385
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pathogenicity and virulence of O’nyong-nyong virus: A less studied Togaviridae with pandemic potential

ORCID Icon, & ORCID Icon
Article: 2355201 | Received 21 Dec 2023, Accepted 10 May 2024, Published online: 26 May 2024

References

  • Kading RC, Brault AC, Beckham JD. Global perspectives on arbovirus outbreaks: a 2020 snapshot. TropicalMed. 2020;5(3):142. doi: 10.3390/tropicalmed5030142
  • Girard M, Nelson CB, Picot V. Arboviruses: a global public health threat. Vaccine. 2020;38(24):3989–17.
  • Koerich LB, Sant’anna MRV, Huits R. Recent technological advances and strategies for arbovirus vector control. Trop Med Infect Dis. 2022;7(9):204.
  • Grandadam M, Caro V, Plumet S. Chikungunya virus, southeastern France. Emerg Infect Dis. 2011;17(5):910–913.
  • Rezza G, Nicoletti L, Angelini R. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370(9602):1840–1846.
  • Balakrishnan VS. WHO launches global initiative for arboviral diseases. Lancet Microbe. 2022;3(6):e407.
  • WHO. 2022. Global distribution of Chikungunya virus. from https://www.who.int/health-topics/chikungunya
  • Liu-Helmersson J, Brannstrom A, Sewe MO. Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti under climate change scenarios. Front Public Health. 2019;7:148.
  • Gorris ME, Bartlow AW, Temple SD. Updated distribution maps of predominant culex mosquitoes across the Americas. Parasites Vectors. 2021;14(1):547.
  • Carlson CJ, Bannon E, Mendenhall E. Rapid range shifts in African anopheles mosquitoes over the last century. Biol Lett. 2023;19(2):20220365.
  • Powers AM, Brault AC, Shirako Y. Evolutionary relationships and systematics of the alphaviruses. J Virol. 2001;75(21):10118–10131.
  • Levi LI, Vignuzzi M. Arthritogenic alphaviruses: a worldwide emerging threat? Microorganisms. 2019;7(5):133.
  • Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58(3):491–562.
  • Haddow AJ, Davies C, Walker A. O’nyong-nyong fever: an epidemic virus disease in East Africa. I. Introduction. Trans R Soc Trop Med. 1960;54(6):517–522. doi:10.1016/0035-9203(60)90025-0
  • Cottis S, Blisnick AA, Failloux AB. Determinants of Chikungunya and O’nyong-Nyong virus specificity for infection of Aedes and Anopheles mosquito Vectors. Viruses. 2023;15(3):589.
  • Bowen ET, Simpson DI, Platt GS. Large scale irrigation and arbovirus epidemiology, Kano Plain, Kenya. II. Preliminary serological survey. Trans R Soc Trop Med Hyg. 1973;67(5):702–709.
  • Woodruff AW, Bowen ET, Platt GS. Viral infections in travellers from tropical Africa. Br Med J. 1978;1(6118):956–958.
  • Lhuillier M, Cunin P, Mazzariol M. Epidémie rurale à virus «Igbo Ora»(avec transmission inter-humaine) en Côte-d’Ivoire en 1984-1985. Bulletin de la Société de pathologie exotique. 1988;81(3):386–395.
  • Sanders EJ, Rwaguma EB, Kawamata J. O’nyong-nyong fever in south-central Uganda, 1996–1997: description of the epidemic and results of a household-based seroprevalence survey. J Infect Dis. 1999;180(5):1436–1443.
  • Posey DL, O’Rourke T, Roehrig JT. O’Nyong-nyong fever in West Africa. Am J Trop Med Hyg. 2005;73(1):32.
  • Bessaud M, Peyrefitte CN, Pastorino BA. O’nyong-nyong virus, chad. Emerg Infect Dis. 2006;12(8):1248–1250.
  • LaBeaud AD, Banda T, Brichard J. High rates of O’nyong nyong and Chikungunya virus transmission in coastal Kenya. PLOS Negl Trop Dis. 2015;9(2):e0003436.
  • Hoze N, Diarra I, Sangare AK. Model-based assessment of Chikungunya and O’nyong-nyong virus circulation in Mali in a serological cross-reactivity context. Nat Commun. 2021;12(1):6735.
  • Masika MM, Korhonen EM, Smura T. Serological evidence of exposure to o'nyong-nyong and chikungunya viruses in febrile patients of rural Taita-Taveta county and Urban Kibera informal settlement in Nairobi, Kenya. Viruses. 2022;14(6):1286.
  • Pezzi L, LaBeaud A, Reusken C. GloPID-R report on chikungunya, O’nyong-nyong and Mayaro virus, part 2: epidemiological distribution of o’nyong-nyong virus. Antiviral Res. 2019;172:104611.
  • Clements TL, Rossi CA, Irish AK, et al. Chikungunya and O’nyong-nyong viruses in Uganda: implications for diagnostics. 2019 Jan 3;6(3):ofz001. doi:10.1093/ofid/ofz001. PMID: 31660384; PMCID: PMC6411207.
  • Williams M, Woodall J, Corbet PS. O’nyong-nyong fever: an epidemic virus disease in East Africa. VIII. virus isolations from anopheles mosquitoes. Trans R Soc Trop Med. 1965;59(3):300–306.
  • Guerra CA, Gikandi PW, Tatem AJ, et al. The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLOS Med. 2008;5(2):e38.
  • Torres-Ruesta A, Teo TH, Chan YH. Malaria abrogates O’nyong-nyong virus pathologies by restricting virus infection in nonimmune cells. Life Sci Alliance. 2022;5(4):e202101272.
  • Mala W, Wilairatana P, Kotepui KU. Prevalence of malaria and chikungunya co-Infection in febrile patients: a systematic review and meta-analysis. Trop Med Infect Dis. 2021;6(3):119.
  • Teo TH, Lum FM, Ghaffar K. Plasmodium co-infection protects against chikungunya virus-induced pathologies. Nat Commun. 2018;9(1):3905.
  • De Zulueta J, Woodall JP, Cullen JR. An observation on the possible effect of O’Nyong-nyong fever on malaria. Bull World Health Organ. 1962;26(1):135–139.
  • Tappe D, Kapaun A, Emmerich P. O’nyong-nyong virus infection imported to Europe from Kenya by a traveler. Emerg Infect Dis. 2014;20(10):1766–1767.
  • Tsetsarkin KA, Vanlandingham DL, McGee CE, et al. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog. 2007;3(12):e201.
  • Afrane YA, Githeko AK, Yan G. The ecology of anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann NY Acad Sci. 2012;1249(1):204–210.
  • Mutsaers M, Engdahl CS, Wilkman L. Vector competence of Anopheles stephensi for O’nyong-nyong virus: a risk for global virus spread. Parasites Vectors. 2023;16(1):133.
  • Lanciotti RS, Ludwig ML, Rwaguma EB. Emergence of epidemic O’nyong-nyong fever in Uganda after a 35-year absence: genetic characterization of the virus. Virology. 1998;252(1):258–268.
  • Diagne CT, Bengue M, Choumet V. Mayaro virus pathogenesis and transmission mechanisms. Pathogens. 2020;9(9):738.
  • Diallo D, Fall G, Diagne CT. Concurrent amplification of Zika, Chikungunya, and Yellow fever virus in a sylvatic focus of arboviruses in Southeastern Senegal, 2015. BMC Microbiol. 2020;20(1):181.
  • Matusali G, Colavita F, Bordi L. Tropism of the chikungunya virus. Viruses. 2019;11(2):175.
  • Brault AC, Foy BD, Myles KM. Infection patterns of O’nyong nyong virus in the malaria-transmitting mosquito, anopheles gambiae. Insect Mol Biol. 2004;13(6):625–635.
  • Saxton-Shaw KD, Ledermann JP, Borland EM. O’nyong nyong virus molecular determinants of unique vector specificity reside in non-structural protein 3. PLOS Negl Trop Dis. 2013;7(1):e1931.
  • Brustolin M, Pujhari S, Henderson CA. Anopheles mosquitoes may drive invasion and transmission of Mayaro virus across geographically diverse regions. PLOS Negl Trop Dis. 2018;12(11):e0006895.
  • Vanlandingham DL, Hong C, Klingler K. Differential infectivities of o’nyong-nyong and chikungunya virus isolates in anopheles gambiae and Aedes aegypti mosquitoes. Am J Trop Med Hyg. 2005;72(5):616–621.
  • Vanlandingham DL, Tsetsarkin K, Klingler KA. Determinants of vector specificity of O’nyong nyong and Chikungunya viruses in anopheles and Aedes mosquitoes. Am J Trop Med Hyg. 2006;74(4):663–669.
  • Götte B, Liu L, McInerney GM. The enigmatic alphavirus non-structural protein 3 (nsP3) revealing its secrets at last. Viruses. 2018;10(3):105.
  • Levinson RS, Strauss JH, Strauss EG. Complete sequence of the genomic RNA of O’nyong-nyong virus and its use in the construction of alphavirus phylogenetic trees. Virology. 1990;175(1):110–123.
  • Powers AM, Brault AC, Tesh RB. Re-emergence of chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81(Pt 2):471–479.
  • Ashbrook AW, Burrack KS, Silva LA. Residue 82 of the Chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J Virol. 2014;88(21):12180–12192.
  • Earnest, J. T., Basore, K., Roy, V., Bailey, A. L., Wang, D., Alter, G., … Diamond, M. S. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J Exp Med 2019;216:2282-2301, doi:10.1084/jem.20190736
  • Weger-Lucarelli J, Aliota MT, Wlodarchak N, et al. Dissecting the role of E2 protein domains in alphavirus pathogenicity. J Virol. 2016;90(5):2418–2433.
  • Holmes AC, Basore K, Fremont DH. A molecular understanding of alphavirus entry. PLOS Pathog. 2020;16(10):e1008876.
  • Gardner CL, Ebel GD, Ryman KD. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci, USA. 2011;108(38):16026–16031. doi: 10.1073/pnas.1110617108
  • Silva LA, Khomandiak S, Ashbrook AW. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol. 2014;88(5):2385–2397.
  • Froelich S, Tai A, Kennedy K. Virus-receptor mediated transduction of dendritic cells by lentiviruses enveloped with glycoproteins derived from Semliki Forest virus. PLOS One. 2011;6(6):e21491.
  • Klimstra WB, Nangle EM, Smith MS. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell-and mammalian cell-derived viruses. J Virol. 2003;77(22):12022–12032.
  • Lozach PY, Burleigh L, Staropoli I. The C type lectins DC-SIGN and L-SIGN: receptors for viral glycoproteins. Methods Mol Biol. 2007;379:51–68.
  • Jemielity S, Wang JJ, Chan YK. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLOS Pathogens. 2013;9(3):e1003232.
  • Moller-Tank S, Kondratowicz AS, Davey RA. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J Virol. 2013;87(15):8327–8341.
  • Zhang R, Kim AS, Fox JM. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature. 2018;557(7706):570–574.
  • Earnest JT, Basore K, Roy V. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J Exp Med. 2019;216(10):2282–2301.
  • Clark LE, Clark SA, Lin C. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature. 2022;602(7897):475–480.
  • Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol. 2023;21(6):396–407.
  • Ma H, Kim AS, Kafai NM. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature. 2020;588(7837):308–314.
  • Zhai X, Li X, Veit M, et al. LDLR is used as a cell entry receptor by multiple alphaviruses. Nat Commun. 2024;15(1):622.
  • De Caluwé L, Coppens S, Vereecken K, et al. The CD147 protein complex is involved in entry of chikungunya virus and related alphaviruses in human cells. Front Microbiol. 2021;12:615165.
  • Wintachai P, Thuaud F, Basmadjian C. Assessment of flavaglines as potential Chikungunya virus entry inhibitors. Microbiol Immunol. 2015;59(3):129–141.
  • Carissimo G, Chan YH, Utt A. VCP/p97 Is a proviral host factor for replication of Chikungunya virus and other alphaviruses. Front Microbiol. 2019;10:2236.
  • Carissimo G, Teo TH, Chan YH. Viperin controls chikungunya virus-specific pathogenic T cell IFNgamma Th1 stimulation in mice. Life Sci Alliance. 2019;2(1):e201900298. doi:10.26508/lsa.201900298
  • Bernard E, Solignat M, Gay B. Endocytosis of Chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One. 2010;5(7):e11479.
  • Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014 Jul;31:2–10. doi:10.1016/j.semcdb.2014.03.034. PMID: 24709024.
  • Varghese FS, Rausalu K, Hakanen M. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments. Antimicrob Agents Chemother. 2017;61(3):02227–02216.10.1128/aac.
  • Wahlberg JM, Garoff H. Membrane fusion process of semliki forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J Cell Bio. 1992;116(2):339–348.
  • Helenius A, Kartenbeck J, Simons K. On the entry of semliki forest virus into BHK-21 cells. J Cell Bio. 1980;84(2):404–420.
  • Paredes AM, Ferreira D, Horton M. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology. 2004;324(2):373–386.
  • Li L, Jose J, Xiang Y. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010;468(7324):705–708.
  • Zaitseva E, Mittal A, Griffin DE. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. J Cell Bio. 2005;169(1):167–177.
  • de Groot RJ, Hardy WR, Shirako Y. Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo. Embo J. 1990;9(8):2631–2638.
  • Kaariainen L, Ahola T. Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucleic Acid Res Mol Biol. 2002;71:187–222.
  • Myles KM, Kelly CL, Ledermann JP. Effects of an opal termination codon preceding the nsP4 gene sequence in the O’Nyong-nyong virus genome on Anopheles gambiae infectivity. J Virol. 2006;80(10):4992–4997.
  • Tomar S, Hardy RW, Smith JL, et al. Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity. J Virol. 2006;80(20):9962–9969.
  • Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol. 2013;2(2):32–48.
  • Firth AE, Chung BY, Fleeton MN. Discovery of frameshifting in alphavirus 6K resolves a 20-year enigma. Virol J. 2008;5:108.
  • Peränen J, Laakkonen P, Hyvönen M. The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology. 1995;208(2):610–620.
  • Russo AT, Malmstrom RD, White MA, et al. Structural basis for substrate specificity of alphavirus nsP2 proteases. J Mol Graph Model. 2010;29(1):46–53.
  • Law Y-S, Utt A, Tan YB. Structural insights into RNA recognition by the chikungunya virus nsP2 helicase. Proc Nat Acad Sci. 2019;116(19):9558–9567.
  • Saisawang C, Sillapee P, Sinsirimongkol K. Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates. Biosci Rep. 2015 Apr 22;35(3):e00196. doi:10.1042/BSR20150086. PMID: 26182358; PMCID: PMC4445351.
  • Byers NM, Burns PL, Stuchlik O. Identification of mosquito proteins that differentially interact with alphavirus nonstructural protein 3, a determinant of vector specificity. PloS Negl Trop Dis. 2023;17(1):e0011028.
  • Mazzon M, Castro C, Thaa B. Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes. PLOS Pathog. 2018;14(1):e1006835.
  • Neuvonen M, Kazlauskas A, Martikainen M, et al. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication. PLOS Pathog. 2011;7(11):e1002383.
  • Rubach JK, Wasik BR, Rupp JC. Characterization of purified sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro. Virology. 2009;384(1):201–208.
  • Staples JE, Powers AM. Togaviridae: Alphaviruses. In: Long, SS, editor. Principles and Practice of Pediatric Infectious Diseases. 6th ed. Elsevier; 2023. p. 1145–1147.e3. doi:10.1016/B978-0-323-75608-2.00217-2
  • Kiwanuka N, Sanders EJ, Rwaguma EB O’nyong-nyong fever in south-central Uganda, 1996-1997: clinical features and validation of a clinical case definition for surveillance purposes. Clin Infect Dis. 1999;29(5):1243–1250.
  • Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA. Systems analysis of subjects acutely infected with the chikungunya virus. PLOS Pathog. 2019;15(6):e1007880.
  • Pinheiro FP, Freitas RB, Travassos da Rosa JF. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am J Trop Med Hyg. 1981;30(3):674–681.
  • Assuncao-Miranda I, Cruz-Oliveira C, Da Poian AT. Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. Biomed Res Int. 2013;2013:973516.
  • Marques CDL, Ranzolin A, Cavalcanti NG, et al. Arboviruses related with chronic musculoskeletal symptoms. Best Pract Res Clin Rheumatol. 2020;34(4):101502.
  • Wesula Olivia L, Obanda V, Bucht G, et al. Global emergence of alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol. 2015;5(1):29853.
  • Schilte C, Staikowsky F, Couderc T. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLOS Negl Trop Dis. 2013;7(3):e2137.
  • Arpino C, Curatolo P, Rezza G. Chikungunya and the nervous system: what we do and do not know. Rev Med Virol. 2009;19(3):121–129.
  • Carey DE, Myers RM, DeRanitz C. The 1964 chikungunya epidemic at Vellore, South India, including observations on concurrent dengue. Trans R Soc Trop Med. 1969;63(4):434–445.
  • Chastel C. Human infections in Cambodia by the Chikungunya virus or an apparently closely related agent. Ii. Experimental pathological anatomy. Bull Soc Pathol Exot Filiales. 1963;56(5):915–924.
  • Das T, Jaffar-Bandjee MC, Hoarau JJ. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol. 2010;91(2):121–129.
  • Hammon WM, Rudnick A, Sather GE. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science. 1960;131(3407):1102–1103.
  • Nimmannitya S, Halstead SB, Cohen SN. Dengue and chikungunya virus infection in man in Thailand, 1962-64. I. Observations on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg. 1969;18(6, Pt. 1):954–971.
  • Thiruvengadam KV, Kalyanasundaram V, Rajgopal J. Clinical and pathological studies on Chikungunya fever in Madras city. Indian J Med Res. 1965;53(8):729–744.
  • Oehler E, Fournier E, Leparc-Goffart I. Increase in cases of Guillain-Barre syndrome during a Chikungunya outbreak, French Polynesia, 2014 to 2015. Euro Surveill. 2015;20(48):30079.
  • Khan E, Barr KL, Farooqi JQ. Human West Nile virus disease outbreak in Pakistan, 2015–2016. Front Public Health. 2018;6:20.
  • Mehta R, Gerardin P, de Brito CAA, et al. The neurological complications of Chikungunya virus: A systematic review. Rev Med Virol. 2018;28(3):e1978.
  • WorldHealth Organization. Geographical expansion of cases of dengue and Chikungunya beyond the historical areas of transmission in the region of the Americas. Disease Outbreak News. 2023. https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON448
  • Couderc T, Chrétien F, Schilte C, et al. Cell and tissue tropisms of Chikungunya virus and its dissemination to the central nervous system. BMC Proc. 2008;2(Suppl 1):S7. doi:10.1186/1753-6561-2-s1-s7
  • Sourisseau M, Schilte C, Casartelli N. Characterization of reemerging Chikungunya virus. PLOS Pathog. 2007;3(6):e89.
  • Bedoui Y, De Larichaudy D, Daniel M. Deciphering the role of Schwann cells in inflammatory peripheral neuropathies post alphavirus infection. Cells. 2022;12(1):100.
  • Seymour RL, Rossi SL, Bergren NA, et al. The role of innate versus adaptive immune responses in a mouse model of O’nyong-nyong virus infection. Am J Trop Med Hyg. 2013;88(6):1170–1179.
  • Gardner J, Anraku I, Le TT, et al. Chikungunya virus arthritis in adult wild-type mice. J Virol. 2010;84(16):8021–8032.
  • Tharmarajah K, Everest-Dass A, Vider J. N-Linked glycans shape skin immune responses during arthritis and myositis after intradermal infection with ross river virus. J Virol. 2022;96(17):e0099922.
  • Chen W, Foo S-S, Sims NA. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol. 2015;23(1):35–43.
  • Chow A, Her Z, Ong EK, et al. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis. 2011;203(2):149–157.
  • Schilte C, Couderc T, Chretien F, et al. Type I IFN controls Chikungunya virus via its action on nonhematopoietic cells. J Exp Med. 2010;207(2):429–442.
  • Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010;184(10):5914–5927.
  • Hawman DW, Stoermer KA, Montgomery SA, et al. Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J Virol. 2013;87(24):13878–13888.
  • Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest. 2010;120(3):894–906.
  • Chan YH, Teo TH, Torres-Ruesta A. Longitudinal [18F]FB-IL-2 PET imaging to assess the immunopathogenicity of O’nyong-nyong virus Infection. Front Immunol. 2020;11:894.
  • Traverse EM, Millsapps EM, Underwood EC. Chikungunya immunopathology as it presents in different organ systems. Viruses. 2022;14(8):1786.
  • Brubaker SW, Bonham KS, Zanoni I, et al. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257–290.
  • Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–1531.
  • Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–1529.
  • Neighbours LM, Long K, Whitmore AC. Myd88-dependent toll-like receptor 7 signaling mediates protection from severe ross river virus-induced disease in mice. J Virol. 2012;86(19):10675–10685.
  • Her Z, Teng TS, Tan JJ, et al. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med. 2015;7(1):24–41.
  • Dutta SK, Tripathi A. Association of toll-like receptor polymorphisms with susceptibility to Chikungunya virus infection. Virology. 2017;511:207–213.
  • Carissimo G, Pondeville E, McFarlane M, et al. “Antiviral immunity of anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Nat Acad Sci. 2015;112(2):E176–E185. doi: 10.1073/pnas.1412984112
  • Brisse M, Ly H. Comparative structure and function analysis of the RIG-I-Like receptors: RIG-I and MDA5. Front Immunol. 2019;10:1586.
  • Sandenon Seteyen AL, Guiraud P, Gasque P, et al. In vitro analyses of the multifocal effects of natural alkaloids berberine, matrine, and tabersonine against the O’nyong-nyong arthritogenic alphavirus infection and inflammation. Pharmaceuticals (Basel). 2023;16(8):1125.
  • Liu Y, Pu F. Updated roles of cGAS-STING signaling in autoimmune diseases. Front Immunol. 2023;14:1254915.
  • Schoggins JW, MacDuff DA, Imanaka N, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505(7485):691–695.
  • Yang L, Wang L, Ketkar H, et al. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun. 2018;9(1):2329.
  • Geng T, Yang D, Lin T, et al. UBXN3B controls immunopathogenesis of arthritogenic alphaviruses by maintaining hematopoietic homeostasis. MBio. 2022;13(6):e0268722.
  • Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489.
  • Chen W, Foo SS, Zaid A, et al. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat Microbiol. 2017;2(10):1435–1445.
  • McNab F, Mayer-Barber K, Sher A, et al. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103.
  • Biron CA. Interferons α and β as immune regulators—a new look. Immunity. 2001;14(6):661–664.
  • Haist KC, Burrack KS, Davenport BJ, et al. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLOS Pathog. 2017;13(12):e1006748.
  • Atella MO, Carvalho AS, Da Poian AT. Role of macrophages in the onset, maintenance, or control of arthritis caused by alphaviruses. Exp Biol Med (Maywood). 2023 Nov;248(22):2039–2044. doi:10.1177/15353702231214261. PMID: 38058027; PMCID: PMC10800133.
  • Kelvin AA, Banner D, Silvi G, et al. Inflammatory cytokine expression is associated with Chikungunya virus resolution and symptom severity. PLOS negl trop dis. 2011;5(8):e1279.
  • Wauquier N, Becquart P, Nkoghe D, et al. The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis. 2011;204(1):115–123.
  • Schoggins JW. Interferon-stimulated genes: what do they all do? Annu Rev Virol. 2019;6:567–584.
  • Poddar S, Hyde JL, Gorman MJ, et al. The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J Virol. 2016;90(19):8780–8794.
  • Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–485.
  • Teng TS, Foo SS, Simamarta D, et al. Viperin restricts chikungunya virus replication and pathology. J Clin Invest. 2012;122(12):4447–4460.
  • Hee JS, Cresswell P. Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits viperin-mediated inhibition of the interferon response in macrophages. PLOS One. 2017;12(2):e0172236.
  • Szretter KJ, Brien JD, Thackray LB, et al. The interferon-inducible gene viperin restricts West Nile virus pathogenesis. J Virol. 2011;85(22):11557–11566.
  • Zhou X, Zhang Z, Xu H, et al. Viperin impairs the innate immune response through the IRAK1-TRAF6-TAK1 axis to promote Mtb infection. Sci Signaling. 2022;15(754):eabe1621.
  • Lum FM, Teo TH, Lee WW, et al. An essential role of antibodies in the control of chikungunya virus infection. J Immunol. 2013;190(12):6295–6302.
  • Poo YS, Rudd PA, Gardner J, et al. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLOS Negl Trop Dis. 2014;8(12):e3354.
  • Seymour RL, Adams AP, Leal G, et al. A rodent model of Chikungunya virus infection in RAG1 -/- mice, with features of persistence, for vaccine safety evaluation. PlOS Negl Trop Dis. 2015;9(6):e0003800.
  • Davenport BJ, Bullock C, McCarthy MK, et al. Chikungunya Virus evades antiviral CD8(+) T cell responses to establish persistent infection in Joint-associated tissues. J Virol. 2020;94(9):e02036–02019.
  • Harris E. FDA approves first chikungunya vaccine. JAMA. 2023. Dec 19;330(23):2241. doi:10.1001/jama.2023.23505. PMID: 38019496.
  • Roques P, Fritzer A, Dereuddre-Bosquet N, et al. Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera. JCI Insight. 2022 Jul 22;7(14):e160173. doi:10.1172/jci.insight.160173. PMID: 35700051; PMCID: PMC9431671.
  • Hallengard D, Kakoulidou M, Lulla A, et al. Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol. 2014;88(5):2858–2866.
  • Coates EE, Edupuganti S, Chen GL, et al. Safety and immunogenicity of a trivalent virus-like particle vaccine against western, eastern, and Venezuelan equine encephalitis viruses: a phase 1, open-label, dose-escalation, randomised clinical trial. Lancet Infect Dis. 2022;22(8):1210–1220.
  • Schneider M, Narciso-Abraham M, Hadl S, et al. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2023;401(10394):2138–2147.
  • Ng WH, Liu X, Ling ZL, et al. FHL1 promotes chikungunya and O’nyong-nyong virus infection and pathogenesis with implications for alphavirus vaccine design. Nat Commun. 2023;14(1):6605.
  • Lentscher AJ, McCarthy MK, May NA, et al. Chikungunya virus replication in skeletal muscle cells is required for disease development. J Clin Investig. 2020;130(3):1466–1478.
  • Taylor A, Liu X, Zaid A, et al. Mutation of the N-terminal region of chikungunya virus capsid protein: implications for vaccine design. MBio. 2017;8(1):01970–0191610.1128/mbio.
  • Chan YH, Teo TH, Utt A, et al. Mutating Chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol Med. 2019;11(6):e10092.
  • DeFilippis VR. Chikungunya virus vaccines: platforms, progress, and challenges. In: Heise M, editors. Chikungunya Virus. Cham: Springer International Publishing, p 81–106:2022.
  • Marti-Carvajal A, Ramon-Pardo P, Javelle E, et al. Interventions for treating patients with Chikungunya virus infection-related rheumatic and musculoskeletal disorders: A systematic review. PLoS One. 2017;12(6):e0179028.
  • Fox JM, Huang L, Tahan S, et al. A cross-reactive antibody protects against ross river virus musculoskeletal disease despite rapid neutralization escape in mice. PLOS Pathog. 2020;16(8):e1008743.
  • Fox JM, Long F, Edeling MA, et al. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell. 2015;163(5):1095–1107.
  • Broeckel R, Fox JM, Haese N, et al. Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of Chikungunya virus disease in rhesus macaques. PLOS Negl Trop Dis. 2017;11(6):e0005637.
  • Burke CW, Froude JW, Rossi F, et al. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLOS Pathog. 2019;15(12):e1008157.
  • Kose N, Fox JM, Sapparapu G, et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci Immunol. 2019;4(35):eaaw6647.
  • Abdelnabi R, Delang L. Antiviral strategies against arthritogenic alphaviruses. Microorganisms. 2020;8(9):1365.
  • Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: from an antiviral perspective. Antiviral Res. 2023;209:105476.
  • Patterson EI, Khanipov K, Swetnam DM, et al. Measuring alphavirus fidelity using non-infectious virus particles. Viruses. 2020 May 15;12(5):546. doi:10.3390/v12050546. PMID: 32429270; PMCID: PMC7291308.
  • Yi Z, Fang C, Zou J, et al. Affinity purification of the hepatitis C virus replicase identifies valosin-containing protein, a member of the ATPases associated with diverse cellular activities family, as an active virus replication modulator. J Virol. 2016;90(21):9953–9966.
  • Sehrawat S, Khasa R, Deb A, et al. Valosin-containing protein/p97 plays critical roles in the Japanese encephalitis virus life cycle. J Virol. 2021;95(11):02336–0232010.1128/jvi.
  • Yin P, Jian X, Liu Y, et al. Elucidating cellular interactome of Chikungunya virus identifies host dependency factors. Virol Sin. 2023;38(4):497–507.
  • Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: From basic research to clinical applications. Cell Chem Biol. 2023;30(1):3–21.
  • Meertens L, Hafirassou ML, Couderc T. FHL1 is a major host factor for Chikungunya virus infection. Nature. 2019;574(7777):259–263.
  • Mahajan S, Kumar R, Singh A. Targeting host protein G3BP1 for the discovery of novel antiviral inhibitors against the Chikungunya virus. bioRxiv. 2023. 2022.2011.2011.516135.
  • Teo T-H, Her Z, Tan JJ. Caribbean and La reunion Chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J Virol. 2015;89(15):7955–7969.
  • Teo TH, Lum FM, Claser C. A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice. J Immunol. 2013;190(1):259–269.
  • Zhang R, Earnest JT, Kim AS. Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and drosophila. Cell Rep. 2019;28(10): 2647–2658. e2645.