392
Views
0
CrossRef citations to date
0
Altmetric
Review article

Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2351234 | Received 26 Jul 2023, Accepted 27 Apr 2024, Published online: 21 May 2024

References

  • Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen. Chlamydia pneumoniae strain TWAR J Infect Dis. 1990;161(4):618–14. doi: 10.1093/infdis/161.4.618
  • Taylor HR, Burton MJ, Haddad D, et al. Trachoma. Lancet. 2014;384(9960):2142–2152. doi: 10.1016/S0140-6736(13)62182-0
  • Oakeshott P, Kerry S, Aghaizu A, et al. Randomised controlled trial of screening for chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. BMJ. 2010;340(apr08 1):c1642–c1642. doi: 10.1136/bmj.c1642
  • Price MJ, Ades AE, Welton NJ, et al. How much tubal factor infertility is caused by Chlamydia? Estimates based on serological evidence corrected for sensitivity and specificity. Sex Transm Dis. 2012;39(8):608–613. doi: 10.1097/OLQ.0b013e3182572475
  • Malhotra M, Sood S, Mukherjee A, et al. Genital chlamydia trachomatis: an update. Indian J Med Res. 2013;138(3):303–316.
  • Buckner LR, Amedee AM, Albritton HL, et al. Chlamydia trachomatis infection of endocervical epithelial cells enhances early HIV transmission events. PLoS One. 2016;11(1):e0146663. doi: 10.1371/journal.pone.0146663
  • Rother M, Gonzalez E, Teixeira da Costa AR, et al. Combined human genome-wide RNAi and metabolite analyses identify IMPDH as a host- directed target against chlamydia infection. Cell Host Microbe. 2018;23(5):661–671.e8. doi: 10.1016/j.chom.2018.04.002
  • Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol. 2016;14(6):385–400. doi: 10.1038/nrmicro.2016.30
  • Dong F, Su H, Huang Y, et al. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect Immun. 2004;72(7):3863–3868. doi: 10.1128/IAI.72.7.3863-3868.2004
  • Li Z, Chen D, Zhong Y, et al. The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun. 2008;76(8):3415–3428. doi: 10.1128/IAI.01377-07
  • Prasai B, Haber GJ, Strub MP, et al. The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells. Nat Commun. 2021;12(1):3970. doi: 10.1038/s41467-021-24167-9
  • Schnettger L, Rodgers A, Repnik U, et al. A Rab20- dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity. Cell Host Microbe. 2017;21(5):619–628.e5. doi: 10.1016/j.chom.2017.04.004
  • Marsman M, Jordens I, Kuijl C, et al. Dynein-mediated vesicle transport controls intracellular salmonella replication. Mol Biol Cell. 2004;15(6):2954–2964. doi: 10.1091/mbc.e03-08-0614
  • Allgood SC, Romero DueñDueñAs BP, Noll RR, et al. Legionella effector AnkX disrupts host cell endocytic recycling in a phosphocholination-dependent manner. Front Cell Infect Microbiol. 2017;7:397. doi: 10.3389/fcimb.2017.00397
  • Hutagalung AH, Novick PJ. Role of rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–149. doi: 10.1152/physrev.00059.2009
  • Rai A, Goody RS, Müller MP. Multivalency in Rab effector interactions. Small GTPases. 2019;10(1):40–46. doi: 10.1080/21541248.2016.1265700
  • Stephens RS, Kalman S, Lammel C, et al. Genome sequence of an obligate intracellular pathogen of humans: chlamydia trachomatis. Science. 1998;282(5389):754–759. doi: 10.1126/science.282.5389.754
  • Moran NA. Microbial minimalism: genome reduction in bacterial pathogens. Cell. 2002;108(5):583–586. doi: 10.1016/S0092-8674(02)00665-7
  • Chatterjee R, Chowdhury AR, Mukherjee D, et al. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence. 2021;12(1):195–216. doi: 10.1080/21505594.2020.1869441
  • Faris R, Merling M, Andersen SE, et al. Chlamydia trachomatis CT229 subverts Rab GTPase-dependent CCV trafficking pathways to promote chlamydial infection. Cell Rep. 2019;26(12):3380–3390.e5. doi: 10.1016/j.celrep.2019.02.079
  • Hatch ND, Ouellette SP, Roy CR. Inhibition of tRNA synthetases induces persistence in Chlamydia. Infect Immun. 2020;88(4):e00943–19. doi: 10.1128/IAI.00943-19
  • Pokorzynski ND, Thompson CC, Carabeo RA. Ironing out the unconventional mechanisms of iron acquisition and gene regulation in chlamydia. Front Cell Infect Microbiol. 2017;7:394. doi: 10.3389/fcimb.2017.00394
  • Saka HA, Thompson JW, Chen YS, et al. Quantitative proteomics reveals metabolic and pathogenic properties of chlamydia trachomatis developmental forms. Mol Microbiol. 2011;82(5):1185–1203. doi: 10.1111/j.1365-2958.2011.07877.x
  • Rajeeve K, Vollmuth N, Janaki-Raman S, et al. Reprogramming of host glutamine metabolism during chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nat Microbiol. 2020;5(11):1390–1402. doi: 10.1038/s41564-020-0762-5
  • Fischer A, Rudel T. Subversion of cell-autonomous host defense by Chlamydia infection. Curr Top Microbiol Immunol. 2018;412:81–106.
  • Bastidas RJ, Elwell CA, Engel JN, et al. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med. 2013;3(5):a010256. doi: 10.1101/cshperspect.a010256
  • Olive AJ, Haff MG, Emanuele MJ, et al. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microbe. 2014;15(1):113–124. doi: 10.1016/j.chom.2013.12.009
  • Zadora PK, Chumduri C, Imami K, et al. Integrated phosphoproteome and transcriptome analysis reveals Chlamydia-induced epithelial-to-mesenchymal transition in Host cells. Cell Rep. 2019;26(5):1286–1302.e8. doi: 10.1016/j.celrep.2019.01.006
  • Jensen KT, Petersen L, Falk S, et al. Novel overlapping coding sequences in chlamydia trachomatis. FEMS Microbiol Lett. 2006;265(1):106–117. doi: 10.1111/j.1574-6968.2006.00480.x
  • Lei L, Yang C, Patton MJ, et al. A chlamydial plasmid-dependent secretion system for the delivery of virulence factors to the host cytosol. MBio. 2021;12(3):e0117921. doi: 10.1128/mBio.01179-21
  • Rucks EA. Type III secretion in Chlamydia. Microbiol Mol Biol Rev. 2023;87(3):e0003423. doi: 10.1128/mmbr.00034-23
  • Betts-Hampikian HJ, Fields KA. The chlamydial type III secretion mechanism: revealing cracks in a tough nut. Front Microbiol. 2010;1:114. doi: 10.3389/fmicb.2010.00114
  • Zhong G. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol. 2011;2:14. doi: 10.3389/fmicb.2011.00014
  • Siegl C, Prusty BK, Karunakaran K, et al. Tumor suppressor p53 alters host cell metabolism to limit chlamydia trachomatis infection. Cell Rep. 2014;9(3):918–929. doi: 10.1016/j.celrep.2014.10.004
  • Nans A, Kudryashev M, Saibil HR, et al. Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat Commun. 2015;6(1):10114. doi: 10.1038/ncomms10114
  • Faris R, McCullough A, Andersen SE, et al. The chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion. PLOS Pathog. 2020;16(9):e1008878. doi: 10.1371/journal.ppat.1008878
  • George Z, Omosun Y, Azenabor AA, et al. The molecular mechanism of induction of unfolded protein response by chlamydia. Biochem Biophys Res Commun. 2019;508(2):421–429. doi: 10.1016/j.bbrc.2018.11.034
  • Moore ER, Ouellette SP. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Front Cell Infect Microbiol. 2014;4:157. doi: 10.3389/fcimb.2014.00157
  • Meier K, Jachmann LH, Türköz G, et al. The chlamydia effector CpoS modulates the inclusion microenvironment and restricts the interferon response by acting on Rab35. MBio. 2023;14(4):e0319022. doi: 10.1128/mbio.03190-22
  • Luís MP, Pereira IS, Bugalhão JN, et al. The chlamydia trachomatis IncM protein interferes with host cell cytokinesis, centrosome positioning, and Golgi distribution and contributes to the stability of the pathogen-containing vacuole. Infect Immun. 2023;91(4):e0040522. doi: 10.1128/iai.00405-22
  • Almeida F, Luís MP, Pereira IS, et al. The human centrosomal protein CCDC146 binds chlamydia trachomatis inclusion membrane protein CT288 and is recruited to the periphery of the chlamydia-containing vacuole. Front Cell Infect Microbiol. 2018;8:254. doi: 10.3389/fcimb.2018.00254
  • Banhart S, Schafer EK, Gensch JM, et al. Sphingolipid metabolism and transport in chlamydia trachomatis and chlamydia psittaci infections. Front Cell Dev Biol. 2019;7:223. doi: 10.3389/fcell.2019.00223
  • Tang T, Wu H, Chen X, et al. The hypothetical inclusion membrane protein CPSIT_0846 regulates mitochondrial-mediated host cell apoptosis via the ERK/JNK signaling pathway. Front Cell Infect Microbiol. 2021;11:607422. doi: 10.3389/fcimb.2021.607422
  • Beatty WL. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of chlamydia trachomatis. J Cell Sci. 2006;119(Pt 2):350–359. doi: 10.1242/jcs.02733
  • Beatty WL. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun. 2008;76(7):2872–2881. doi: 10.1128/IAI.00129-08
  • González-Méndez L, Gradilla AC, Sánchez-Hernández D, et al. Polarized sorting of patched enables cytoneme-mediated hedgehog reception in the drosophila wing disc. Embo J. 2020;39(11):e103629. doi: 10.15252/embj.2019103629
  • Ismail SA, Vetter IR, Sot B, et al. The structure of an arf-ArfGAP complex reveals a Ca2+ regulatory mechanism. Cell. 2010;141(5):812–821. doi: 10.1016/j.cell.2010.03.051
  • Cortes C, Rzomp KA, Tvinnereim A, et al. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect Immun. 2007;75(12):5586–5596. doi: 10.1128/IAI.01020-07
  • Hyvola N, Diao A, McKenzie E, et al. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. Embo J. 2006;25(16):3750–3761. doi: 10.1038/sj.emboj.7601274
  • Yamamoto H, Koga H, Katoh Y, et al. Functional cross-talk between Rab14 and Rab4 through a dual effector, RUFY1/Rabip4. Mol Biol Cell. 2010;21(15):2746–2755. doi: 10.1091/mbc.e10-01-0074
  • Hamaoui D, Cosse MM, Mohan J, et al. The Chlamydia effector CT622/TaiP targets a nonautophagy related function of ATG16L1. Proc Natl Acad Sci U S A. 2020;117(43):26784–26794. doi: 10.1073/pnas.2005389117
  • Rejman Lipinski A, Heymann J, Meissner C, et al. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent golgi fragmentation. PLOS Pathog. 2009;5(10):e1000615. doi: 10.1371/journal.ppat.1000615
  • Moorhead AR, Rzomp KA, Scidmore MA. The Rab6 effector bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner. Infect Immun. 2007;75(2):781–791. doi: 10.1128/IAI.01447-06
  • Leiva N, Capmany A, Damiani MT. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication. Cell Microbiol. 2013;15(1):114–129. doi: 10.1111/cmi.12035
  • Capmany A, Gambarte Tudela J, Alonso Bivou M, et al. Akt/AS160 signaling pathway inhibition impairs infection by decreasing Rab14-controlled sphingolipids delivery to chlamydial inclusions. Front Microbiol. 2019;10:666. doi: 10.3389/fmicb.2019.00666
  • Molleken K, Hegemann JH, Coombes BK. Acquisition of Rab11 and Rab11-Fip2 – A novel strategy for chlamydia pneumoniae early survival. PLOS Pathog. 2017;13(8):e1006556. doi: 10.1371/journal.ppat.1006556
  • Gambarte Tudela J, Buonfigli J, Lujan A, et al. Rab39a and Rab39b display different intracellular distribution and function in sphingolipids and phospholipids transport. Int J Mol Sci. 2019;20(7):1688. doi: 10.3390/ijms20071688
  • Wesolowski J, Weber MM, Nawrotek A, et al. Chlamydia hijacks ARF GTPases to coordinate microtubule posttranslational modifications and Golgi complex positioning. MBio. 2017;8(3):e02280–16. doi: 10.1128/mBio.02280-16
  • Elwell CA, Jiang S, Kim JH, et al. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLOS Pathog. 2011;7(9):e1002198. doi: 10.1371/journal.ppat.1002198
  • Bui DC, Jorgenson LM, Ouellette SP, et al. Eukaryotic SNARE VAMP3 dynamically interacts with multiple chlamydial inclusion membrane proteins. Infect Immun. 2021;89(2):e00409–20. doi: 10.1128/IAI.00409-20
  • Kabeiseman EJ, Cichos K, Hackstadt T, et al. Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion. Infect Immun. 2013;81(9):3326–3337. doi: 10.1128/IAI.00584-13
  • Monteiro-Bras T, Wesolowski J, Paumet F. Depletion of SNAP-23 and Syntaxin 4 alters lipid droplet homeostasis during chlamydia infection. Microb Cell. 2019;7(2):46–58. doi: 10.15698/mic2020.02.707
  • Paul B, Kim HS, Kerr MC, et al. Structural basis for the hijacking of endosomal sorting nexin proteins by chlamydia trachomatis. Elife. 2017;6:e22311. doi: 10.7554/eLife.22311
  • Elwell CA, Czudnochowski N, von Dollen J, et al. Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. Elife. 2017;6:e22709. doi: 10.7554/eLife.22709
  • Derre I, Swiss R, Agaisse H, et al. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLOS Pathog. 2011;7(6):e1002092. doi: 10.1371/journal.ppat.1002092
  • Li B, Dong X, Zhao R, et al. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in fusarium graminearum. PLOS Pathog. 2019;15(5):e1007754. doi: 10.1371/journal.ppat.1007754
  • Bisio H, Chaabene RB, Sabitzki R, et al. The ZIP code of vesicle trafficking in apicomplexa: SEC1/Munc18 and SNARE proteins. MBio. 2020;11(5):e02092–20. doi: 10.1128/mBio.02092-20
  • Li B, Gao Y, Mao HY, et al. The SNARE protein FolVam7 mediates intracellular trafficking to regulate conidiogenesis and pathogenicity in Fusarium oxysporum. lycopersici Environ Microbiol. 2019;21(8):2696–2706. doi: 10.1111/1462-2920.14585
  • Weber MM, Noriea NF, Bauler LD, et al. A functional core of IncA is required for chlamydia trachomatis inclusion fusion. J Bacteriol. 2016;198(8):1347–1355. doi: 10.1128/JB.00933-15
  • Cingolani G, McCauley M, Lobley A, et al. Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA. Nat Commun. 2019;10(1):2747. doi: 10.1038/s41467-019-10806-9
  • Ronzone E, Wesolowski J, Bauler LD, et al. An alpha-helical core encodes the dual functions of the chlamydial protein IncA. J Biol Chem. 2014;289(48):33469–33480. doi: 10.1074/jbc.M114.592063
  • Hanada K. Intracellular trafficking of ceramide by ceramide transfer protein. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(4):426–437. doi: 10.2183/pjab.86.426
  • Mehlitz A, Eylert E, Huber C, et al. Metabolic adaptation of chlamydia trachomatis to mammalian host cells. Mol Microbiol. 2017;103(6):1004–1019. doi: 10.1111/mmi.13603
  • Saka HA, Valdivia RH. Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Curr Opin Microbiol. 2010;13(1):4–10. doi: 10.1016/j.mib.2009.11.002
  • Wolf K, Hackstadt T. Sphingomyelin trafficking in chlamydia pneumoniae-infected cells. Cell Microbiol. 2001;3(3):145–152. doi: 10.1046/j.1462-5822.2001.00098.x
  • Moore ER, Fischer ER, Mead DJ, et al. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic. 2008;9(12):2130–2140. doi: 10.1111/j.1600-0854.2008.00828.x
  • Heuer D, Rejman Lipinski A, Machuy N, et al. Chlamydia causes fragmentation of the golgi compartment to ensure reproduction. Nature. 2009;457(7230):731–735. doi: 10.1038/nature07578
  • Carabeo RA, Mead DJ, Hackstadt T. Golgi-dependent transport of cholesterol to the chlamydia trachomatis inclusion. Proc Natl Acad Sci USA. 2003;100(11):6771–6776. doi: 10.1073/pnas.1131289100
  • Hackstadt T, Rockey DD, Heinzen RA, et al. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the golgi apparatus to the plasma membrane. Embo J. 1996;15(5):964–977. doi: 10.1002/j.1460-2075.1996.tb00433.x
  • Moore ER, Mead DJ, Dooley CA, et al. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Microbiology (Reading). 2011;157(Pt 3):830–838. doi: 10.1099/mic.0.045856-0
  • Lucas AL, Ouellette SP, Kabeiseman EJ, et al. The trans-Golgi SNARE syntaxin 10 is required for optimal development of chlamydia trachomatis. Front Cell Infect Microbiol. 2015;5:68. doi: 10.3389/fcimb.2015.00068
  • Brumm S, Singh MK, Nielsen ME, et al. Coordinated activation of ARF1 GTPases by ARF-GEF GNOM dimers is essential for vesicle trafficking in arabidopsis. Plant Cell. 2020;32(8):2491–2507. doi: 10.1105/tpc.20.00240
  • Xue S, Zou J, Liu Y, et al. Involvement of BIG5 and BIG3 in BRI1 trafficking reveals diverse functions of BIG-subfamily ARF-GEFs in plant growth and gravitropism. Int J Mol Sci. 2019;20(9):2339. doi: 10.3390/ijms20092339
  • Fisher S, Kuna D, Caspary T, et al. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol. 2020;319(2):C404–C418. doi: 10.1152/ajpcell.00188.2020
  • Dumoux M, Menny A, Delacour D, et al. A chlamydia effector recruits CEP170 to reprogram host microtubule organization. J Cell Sci. 2015;128(18):3420–3434. doi: 10.1242/jcs.169318
  • Kokes M, Dunn JD, Granek JA, et al. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of chlamydia. Cell Host Microbe. 2015;17(5):716–725. doi: 10.1016/j.chom.2015.03.014
  • Haines A, Wesolowski J, Ryan NM, et al. Cross talk between ARF1 and RhoA coordinates the formation of cytoskeletal scaffolds during chlamydia infection. MBio. 2021;12(6):e0239721. doi: 10.1128/mBio.02397-21
  • Li G, Marlin MC. Rab family of GTPases. Methods Mol Biol. 2015;1298:1–15.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–525. doi: 10.1038/nrm2728
  • Pfeffer SR, Kellogg D. Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell. 2017;28(6):712–715. doi: 10.1091/mbc.e16-10-0737
  • Gambarte Tudela J, Capmany A, Romao M, et al. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions. J Cell Sci. 2015;128(16):3068–3081. doi: 10.1242/jcs.170092
  • Capmany A, Damiani MT, Valdivia RH. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PLoS One. 2010;5(11):e14084. doi: 10.1371/journal.pone.0014084
  • Rzomp KA, Scholtes LD, Briggs BJ, et al. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun. 2003;71(10):5855–5870. doi: 10.1128/IAI.71.10.5855-5870.2003
  • Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in chlamydia trachomatis. Elife. 2019;8:e42295. doi: 10.7554/eLife.42295
  • Ouellette SP, Carabeo RA. A functional slow recycling pathway of transferrin is required for growth of chlamydia. Front Microbiol. 2010;1:112. doi: 10.3389/fmicb.2010.00112
  • Boada-Romero E, Letek M, Fleischer A, et al. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. Embo J. 2013;32(4):566–582. doi: 10.1038/emboj.2013.8
  • Zheng Q, Zheng X, Zhang L, et al. The neuron-specific protein TMEM59L mediates oxidative stress-induced cell death. Mol Neurobiol. 2017;54(6):4189–4200. doi: 10.1007/s12035-016-9997-9
  • Bonifacino JS, Hurley JH. Retromer. Curr Opin Cell Biol. 2008;20(4):427–436. doi: 10.1016/j.ceb.2008.03.009
  • Li C, Shah SZ, Zhao D, et al. Role of the retromer complex in neurodegenerative diseases. Front Aging Neurosci. 2016;8:42. doi: 10.3389/fnagi.2016.00042
  • Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes – machineries and regulation. J Cell Sci. 2016;129(21):3971–3982. doi: 10.1242/jcs.185702
  • Mirrashidi KM, Elwell CA, Verschueren E, et al. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe. 2015;18(1):109–121. doi: 10.1016/j.chom.2015.06.004
  • Sun Q, Yong X, Sun X, et al. Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE. Signal Transduct Target Ther. 2017;2(1):17030. doi: 10.1038/sigtrans.2017.30
  • Capmany A, Leiva N, Damiani MT. Golgi-associated Rab14, a new regulator for chlamydia trachomatis infection outcome. Commun Integr Biol. 2011;4(5):590–593. doi: 10.4161/cib.16594
  • Pruneda JN, Bastidas RJ, Bertsoulaki E, et al. A Chlamydia effector combining deubiquitination and acetylation activities induces golgi fragmentation. Nat Microbiol. 2018;3(12):1377–1384. doi: 10.1038/s41564-018-0271-y
  • Campanacci V, Urvoas A, Cantos-Fernandes S, et al. Insight into microtubule nucleation from tubulin-capping proteins. Proc Natl Acad Sci USA. 2019;116(20):9859–9864. doi: 10.1073/pnas.1813559116
  • Miinea CP, Sano H, Kane S, et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional rab GTPase-activating protein domain. Biochem J. 2005;391(Pt 1):87–93. doi: 10.1042/BJ20050887
  • Huang X, Tan J, Chen X, et al. Akt phosphorylation influences persistent chlamydial infection and Chlamydia-induced Golgi fragmentation without involving Rab14. Front Cell Infect Microbiol. 2021;11:675890. doi: 10.3389/fcimb.2021.675890