefulness for protective efficacy studies. J Immunol. 2007;178(4):2476–2482. doi: 10.4049/JIMMUNOL.178.4.2476
  • Barman S, Saha DR, Ramamurthy T, Koley H. Development of a new guinea-pig model of shigellosis. FEMS Immunol Med Microbiol. 2011;62(3):304–314. doi: 10.1111/j.1574-695X.2011.00810.x
  • Yum LK, Byndloss MX, Feldman SH, Agaisse H. Critical role of bacterial dissemination in an infant rabbit model of bacillary dysentery. Nat Commun. 2019;10(1):1826. doi: 10.1038/s41467-019-09808-4
  • Duggan GM, Mostowy S. Use of zebrafish to study Shigella infection. Dis Models Mech. 2018;11(2):dmm032151. doi: 10.1242/dmm.032151
  • Torraca V, Mostowy S. Zebrafish infection: from pathogenesis to cell biology. Trends Cell Biol. 2018;28(2):143–156. doi: 10.1016/j.tcb.2017.10.002
  • Torraca V, Kaforou M, Watson J, Duggan GM, Guerrero-Gutierrez H, Krokowski S, Mulvey MA, et al. Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence. PLOS Pathogens. 2019;15(12):e1008006.
  • Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM, Young VB. Human intestinal enteroids as a model system of Shigella pathogenesis. Infect Immun. 2019;87(4). doi: 10.1128/IAI.00733-18
  • Hu Y, Huang H, Cheng X, et al. A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol. 2017;19(10):3879–3895.
  • Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, et al. The T3SS of Shigella: expression, structure, function, and role in vacuole escape. Microorganisms. 2020;8(12):1933.
  • Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun. 1982;35(3):852–860. doi: 10.1128/iai.35.3.852-860.1982
  • Muthuramalingam M, Whittier SK, Picking WL, et al. The Shigella type III secretion system: an overview from top to bottom. Microorganisms. 2021;9(2). doi: 10.3390/microorganisms9020451
  • Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V, Parsot C, et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Bio. 1999;147(3):683–693.
  • Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, et al. IpaD of Shigella flexneri is independently required for regulation of ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun. 2005;73(3):1432–1440.
  • Dickenson NE, Zhang L, Epler CR, Adam PR, Picking WL, Picking WD. Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry. 2011;50(2):172–180. doi: 10.1021/bi101365f
  • Weatherspoon-Griffin N, Picker MA, Wing HJ. The genetic organization and transcriptional regulation of Shigella virulence genes. Mol Cel Biol Wd Picking & WL Picking (Eds) UK: caister Academic Press. 2016;65–107.
  • Tobe T, Yoshikawa M, Mizuno T, Sasakawa C. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol. 1993;175(19):6142–6149. doi: 10.1128/jb.175.19.6142-6149.1993
  • Falconi M, Colonna B, Prosseda G, et al. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 1998;17(23):7033–7043.
  • Falconi M, Prosseda G, Giangrossi M, et al. Involvement of FIS in the H‐NS‐mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli. Mol Microbiol. 2001;42(2):439–452. doi: 10.1046/j.1365-2958.2001.02646.x
  • Tran CN, Giangrossi M, Prosseda G, Brandi A, Di Martino ML, Colonna B, et al. A multifactor regulatory circuit involving H-NS, VirF and an antisense RNA modulates transcription of the virulence gene icsA of Shigella flexneri. Nucleic Acids Res. 2011;39(18):8122–8134.
  • Wing HJ, Yan AW, Goldman SR, Goldberg MB. Regulation of IcsP, the outer membrane protease of the Shigella actin tail assembly protein IcsA, by virulence plasmid regulators VirF and VirB. J Bacteriol. 2004;186(3):699–705. doi: 10.1128/JB.186.3.699-705.2004
  • Gall TL, Mavris M, Martino MC, Bernardini ML, Denamur E, Parsot C. Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. Microbiology. 2005;151(3):951–962. doi: 10.1099/mic.0.27639-0
  • Hall CP, Jadeja NB, Sebeck N, et al. Characterization of MxiE-and H-NS-Dependent expression of ipaH7. 8, ospC1, yccE, and yfdF in Shigella flexneri. mSphere. 2022;7(6):485. doi: 10.1128/msphere.00485-22
  • Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005;50(12):50 2276–2285. doi: 10.1007/s10620-005-3048-0
  • Evans DF, Pye G, Bramley R, et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8):1035–1041. doi: 10.1136/gut.29.8.1035
  • Gorden J, Small P. Acid resistance in enteric bacteria. Infect Immun. 1993;61(1):364–367.
  • Waterman SR, Small PLC. Identification of sigma S-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol. 1996;21(5):925–940. doi: 10.1046/j.1365-2958.1996.00058.x
  • Chiang I, Wang Y, Fujii S, et al. Biofilm formation and virulence of Shigella flexneri are modulated by pH of gastrointestinal tract. Infect Immun. 2021;89(11):387.
  • Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol. 1995;177(14):4097–4104. doi: 10.1128/jb.177.14.4097-4104.1995
  • Gajiwala KS, Burley SK. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria 1 1Edited by P. E. Wright. J Mol Biol. 2000;295(3):605–612. doi: 10.1006/jmbi.1999.3347
  • Yang G, Wang L, Wang Y, et al. Hfq regulates acid tolerance and virulence by responding to acid stress in Shigella flexneri. Res Microbiol. 2015;166(6):476–485.
  • Zhang B, Ran L, Wu M, et al. Shigella flexneri regulator SlyA controls bacterial acid resistance by directly activating the glutamate decarboxylation system. Front Microbiol. 2018;9:2071. doi: 10.3389/fmicb.2018.02071
  • Mitobe J, Morita-Ishihara T, Ishihama A, et al. Involvement of RNA-binding protein Hfq in the osmotic-response regulation of invE gene expression in Shigella sonnei. BMC Microbiol. 2009;9(1):1–13. doi: 10.1186/1471-2180-9-110
  • Wang Y, Teng Y, Geng J, et al. Involvement of RNA chaperone Hfq in the regulation of antibiotic resistance and virulence in Shigella sonnei. Res Microbiol. 2023;174(5):104047.
  • Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29(4):625–651. doi: 10.1016/j.femsre.2004.09.003
  • Nickerson KP, Chanin RB, Sistrunk JR, Rasko DA, Fink PJ, Barry EM, McCormick B, et al. Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect Immun. 2017;85(6):1067.
  • Faherty CS, Redman JC, Rasko DA, et al. Shigella flexneri effectors OspE1 and OspE2 mediate induced adherence to the colonic epithelium following bile salts exposure. Mol Microbiol. 2012;85(1):107–121. doi: 10.1111/j.1365-2958.2012.08092.x
  • Chanin RB, Nickerson KP, Llanos-Chea A, et al. Shigella flexneri adherence factor expression in in vivo-like conditions. mSphere. 2019;4(6) 10.1128/msphere.00751-19.
  • Bernard AR, Jessop TC, Kumar P, Dickenson NE. Deoxycholate-enhanced Shigella virulence is regulated by a rare π-helix in the type three secretion system tip protein IpaD. Biochemistry. 2017;56(49):6503–6514. doi: 10.1021/acs.biochem.7b00836
  • Zumsteg AB, Goosmann C, Brinkmann V, Morona R, Zychlinsky A. IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe. 2014;15(4):435–445. doi: 10.1016/j.chom.2014.03.001
  • Köseoğlu VK, Hall CP, Rodríguez-López EM, Agaisse H, Roy CR. The autotransporter IcsA promotes Shigella flexneri biofilm formation in the presence of bile salts. Infect Immun. 2019;87(7). doi: 10.1128/IAI.00861-18
  • Mahmoud RY, Stones DH, Li W, et al. The multivalent adhesion molecule SSO1327 plays a key role in Shigella sonnei pathogenesis. Mol Microbiol. 2016;99(4):658–673.
  • Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11(2–3):164–170. doi: 10.1016/j.cocis.2005.11.001
  • Nutten S, Sansonetti P, Huet G, et al. Epithelial inflammation response induced by Shigella flexneri depends on mucin gene expression. Microbes Infect. 2002;4(11):1121–1124.
  • Navarro-Garcia F, Gutierrez-Jimenez J, Garcia-Tovar C, et al. Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect Immun. 2010;78(10):4101–4109. doi: 10.1128/IAI.00523-10
  • Prakash R, Bharathi Raja S, Devaraj H, et al. Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. PLoS One. 2011;6(11):e27046. doi: 10.1371/journal.pone.0027046
  • Ranganathan S, Doucet M, Grassel CL, Delaine-Elias B, Zachos NC, Barry EM, Young VB. Evaluating Shigella flexneri pathogenesis in the human enteroid model. Infect Immun. 2019;87(4):740. doi: 10.1128/IAI.00740-18
  • Haider K, Hossain A, Wanke C, et al. Production of mucinase and neuraminidase and binding of Shigella to intestinal mucin. J Diarrhoeal Dis Res. 1993;11:88–92.
  • Prizont R. Degradation of intestinal glycoproteins by pathogenic Shigella flexneri. Infect Immun. 1982;36(2):615–620. doi: 10.1128/iai.36.2.615-620.1982
  • Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP, Orndorff PE. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun. 1999;67(11):5587–5596. doi: 10.1128/IAI.67.11.5587-5596.1999
  • Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F, et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature. 2010;465(7296):355–358.
  • Nickerson KP, Llanos-Chea A, Ingano L, et al. A versatile human intestinal organoid-derived epithelial monolayer model for the study of enteric pathogens. Microbiol Spectr. 2021;9(1):3.
  • Mounier J, Vasselon T, Hellio R, et al. Shigella flexneri enters human colonic caco-2 epithelial cells through the basolateral pole. Infect Immun. 1992;60(1):237–248. doi: 10.1128/iai.60.1.237-248.1992
  • Rey C, Chang Y, Latour-Lambert P, Varet H, Proux C, Legendre R, Knodler L, et al. Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination. PLOS Pathogens. 2020;16(4):e1008446.
  • Mabbott NA, Donaldson DS, Ohno H, et al. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–677. doi: 10.1038/mi.2013.30
  • Ashida H, Sasakawa C. Shigella hacks host immune responses by reprogramming the host epigenome. EMBO J. 2014;33(22):2598–2600. doi: 10.15252/embj.201489934
  • High N, Mounier J, Prevost MC, Sansonetti PJ. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J. 1992;11(5):1991–1999. doi: 10.1002/j.1460-2075.1992.tb05253.x
  • Zychlinsky A, Kenny B, Ménard R, et al. IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol Microbiol. 1994;11(4):619–627. doi: 10.1111/j.1365-2958.1994.tb00341.x
  • Broz P, Monack DM. Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev. 2011;243(1):174–190. doi: 10.1111/j.1600-065X.2011.01041.x
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. doi: 10.1038/nri.2016.58
  • Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol. 2015;6:6 219. doi: 10.3389/fimmu.2015.00219
  • Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481(7381):278–286. doi: 10.1038/nature10759
  • Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–671.
  • Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665.
  • Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016;35(16):1766–1778.
  • Miao EA, Mao DP, Yudkovsky N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Nat Acad Sci. 2010;107(7):3076–3080.
  • Yang J, Zhao Y, Shi J, et al. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci, USA. 2013;110(35):14408–14413. doi: 10.1073/pnas.1306376110
  • Senerovic L, Tsunoda SP, Goosmann C, Brinkmann V, Zychlinsky A, Meissner F, et al. Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death Dis. 2012;3(9):e384.
  • Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–1153. doi: 10.1016/j.immuni.2013.05.016
  • Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–364. doi: 10.1038/s41422-019-0164-5
  • Guichon A, Zychlinsky A. Clinical isolates of Shigella species induce apoptosis in macrophages. J Infect Dis. 1997;175(2):470–473. doi: 10.1093/infdis/175.2.470
  • Watson JL, Sanchez-Garrido J, Goddard PJ, et al. Shigella sonnei O-antigen inhibits internalization, vacuole escape, and inflammasome activation. MBio. 2019;10(6):2654.
  • Raqib R, Ekberg C, Sharkar P, et al. Apoptosis in acute shigellosis is associated with increased production of Fas/Fas ligand, perforin, caspase-1, and caspase-3 but reduced production of bcl-2 and interleukin-2. Infect Immun. 2002;70(6):3199–3207.
  • Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A. Neutrophil elastase targets virulence factors of enterobacteria. Nature. 2002;417(6884):91–94. doi: 10.1038/417091a
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.
  • Mostowy S, Boucontet L, Mazon Moya M,J, et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLOS Pathogens. 2013;9(9):e1003588.
  • Sansonetti PJ, Van Nhieu GT, Égile C. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clinl Infect Dis. 1999;28(3):466–475. doi: 10.1086/515150
  • Mandic-Mulec I, Weiss J, Zychlinsky A. Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed. Infect Immun. 1997;65(1):110–115. doi: 10.1128/iai.65.1.110-115.1997
  • Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clinical Microbiology Reviews. 2008;21(1):134–156. doi: 10.1128/CMR.00032-07
  • François M, Le Cabec V, Dupont M, Sansonetti PJ, Maridonneau-Parini I, Tuomanen EI. Induction of necrosis in human neutrophils by Shigella flexneri requires type III secretion, IpaB and IpaC invasins, and actin polymerization. Infect Immun. 2000;68(3):1289–1296. doi: 10.1128/IAI.68.3.1289-1296.2000
  • Watarai M, Funato S, Sasakawa C. Interaction of ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med. 1996;183(3):991–999. doi: 10.1084/jem.183.3.991
  • Skoudy A, Mounier J, Aruffo A, et al. CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol. 2000;2(1):19–33.
  • Lafont F, Van Nhieu GT, Hanada K, et al. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44–IpaB interaction. EMBO J. 2002;21(17):4449–4457. doi: 10.1093/emboj/cdf457
  • Köhler H, Rodrigues SP, McCormick BA. Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun. 2002;70(3):1150–1158. doi: 10.1128/IAI.70.3.1150-1158.2002
  • Marteyn B, Gazi A, Sansonetti P. Shigella: a model of virulence regulation in vivo. Gut Microbes. 2012;3(2):104–120. doi: 10.4161/gmic.19325
  • Dickenson NE, Choudhari SP, Adam PR, Kramer RM, Joshi SB, Middaugh CR, et al. Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon. Protein Sci. 2013;22(5):614–627.
  • Russo BC, Stamm LM, Raaben M, et al. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol. 2016;1(4):16025.
  • Van Nhieu GT, Caron E, Hall A, et al. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 1999;18(12):3249–3262. doi: 10.1093/emboj/18.12.3249
  • DeMali KA, Jue AL, Burridge K. IpaA targets β1 integrins and rho to promote actin cytoskeleton rearrangements necessary for Shigella entry*. J Biol Chem. 2006;281(51):39534–39541. doi: 10.1074/jbc.M605939200
  • Mellouk N, Enninga J. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm. Front Cell Infect Microbiol. 2016;6:35. doi: 10.3389/fcimb.2016.00035
  • Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity. 2021;54(3):437–453. doi: 10.1016/j.immuni.2021.01.018
  • Keestra-Gounder A, Tsolis RM. NOD1 and NOD2: beyond peptidoglycan sensing. Trends Immunol. 2017;38(10):758–767. doi: 10.1016/j.it.2017.07.004
  • Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. Escape of intracellular Shigella from autophagy. Science. 2005;307(5710):727–731. doi: 10.1126/science.1106036
  • Campbell-Valois F, Sachse M, Sansonetti PJ, et al. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. MBio. 2015;6(3):10–1128. doi: 10.1128/mBio.02567-14
  • Pieper R, Fisher CR, Suh M, et al. Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun. 2013;81(12):4635–4648.
  • Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, et al. Activation of the Cdc42 effector N-Wasp by the Shigella flexneri Icsa protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Bio. 1999;146(6):1319–1332.
  • Fukumatsu M, Ogawa M, Arakawa S, Suzuki M, Nakayama K, Shimizu S, et al. Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host Microbe. 2012;11(4):325–336.
  • Weddle EA, Köseoğlu V,K, DeVasure BA, et al. The type three secretion system effector protein IpgB1 promotes Shigella flexneri cell-to-cell spread through double-membrane vacuole escape. PLOS Pathogens. 2022;18(2):e1010380. doi: 10.1371/journal.ppat.1010380
  • Caboni M, Pedron T, Rossi O, Goulding D, Pickard D, Citiulo F, Koehler TM, et al. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei. PLOS Pathogens. 2015;11(3):e1004749.
  • Ashida H, Suzuki T, Sasakawa C. Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Curr Opin Microbiol. 2021;59:1–7. doi: 10.1016/j.mib.2020.07.007
  • Faherty CS, Merrell DS, Semino-Mora C, Dubois A, Ramaswamy AV, Maurelli AT. Microarray analysis of Shigella flexneri-infected epithelial cells identifies host factors important for apoptosis inhibition. BMC Genomics. 2010;11(1):1–18. doi: 10.1186/1471-2164-11-272
  • Clark CS, Maurelli AT. Shigella flexneri inhibits staurosporine-induced apoptosis in epithelial cells. Infect Immun. 2007;75(5):2531–2539. doi: 10.1128/IAI.01866-06
  • Pendaries C, Tronchère H, Arbibe L, et al. PtdIns (5) P activates the host cell PI3‐kinase/Akt pathway during Shigella flexneri infection. EMBO J. 2006;25(5):1024–1034.
  • Bergounioux J, Elisee R, Prunier A, et al. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe. 2012;11(3):240–252.
  • Faherty CS, Maurelli AT. Spa15 of Shigella flexneri is secreted through the type III secretion system and prevents staurosporine-induced apoptosis. Infect Immun. 2009;77(12):5281–5290. doi: 10.1128/IAI.00800-09
  • Carneiro LAM, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe. 2009;5(2):123–136.
  • Paciello I, Silipo A, Lembo-Fazio L, et al. Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proceedings of the National Academy of Sciences. 2013;110(46):E4345–E4354.
  • Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. Structurally distinct bacterial TBC-like GAPs link arf GTPase to Rab1 inactivation to counteract host defenses. Cell. 2012;150(5):1029–1041. doi: 10.1016/j.cell.2012.06.050
  • Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, et al. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe. 2013;13(5):570–583.
  • Mounier J, Boncompain G, Senerovic L, Lagache T, Chrétien F, Perez F, et al. Shigella effector IpaB-induced cholesterol relocation disrupts the golgi complex and recycling network to inhibit host cell secretion. Cell Host Microbe. 2012;12(3):381–389.
  • Burnaevskiy N, Fox TG, Plymire DA, Ertelt JM, Weigele BA, Selyunin AS, et al. Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature. 2013;496(7443):106–109.
  • Burnaevskiy N, Peng T, Reddick LE, Hang HC, Alto NM. Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Molecular Cell. 2015;58(1):110–122. doi: 10.1016/j.molcel.2015.01.040
  • Krachler AM, Ham H, Orth K. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by Gram-negative pathogens. Proc Nat Acad Sci. 2011;108(28):11614–11619. doi: 10.1073/pnas.1102360108
  • Pope LM, Reed KE, Payne SM. Increased protein secretion and adherence to HeLa cells by Shigella spp. following growth in the presence of bile salts. Infect Immun. 1995;63(9):3642–3648. doi: 10.1128/iai.63.9.3642-3648.1995
  • Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev. 2008;32(4):627–653.
  • Whitfield C, Wear SS, Sande C. Assembly of bacterial capsular polysaccharides and exopolysaccharides. Annu Rev Microbiol. 2020;74(1):521–543. doi: 10.1146/annurev-micro-011420-075607
  • Sandlin RC, Lampel KA, Keasler SP, et al. Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun. 1995;63(1):229–237. doi: 10.1128/iai.63.1.229-237.1995
  • Hong M, Payne SM. Effect of mutations in Shigella flexneri chromosomal and plasmid‐encoded lipopolysaccharide genes on invasion and serum resistance. Mol Microbiol. 1997;24(4):779–791.
  • West NP, Sansonetti P, Mounier J, Exley RM, Parsot C, Guadagnini S, et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science. 2005;307(5713):1313–1317.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
  • Sana TG, Lugo KA, Monack DM. T6SS: the bacterial“fight club” in the host gut. PLOS Pathogens. 2017;13(6):e1006325.
  • Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6(1):23080. doi: 10.1038/srep23080
  • Chen C, Yang X, Shen X. Confirmed and potential roles of bacterial T6SSs in the intestinal ecosystem. Front Microbiol. 2019;10:1484. doi: 10.3389/fmicb.2019.01484
  • Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ. Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy. Cell Host Microbe. 2017;21(6):769–776. doi: 10.1016/j.chom.2017.05.004
  • Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 2002;84(5–6):357–364. doi: 10.1016/S0300-9084(02)01421-9
  • Cascales E, Buchanan SK, Duché D, et al. Colicin biology. Microbiol Mol Biol Rev. 2007;71(1):158–229.
  • De Silva PM, Bennett RJ, Kuhn L, et al. Escherichia Coli killing by epidemiologically successful sublineages of Shigella sonnei is mediated by Colicins. EBioMedicine. 2023;97:104822. doi: 10.2139/SSRN.4318406
  • MacLennan CA, Grow S, Ma L, Steele AD. The Shigella vaccines pipeline. Vaccines. 2022;10(9):1376. doi: 10.3390/vaccines10091376
  • World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. https://apps.who.int/iris/handle/10665/43252.
  • Centers for Disease Control and Prevention. Shigella - shigellosis. Information for healthcare professionals. https://www.cdc.gov/shigella/audience-medical-professionals.html.
  • Rashid H, Rahman M. Possible transfer of plasmid mediated third generation cephalosporin resistance between Escherichia coli and Shigella sonnei in the human gut. Infect Genet Evol. 2015;30:15–18. doi: 10.1016/j.meegid.2014.11.023
  • Puzari M, Sharma M, Chetia P. Emergence of antibiotic resistant Shigella species: a matter of concern. J Infect Public Health. 2018;11(4):451–454. doi: 10.1016/j.jiph.2017.09.025
  • Gaudreau C, Bernaquez I, Pilon PA, et al. Clinical and genomic investigation of an International ceftriaxone- and azithromycin-resistant Shigella sonnei cluster among men who have sex with men, Montréal, Canada 2017–2019. Microbiol Spectr. 2022;10(3):2337. doi: 10.1128/spectrum.02337-21
  • Mason LCE, Greig DR, Cowley LA, Partridge SR, Martinez E, Blackwell GA, et al. The evolution and international spread of extensively drug resistant Shigella sonnei. Nat Commun. 2023;14(1):1983.
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  • Centers for Disease Control and Prevention. 2019. AR Threats report. https://www.cdc.gov/drugresistance/Biggest-Threats.html.
  • Thanh Duy P, Thi Nguyen TN, Vu Thuy D, et al. Commensal Escherichia coli are a reservoir for the transfer of XDR plasmids into epidemic fluoroquinolone-resistant Shigella sonnei. Nat Microbiol. 2020;5(2):256–264.
  • Gu B, Qin T, Fan W, Bi R, Chen Y, Li Y, et al. Novel mutations in gyrA and parC among Shigella sonnei strains from Jiangsu Province of China, 2002-2011. Inter J Infect Dis. 2017;59:44–49. doi: 10.1016/j.ijid.2017.03.023
  • Baker S, Scott TA. Antimicrobial-resistant Shigella: where do we go next? Nat Rev Microbiol. 2023;21(7):1–2. doi: 10.1038/s41579-023-00906-1
  • Centers for Disease Control and Prevention, (CDC). Increase in extensively drug-resistant shigellosis in the United States. https://emergency.cdc.gov/han/2023/pdf/CDC_HAN_486.pdf