417
Views
0
CrossRef citations to date
0
Altmetric
Signature Reviews

The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2359483 | Received 02 Feb 2024, Accepted 19 May 2024, Published online: 13 Jun 2024

References

  • Nagase N, Sasaki A, Yamashita K. Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci. 2002;64(3):245–37. doi: 10.1292/jvms.64.245
  • Nakamizo S, Egawa G, Honda T. Commensal bacteria and cutaneous immunity. Semin Immunopathol. 2015;37(1):73–80. doi: 10.1007/s00281-014-0452-6
  • Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol. 2023;21(2):97–111. doi: 10.1038/s41579-022-00780-3
  • Bjerre RD, Holm JB, Palleja A. Skin dysbiosis in the microbiome in atopic dermatitis is site-specific and involves bacteria, fungus and virus. BMC Microbiol. 2021;21(1):256. doi: 10.1186/s12866-021-02302-2
  • Fourniere M, Latire T, Souak D. Staphylococcus epidermidis and Cutibacterium acnes: two major sentinels of skin microbiota and the influence of cosmetics. Microorganisms. 2020;8(11):8. doi: 10.3390/microorganisms8111752
  • Abraham B, Gokhale AU, Mohsin J. Staphylococcous epidermidis, staphylococcous schleiferi infections: are CoNS cons? Indian J Crit Care Med. 2020; 24(8):716–8. doi: 10.5005/jp-journals-10071-23523
  • Bellou V, Gkentzi D, Giormezis N. Persistent coagulase-negative staphylococcal bacteremia in neonates: clinical, microbiological characteristics and changes within a decade. Antibiotics. 2022;11(6):11. doi: 10.3390/antibiotics11060765
  • Nguyen TH, Park MD, Otto M. Host response to Staphylococcus epidermidis colonization and infections. Front Cell Infect Microbiol. 2017; 7:90. 10.3389/fcimb.2017.00090
  • Qin L, Da F, Fisher EL. Toxin mediates sepsis caused by methicillin-resistant staphylococcus epidermidis. PLOS Pathog. 2017; 13(2):e1006153. doi: 10.1371/journal.ppat.1006153
  • Pomputius WF, Kilgore SH, Schlievert PM. Probable enterotoxin-associated toxic shock syndrome caused by staphylococcus epidermidis. BMC Pediatr. 2023;23(1):108. doi: 10.1186/s12887-023-03914-5
  • Flores-Paez LA, Zenteno JC, Alcantar-Curiel MD. Molecular and phenotypic characterization of staphylococcus epidermidis isolates from healthy conjunctiva and a comparative analysis with isolates from ocular infection. PLOS ONE. 2015;10(8):e0135964. doi: 10.1371/journal.pone.0135964
  • DeCory HH, Sanfilippo CM, Proskin HM. Characterization of baseline polybacterial versus monobacterial infections in three randomized controlled bacterial conjunctivitis trials and microbial outcomes with besifloxacin ophthalmic suspension 0.6. PLOS ONE. 2020; 15(8):e0237603. doi: 10.1371/journal.pone.0237603
  • Amelot A, Bouazza S, George B. Causative role of infection in chronic non-thromboembolic pulmonary hypertension following ventriculo-atrial shunt. Br J Neurosurg 2014; 28(4):559–61. doi: 10.3109/02688697.2013.854311
  • Pouget C, Chatre C, Lavigne JP. Effect of antibiotic exposure on staphylococcus epidermidis responsible for catheter-related bacteremia. Int J Mol Sci. 2023;24(2):24. doi: 10.3390/ijms24021547
  • Clemente A, Cavagnaro L, Russo A. Spacer exchange in persistent periprosthetic joint infection: microbiological evaluation and survivorship analysis. Arch Orthop Trauma Surg. 2023; 143(3):1361–70. doi: 10.1007/s00402-021-04300-5
  • Brown MM, Horswill AR, Kline KA. Staphylococcus epidermidis—skin friend or foe? PLOS Pathog. 2020; 16(11):e1009026. doi: 10.1371/journal.ppat.1009026
  • Otto M Staphylococcus epidermidis — the ’accidental’ pathogen. Nat Rev Microbiol. 2009; 7(8):555–67. doi: 10.1038/nrmicro2182
  • Edmond MB, Wallace SE, Dk M. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clinical Infectious Diseases. 1999; 29(2):239–44. doi: 10.1086/520192
  • Rosenthal VD, Chaparro GJ, Servolo-Medeiros EA. An eight-year multicenter study on short-term peripheral intravenous catheter–related bloodstream infection rates in 100 intensive care units of 9 countries in Latin America: Argentina, Brazil, Colombia, Costa Rica, Dominican Republic, Ecuador, Mexico, Panama and Venezuela. Findings of the International Nosocomial Infection Control Consortium (INICC). Infect Control Hosp Epidemiol. 2021; 42:1098–104.
  • Wisplinghoff H, Bischoff T, Tallent SM. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–317. doi: 10.1086/421946
  • Ott E, Saathoff S, Graf K. The prevalence of nosocomial and community acquired infections in a University hospital. Dtsch Arztebl Int. 2013; 110:533–540. doi: 10.3238/arztebl.2013.0533
  • Hellmark B, Unemo M, Nilsdotter-Augustinsson A. Antibiotic susceptibility among staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect. 2009; 15(3):238–44. doi: 10.1111/j.1469-0691.2008.02663.x
  • Kokotsakis J, Chaudhry UA, Tassopoulos D. Surgical management of superior vena cava syndrome following pacemaker lead infection: a case report and review of the literature. J Cardiothorac Surg. 2014;9(1):107. doi: 10.1186/1749-8090-9-107
  • Harinstein ME, Marroquin OC. External coronary artery compression due to prosthetic valve bacterial endocarditis. Catheter Cardiovasc Interv. 2014;83(3):E168–70. doi: 10.1002/ccd.24578
  • Teoh EJ, Backhouse L, Chandrasekaran B. Mycotic aneurysm of the superior mesenteric artery and other sequelae of prosthetic valve endocarditis on (1)(8)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2014; 41(10):1993–4. doi: 10.1007/s00259-014-2812-9
  • Borde JP, Sitaru G, Kopp WH. Heart transplantation as salvage therapy for progressive prosthetic valve endocarditis due to methicillin-resistant Staphylococcus epidermidis (MRSE). J Cardiothorac Surg. 2016;11(1):100. doi: 10.1186/s13019-016-0505-0
  • Simon D, Fischer S, Grossman A. Left ventricular assist device–related infection: treatment and outcome. Clin Infect Dis. 2005; 40(8):1108–15. doi: 10.1086/428728
  • Post V, Harris LG, Morgenstern M. Comparative genomics study of staphylococcus epidermidis isolates from orthopedic-device-related infections correlated with patient outcome. J Clin Microbiol. 2017;55(10):3089–3103. doi: 10.1128/JCM.00881-17
  • Vinchon M, Dhellemmes P. Cerebrospinal fluid shunt infection: risk factors and long-term follow-up. Childs Nerv Syst. 2006;22(7):692–697. doi: 10.1007/s00381-005-0037-8
  • Whitehead WE, Kestle JR The treatment of cerebrospinal fluid shunt infections. Results from a practice survey of the American society of pediatric neurosurgeons. Pediatr Neurosurg. 2001; 35(4):205–10. doi: 10.1159/000050422
  • Rehman AU, Rehman TU, Bashir HH. A simple method to reduce infection of ventriculoperitoneal shunts. J Neurosurg Pediatr. 2010;5(6):569–572. doi: 10.3171/2010.2.PEDS09151
  • Reddy GK, Bollam P, Caldito G. Ventriculoperitoneal shunt surgery and the risk of shunt infection in patients with hydrocephalus: long-term single institution experience. World Neurosurg. 2012;78(1–2):155–163. doi: 10.1016/j.wneu.2011.10.034
  • Abdul-Jabbar A, Berven SH, Hu SS, et al. Surgical site infections in spine surgery: identification of microbiologic and surgical characteristics in 239 cases. Spine. 2013;381:E1425–31. doi: 10.1097/BRS.0b013e3182a42a68
  • Kim JH, Ahn DK, Kim JW. Particular features of surgical site infection in posterior lumbar interbody fusion. Clin Orthop Surg. 2015;7(3):337–343. doi: 10.4055/cios.2015.7.3.337
  • Fu X, Lin Z, Chen S. Treatment of intracranial infection caused by methicillin-resistant staphylococcus epidermidis with linezolid following poor outcome of vancomycin therapy: a case report and literature review. Infect Drug Resist. 2021;14:2533–2542. doi: 10.2147/IDR.S319013
  • Edmiston CE Jr., Krepel CJ, Marks RM. Microbiology of explanted suture segments from infected and noninfected surgical patients. J Clin Microbiol. 2013;51(2):417–421. doi: 10.1128/JCM.02442-12
  • Saito Y, Kobayashi H, Uetera Y. Microbial contamination of surgical instruments used for laparotomy. Am J Infect Control. 2014;42(1):43–47. doi: 10.1016/j.ajic.2013.06.022
  • Aristedis R, Dimitrios P, Nikolaos P. Intrathecal baclofen pump infection treated by adjunct intrareservoir teicoplanin instillation. Surg Neurol Int. 2017;8(1):38. doi: 10.4103/sni.sni_418_16
  • Pittet B, Montandon D, Pittet D. Infection in breast implants. Lancet Infect Dis. 2005;5(2):94–106. doi: 10.1016/S1473-3099(05)70084-0
  • Michalopoulos NV, Frountzas M, Karathanasis P. Implant infections after breast reconstruction surgery following mastectomy: experience from a Greek breast unit. Breast Dis 2022; 41(1):37–44. doi: 10.3233/BD-201077
  • Tobias T, Kruchevsky D, Ullmann Y. Implant-based breast reconstruction infections: the importance of recognizing local Pathogens. Isr Med Assoc J 2023; 25:96–100.
  • Das D, Bhattacharjee H, Gogoi K. Intraocular lens biofilm formation supported by scanning electron microscopy imaging. Indian J Ophthalmol. 2019;67(10):1708–1709. doi: 10.4103/ijo.IJO_467_19
  • Guo HX, Xie RT, Wang Y. Timely vitrectomy without intraocular lens removal for acute endophthalmitis after cataract surgery. Int J Ophthalmol 2022; 15(6):1011–4. doi: 10.18240/ijo.2022.06.21
  • Brown RH, Subramanian A, Hwang CS. Comparison of infectious complications with synthetic mesh in ventral hernia repair. Am J Surg. 2013;205(2):182–187. doi: 10.1016/j.amjsurg.2012.02.023
  • Patiniott P, Jacombs A, Kaul L. Are late hernia mesh complications linked to staphylococci biofilms? Hernia. 2022;26(5):1293–1299. doi: 10.1007/s10029-022-02583-0
  • Monksfield P, Chapple IL, Matthews JB. Biofilm formation on bone-anchored hearing aids. J Laryngol Otol. 2011;125(11):1125–1130. doi: 10.1017/S0022215111002143
  • Parvizi J, Shohat N, Gehrke T. Prevention of periprosthetic joint infection: new guidelines. Bone Joint J 2017;99-B(4_Supple_B):3–10. doi: 10.1302/0301-620X.99B4.BJJ-2016-1212.R1
  • Papan C, Schroder M, Hoffmann M. Combined antibiotic stewardship and infection control measures to contain the spread of linezolid-resistant Staphylococcus epidermidis in an intensive care unit. Antimicrob Resist Infect Control. 2021;10(1):99. doi: 10.1186/s13756-021-00970-3
  • Hickmann AK, Bratelj D, Pirvu T. Management and outcome of spinal implant-associated surgical site infections in patients with posterior instrumentation: analysis of 176 cases. Eur Spine J. 2022;31(2):489–499. doi: 10.1007/s00586-021-06978-y
  • Zhu Y, Chen X, Chen P. The occurrence rate of acute-onset postoperative endophthalmitis after cataract surgery in Chinese small- and medium-scale departments of ophthalmology. Sci Rep. 2017;7(1):40776. doi: 10.1038/srep40776
  • He R, Yang L, Guo L. Management of acute hematogenous infection following total knee arthroplasty: a case series of 11 patients. Orthop Surg. 2016; 8(4):475–82. doi: 10.1111/os.12297
  • Staphylococcal Biofilms. n. null; null:null.
  • Saising J, Dube L, Ziebandt AK. Activity of gallidermin on staphylococcus aureus and staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2012;56(11):5804–5810. doi: 10.1128/AAC.01296-12
  • Sanchez CJ Jr., Mende K, Beckius ML. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis. 2013;13(1):47. doi: 10.1186/1471-2334-13-47
  • Soroush S, Jabalameli F, Taherikalani M. Investigation of biofilm formation ability, antimicrobial resistance and the staphylococcal cassette chromosome mec patterns of methicillin resistant staphylococcus epidermidis with different sequence types isolated from children. Microb Pathog. 2016; 93:126–130. doi: 10.1016/j.micpath.2016.01.018
  • Otto M. Staphylococcus epidermidis: a major player in bacterial sepsis? Future Microbiol. 2017; 12(12):1031–3. doi: 10.2217/fmb-2017-0143
  • Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10(6):701–706. doi: 10.1586/eri.12.50
  • Cue D, Lei MG, Lee CY. Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol 2012; 2:38. doi: 10.3389/fcimb.2012.00038
  • Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol 2013; 8(4):509–24. doi: 10.2217/fmb.13.7
  • Gonzalez T, Biagini Myers JM, Herr AB. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(12):81. doi: 10.1007/s11882-017-0750-x
  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3):e00026–19. doi: 10.1128/MMBR.00026-19
  • Francois P, Schrenzel J, Gotz F. Biology and regulation of staphylococcal biofilm. Int J Mol Sci. 2023;24(6):5218. doi: 10.3390/ijms24065218
  • Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol. 2011;19(9):449–455. doi: 10.1016/j.tim.2011.06.004
  • Le KY, Villaruz AE, Zheng Y. Role of phenol-soluble modulins in Staphylococcus epidermidis biofilm formation and infection of indwelling medical devices. J Mol Biol. 2019;431(16):3015–3027. doi: 10.1016/j.jmb.2019.03.030
  • Christensen GD, Baddour LM, Simpson WA. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect Immun. 1987;55(12):2870–2877. doi: 10.1128/iai.55.12.2870-2877.1987
  • Deighton M, Borland R. Regulation of slime production in staphylococcus epidermidis by iron limitation. Infect Immun. 1993;61(10):4473–4479. doi: 10.1128/iai.61.10.4473-4479.1993
  • Hussain M, Wilcox MH, White PJ. The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol Rev 1993;10(3–4):191–207. doi: 10.1111/j.1574-6968.1993.tb05867.x
  • Deighton MA, Borland R, Capstick JA. Virulence of Staphylococcus epidermidis in a mouse model: significance of extracellular slime. Epidemiol Infect. 1996;117(2):267–280. doi: 10.1017/S0950268800001448
  • Shiau AL, Wu CL. The inhibitory effect of Staphylococcus epidermidis slime on the phagocytosis of murine peritoneal macrophages is interferon-independent. Microbiol Immunol. 1998;42(1):33–40. doi: 10.1111/j.1348-0421.1998.tb01966.x
  • Ammendolia MG, Di Rosa R, Montanaro L. Slime production and expression of the slime-associated antigen by staphylococcal clinical isolates. J Clin Microbiol. 1999;37(10):3235–3238. doi: 10.1128/JCM.37.10.3235-3238.1999
  • Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol. 2001;39(6):2151–2156. doi: 10.1128/JCM.39.6.2151-2156.2001
  • Foka A, Chini V, Petinaki E. Clonality of slime-producing methicillin-resistant coagulase-negative staphylococci disseminated in the neonatal intensive care unit of a university hospital. Clin Microbiol Infect. 2006;12(12):1230–1233. doi: 10.1111/j.1469-0691.2006.01565.x
  • Heilmann C, Schweitzer O, Gerke C. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20(5):1083–1091. doi: 10.1111/j.1365-2958.1996.tb02548.x
  • Vuong C, Kocianova S, Voyich JM. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004;279(52):54881–54886. doi: 10.1074/jbc.M411374200
  • Gerke C, Kraft A, Sussmuth R. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem. 1998;273(29):18586–18593. doi: 10.1074/jbc.273.29.18586
  • Conlon KM, Humphreys H, O’Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in staphylococcus epidermidis. J Bacteriol. 2002;184(16):4400–4408. doi: 10.1128/JB.184.16.4400-4408.2002
  • Jeng WY, Ko TP, Liu CI. Crystal structure of IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis. Nucleic Acids Res. 2008;36(5):1567–1577. doi: 10.1093/nar/gkm1176
  • Hoang TM, Zhou C, Lindgren JK. Transcriptional Regulation of icaADBC by both IcaR and TcaR in Staphylococcus epidermidis. J Bacteriol. 2019;201(6):201. doi: 10.1128/JB.00524-18
  • Knobloch JK, Jager S, Horstkotte MA. RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor σ b by repression of the negative regulator gene icaR. Infect Immun 2004;72(7):3838–3848. doi: 10.1128/IAI.72.7.3838-3848.2004
  • Paharik AE, Kotasinska M, Both A. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol Microbiol 2017;103(5):860–874. doi: 10.1111/mmi.13594
  • Rohde H, Burandt EC, Siemssen N. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007;28(9):1711–1720. doi: 10.1016/j.biomaterials.2006.11.046
  • Juarez-Verdayes MA, Ramon-Perez ML, Flores-Paez LA. Staphylococcus epidermidis with the icaA− /icaD− /IS256 − genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections. J Med Microbiol. 2013;62:1579–87. doi: 10.1099/jmm.0.055210-0
  • Rahmdel S, Gotz F. The multitasking surface protein of Staphylococcus epidermidis: accumulation-associated protein (Aap). MBio. 2021;12:e0198921. doi: 10.1128/mBio.01989-21
  • Yarawsky AE, English LR, Whitten ST. The Proline/Glycine-rich region of the Biofilm Adhesion Protein Aap forms an extended stalk that resists compaction. J Mol Biol. 2017;429(2):261–279. doi: 10.1016/j.jmb.2016.11.017
  • Grandbois M, Beyer M, Rief M. How strong is a covalent bond? Science. 1999;283(5408):1727–1730. doi: 10.1126/science.283.5408.1727
  • Wang C, Chantraine C, Viljoen A. The staphylococcal biofilm protein Aap mediates cell–cell adhesion through mechanically distinct homophilic and lectin interactions. PNAS Nexus. 2022;1:pgac278. doi: 10.1093/pnasnexus/pgac278
  • Khan N, Aslan H, Buttner H. The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin. Elife. 2022;11: 11. doi: 10.7554/eLife.76164
  • Linnes JC, Ma H, Bryers JD. Giant extracellular matrix binding protein expression in staphylococcus epidermidis is regulated by biofilm formation and osmotic pressure. Curr Microbiol. 2013;66(6):627–633. doi: 10.1007/s00284-013-0316-7
  • Lasa I, Penades JR. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol. 2006;157(2):99–107. doi: 10.1016/j.resmic.2005.11.003
  • Tormo MA, Knecht E, Gotz F. Bap-dependent biofilm formation by pathogenic species of staphylococcus: evidence of horizontal gene transfer? Microbiology (Reading). 2005;151(7):2465–75. doi: 10.1099/mic.0.27865-0
  • Bowden MG, Chen W, Singvall J. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology (Reading). 2005;151(5):1453–1464. doi: 10.1099/mic.0.27534-0
  • Rohde H, Kalitzky M, Kroger N. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol 2004;42(12):5614–9. doi: 10.1128/JCM.42.12.5614-5619.2004
  • Pinheiro L, Brito CI, Oliveira A. Staphylococcus epidermidis and Staphylococcus haemolyticus: detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. Diagn Microbiol Infect Dis. 2016;86(1):11–4. doi: 10.1016/j.diagmicrobio.2016.06.006
  • Qin Z, Ou Y, Yang L. Role of autolysin-mediated DNA release in biofilm formation of staphylococcus epidermidis. Microbiology (Reading). 2007;153(7):2083–2092. doi: 10.1099/mic.0.2007/006031-0
  • Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect. 2015;17(7):531–537. doi: 10.1016/j.micinf.2015.03.015
  • Kavanaugh JS, Flack CE, Lister J. Identification of extracellular DNA-binding proteins in the biofilm matrix. MBio. 2019; 10(3):10. doi: 10.1128/mBio.01137-19
  • Fu J, Zhang Y, Lin S. Strategies for interfering with bacterial early stage biofilms. Front Microbiol. 2021; 12:675843. doi: 10.3389/fmicb.2021.675843
  • Campoccia D, Montanaro L, Arciola CR Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture. Int J Mol Sci 2021;22(16):9100. doi: 10.3390/ijms22169100
  • Doroshenko N, Tseng BS, Howlin RP. Extracellular DNA impedes the transport of vancomycin in staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob Agents Chemother. 2014;58(12):7273–7282. doi: 10.1128/AAC.03132-14
  • Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol. 2015;41(3):341–352. doi: 10.3109/1040841X.2013.841639
  • Christner M, Heinze C, Busch M. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA. Mol Microbiol. 2012;86(2):394–410. doi: 10.1111/j.1365-2958.2012.08203.x
  • Heilmann C, Hussain M, Peters G. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997;24(5):1013–1024. doi: 10.1046/j.1365-2958.1997.4101774.x
  • Zoll S, Patzold B, Schlag M. Structural basis of cell wall cleavage by a staphylococcal autolysin. PLOS Pathog. 2010;6(3):e1000807. doi: 10.1371/journal.ppat.1000807
  • Biswas R, Voggu L, Simon UK. Activity of the major staphylococcal autolysin atl. FEMS Microbiol Lett. 2006; 259(2):260–8. doi: 10.1111/j.1574-6968.2006.00281.x
  • Schlag M, Biswas R, Krismer B. Role of staphylococcal wall teichoic acid in targeting the major autolysin atl. Mol Microbiol. 2010;75(4):864–873. doi: 10.1111/j.1365-2958.2009.07007.x
  • Hirschhausen N, Schlesier T, Schmidt MA. A novel staphylococcal internalization mechanism involves the major autolysin atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol. 2010;12(12):1746–1764. doi: 10.1111/j.1462-5822.2010.01506.x
  • Schlesier T, Siegmund A, Rescher U. Characterization of the atl-mediated staphylococcal internalization mechanism. Int J Med Microbiol. 2020;310(8):151463. doi: 10.1016/j.ijmm.2020.151463
  • Rupp ME, Fey PD, Heilmann C. Characterization of the importance of staphylococcus epidermidis autolysin and polysaccharide intercellular Adhesin in the pathogenesis of intravascular catheter–associated infection in a rat model. J Infect Dis. 2001;183(7):1038–42. doi: 10.1086/319279
  • Izano EA, Amarante MA, Kher WB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008;74(2):470–476. doi: 10.1128/AEM.02073-07
  • Heilmann C, Thumm G, Chhatwal GS. Identification and characterization of a novel autolysin (aae) with adhesive properties from Staphylococcus epidermidis. Microbiology (Reading). 2003;149(10):2769–2778. doi: 10.1099/mic.0.26527-0
  • Almebairik N, Zamudio R, Ironside C. Genomic stability of composite SCCmec ACME and COMER-Like genetic elements in Staphylococcus epidermidis correlates with rate of excision. Front Microbiol 2020; 11:166. doi: 10.3389/fmicb.2020.00166
  • Grilo IR, Ludovice AM, Tomasz A. The glucosaminidase domain of Atl – the major Staphylococcus aureus autolysin – has DNA -binding activity. Microbiologyopen. 2014;3(2):247–56. doi: 10.1002/mbo3.165
  • Schoenfelder SMK, Lange C, Prakash SA. The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities. PLOS Pathog. 2019;15(3):e1007618. doi: 10.1371/journal.ppat.1007618
  • Fischer A, Kambara K, Meyer H. GdpS contributes to staphylococcus aureus biofilm formation by regulation of eDNA release. Int J Med Microbiol. 2014;304(3–4):284–299. doi: 10.1016/j.ijmm.2013.10.010
  • Liu J, Shen Z, Tang J. Extracellular DNA released by glycine-auxotrophic staphylococcus epidermidis small colony variant facilitates catheter-related infections. Commun Biol. 2021;4(1):904. doi: 10.1038/s42003-021-02423-4
  • Olson ME, Todd DA, Schaeffer CR. Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J Bacteriol. 2014;196(19):3482–3493. doi: 10.1128/JB.01882-14
  • Bowden MG, Visai L, Longshaw CM. Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem. 2002;277(45):43017–43023. doi: 10.1074/jbc.M207921200
  • Pinchuk IV, Beswick EJ, Reyes VE Staphylococcal enterotoxins. Toxins (Basel). 2010; 2:2177–97. doi: 10.3390/toxins2082177
  • Silversides JA, Lappin E, Ferguson AJ. Staphylococcal toxic shock syndrome: mechanisms and management. Curr Infect Dis Rep. 2010;12(5):392–400. doi: 10.1007/s11908-010-0119-y
  • Alouf JE, Muller-Alouf H. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int J Med Microbiol. 2003;292(7–8):429–440. doi: 10.1078/1438-4221-00232
  • Descloux E, Perpoint T, Ferry T. One in five mortality in non-menstrual toxic shock syndrome versus no mortality in menstrual cases in a balanced French series of 55 cases. Eur J Clin Microbiol Infect Dis 2008;27(1):37–43. doi: 10.1007/s10096-007-0405-2
  • Pinheiro L, Brito CI, de Oliveira A. Staphylococcus epidermidis and staphylococcus haemolyticus: molecular detection of cytotoxin and enterotoxin genes. Toxins (Basel) 2015;7(9):3688–99. doi: 10.3390/toxins7093688
  • Thomas D, Chou S, Dauwalder O. Diversity in staphylococcus aureus enterotoxins. Chem Immunol Allergy. 2007;93:24–41.
  • Breckinridge JC, Bergdoll MS. Outbreak of food-borne gastroenteritis due to a coagulase-negative enterotoxin-producing staphylococcus. N Engl J Med. 1971;284(10):541–543. doi: 10.1056/NEJM197103112841010
  • Nanoukon C, Affolabi D, Keller D. Characterization of human type C enterotoxin produced by clinical S. epidermidis isolates. Toxins (Basel). 2018;10(4):10. doi: 10.3390/toxins10040139
  • Banaszkiewicz S, Calland JK, Mourkas E. Genetic diversity of composite enterotoxigenic Staphylococcus epidermidis pathogenicity islands. Genome Biol Evol. 2019;11(12):3498–3509. doi: 10.1093/gbe/evz259
  • Tabis A, Gonet M, Schubert J, et al. Analysis of enterotoxigenic effect of staphylococcus aureus and staphylococcus epidermidis enterotoxins C and L on mice. Microbiol Res 2022;258:126979. doi: 10.1016/j.micres.2022.126979
  • Argemi X, Nanoukon C, Affolabi D. Comparative genomics and identification of an enterotoxin-bearing pathogenicity island, SEPI-1/SECI-1, in Staphylococcus epidermidis pathogenic strains. Toxins (Basel). 2018;10(3):10. doi: 10.3390/toxins10030093
  • Vengadesan K, Macon K, Sugumoto S. Purification, crystallization and preliminary X-ray diffraction analysis of the staphylococcus epidermidis extracellular serine protease Esp. Acta Crystallogr, Sect F: struct Biol Cryst Commun. 2013;69(1):49–52. doi: 10.1107/S1744309112047124
  • Ohara-Nemoto Y, Ikeda Y, Kobayashi M. Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microb Pathog. 2002;33(1):33–41. doi: 10.1006/mpat.2002.0515
  • Iwase T, Uehara Y, Shinji H. Staphylococcus epidermidis Esp inhibits staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–349. doi: 10.1038/nature09074
  • Martinez-Garcia S, Rodriguez-Martinez S, Cancino-Diaz ME. Extracellular proteases of staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. APMIS. 2018;126(3):177–185. doi: 10.1111/apm.12805
  • Manne K, Narayana SVL. Structural insights into the role of the N-terminus in the activation and function of extracellular serine protease from staphylococcus epidermidis. Acta Crystallogr D Struct Biol. 2020;76(1):28–40. doi: 10.1107/S2059798319015055
  • Ohara-Nemoto Y, Ono T, Shimoyama Y. Homologous and heterologous expression and maturation processing of extracellular glutamyl endopeptidase of Staphylococcus epidermidis. Biol Chem. 2008;389(9):1209–1217. doi: 10.1515/BC.2008.137
  • Caballero AR, Tang A, Bierdeman M. Correlation of staphylococcus Epidermidis phenotype and its corneal virulence. Curr Eye Res. 2021;46(5):638–647. doi: 10.1080/02713683.2020.1825748
  • Roy P, Horswill AR, Fey PD. Glycan-dependent corneocyte adherence of staphylococcus epidermidis mediated by the lectin subdomain of Aap. MBio 2021;12(4):e0290820. doi: 10.1128/mBio.02908-20
  • Cheung GY, Rigby K, Wang R. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLOS Pathog 2010;6(10):e1001133. doi: 10.1371/journal.ppat.1001133
  • Lai Y, Villaruz AE, Li M. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol. 2007;63(2):497–506. doi: 10.1111/j.1365-2958.2006.05540.x
  • Dubin G, Stec-Niemczyk J, Dylag T. Characterisation of a highly specific, endogenous inhibitor of cysteine protease from Staphylococcus epidermidis, a new member of the staphostatin family. Biol Chem. 2004;385(6):543–546. doi: 10.1515/BC.2004.064
  • Cau L, Williams MR, Butcher AM. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol 2021;147(3):955–66 e16. doi: 10.1016/j.jaci.2020.06.024
  • Geissler S, Gotz F, Kupke T. Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol. 1996;178(1):284–288. doi: 10.1128/jb.178.1.284-288.1996
  • Schnell N, Engelke G, Augustin J. Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur J Biochem. 1992;204(1):57–68. doi: 10.1111/j.1432-1033.1992.tb16605.x
  • Kuhn ML, Prachi P, Minasov G. Structure and protective efficacy of the staphylococcus aureus autocleaving protease EpiP. Faseb J. 2014;28(4):1780–1793. doi: 10.1096/fj.13-241737
  • Cheung GY, Joo HS, Chatterjee SS. Phenol-soluble modulins–critical determinants of staphylococcal virulence. FEMS Microbiol Rev. 2014;38(4):698–719. doi: 10.1111/1574-6976.12057
  • Cheung GY, Duong AC, Otto M. Direct and synergistic hemolysis caused by staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis. Microbes Infect 2012;14(4):380–6. doi: 10.1016/j.micinf.2011.11.013
  • Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64(1):175–188. doi: 10.1146/annurev-med-042711-140023
  • Jin Y, Wang Q, Zhang H. Phenol-soluble modulin contributes to the dispersal of staphylococcus epidermidis isolates from catheters. Front Microbiol 2022; 13:934358. doi: 10.3389/fmicb.2022.934358
  • Vuong C, Durr M, Carmody AB. Regulated expression of pathogen-associated molecular pattern molecules in staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol. 2004;6(8):753–759. doi: 10.1111/j.1462-5822.2004.00401.x
  • Joo H-S, Otto M. The isolation and analysis of phenol-soluble modulins of staphylococcus epidermidis. In: Fey P, editor. Staphylococcus epidermidis. Totowa (NJ): Humana Press; 2014. p 93–100.
  • Qin L, Jw M, Cheung GY. PSM-Mec-A virulence determinant that connects transcriptional regulation, virulence, and antibiotic resistance in staphylococci. Front Microbiol. 2016; 7:1293. doi: 10.3389/fmicb.2016.01293
  • Wang R, Braughton KR, Kretschmer D. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 2007; 13(12):1510–4. doi: 10.1038/nm1656
  • Le KY, Dastgheyb S, Ho TV. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol. 2014; 4:167. doi: 10.3389/fcimb.2014.00167
  • Wang R, Khan BA, Cheung GY. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest. 2011; 121(1):238–48. doi: 10.1172/JCI42520
  • Queck SY, Khan BA, Wang R. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLOS Pathog. 2009; 5(7):e1000533. doi: 10.1371/journal.ppat.1000533
  • Chatterjee SS, Chen L, Joo HS. Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant staphylococcus aureus. PLOS ONE 2011; 6(12):e28781. doi: 10.1371/journal.pone.0028781
  • Doery HM, Magnusson BJ, Cheyne IM. A phospholipase in staphylococcal toxin which hydrolyses sphingomyelin. Nature 1963; 198(4885):1091–2. doi: 10.1038/1981091a0
  • Huseby M, Shi K, Brown CK. Structure and biological activities of beta toxin from staphylococcus aureus. J Bacteriol. 2007;189(23):8719–8726. doi: 10.1128/JB.00741-07
  • Zheng Y, Hunt RL, Villaruz AE. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe 2022; 30(3):301–13 e9. doi: 10.1016/j.chom.2022.01.004
  • Otto M. Quorum-sensing control in staphylococci â?? a target for antimicrobial drug therapy? FEMS Microbiol Lett. 2004; 241(2):135–41. doi: 10.1016/j.femsle.2004.11.016
  • Batzilla CF, Rachid S, Engelmann S. Impact of the accessory gene regulatory system (Agr) on extracellular proteins, codY expression and amino acid metabolism in Staphylococcus epidermidis. Proteomics. 2006;6(12):3602–3613. doi: 10.1002/pmic.200500732
  • Horswill AR, Stoodley P, Stewart PS. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem. 2007;387(2):371–380. doi: 10.1007/s00216-006-0720-y
  • Singh R, Ray P. Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol 2014; 9(5):669–81. doi: 10.2217/fmb.14.31
  • Otto M, Dickey SW, Wolz C. Editorial: quorum-sensing in gram-positive pathogens – mechanisms, role in infection, and potential as a therapeutic target. Front Cell Infect Microbiol. 2023; 13. doi: 10.3389/fcimb.2023.1236705
  • Kies S, Vuong C, Hille M. Control of antimicrobial peptide synthesis by the agr quorum sensing system in Staphylococcus epidermidis: activity of the lantibiotic epidermin is regulated at the level of precursor peptide processing. Peptides. 2003;24(3):329–338. doi: 10.1016/S0196-9781(03)00046-9
  • Otto M. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides. 2001;22(10):1603–1608. doi: 10.1016/S0196-9781(01)00495-8
  • Bronesky D, Wu Z, Marzi S. Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annu Rev Microbiol. 2016;70(1):299–316. doi: 10.1146/annurev-micro-102215-095708
  • Canovas J, Baldry M, Bojer MS. Cross-talk between staphylococcus aureus and other staphylococcal species via the agr quorum sensing system. Front Microbiol 2016; 7. doi: 10.3389/fmicb.2016.01733
  • Tan L, Huang Y, Shang W. Accessory gene regulator (agr) Allelic variants in cognate staphylococcus aureus strain display similar phenotypes. Front Microbiol 2022; 13:700894. doi: 10.3389/fmicb.2022.700894
  • Minich A, Liskova V, Kormanova L. Role of RNAIII in resistance to antibiotics and antimicrobial agents in staphylococcus epidermidis Biofilms. Int J Mol Sci 2022; 23(19):23. doi: 10.3390/ijms231911094
  • Boisset S, Geissmann T, Huntzinger E. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator rot by an antisense mechanism. Genes Dev. 2007;21(11):1353–1366. doi: 10.1101/gad.423507
  • Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol 2015; 6:1174. doi: 10.3389/fmicb.2015.01174
  • Li M, Guan M, Jiang XF. Genetic polymorphism of the accessory gene regulator (agr) locus in Staphylococcus epidermidis and its association with pathogenicity. J Med Microbiol. 2004;53(6):545–549. doi: 10.1099/jmm.0.05406-0
  • Martinez-Garcia S, Ortiz-Garcia CI, Cruz-Aguilar M. Competition/antagonism associations of biofilm formation among Staphylococcus epidermidis agr groups I, II, and III. J Microbiol. 2019;57(2):143–153. doi: 10.1007/s12275-019-8322-5
  • Tan L, Li SR, Jiang B. Therapeutic targeting of the staphylococcus aureus accessory gene regulator (agr) system. Front Microbiol. 2018; 9:55. doi: 10.3389/fmicb.2018.00055
  • Vuong C, Kocianova S, Yao Y. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis. 2004;190(8):1498–1505. doi: 10.1086/424487
  • Yao Y, Vuong C, Kocianova S. Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis. 2006;193(6):841–848. doi: 10.1086/500246
  • Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, salmonella typhimurium, and vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA. 1999;96(4):1639–1644. doi: 10.1073/pnas.96.4.1639
  • Xue T, Ni J, Shang F. Autoinducer-2 increases biofilm formation via an ica- and bhp-dependent manner in staphylococcus epidermidis RP62A. Microbes Infect. 2015;17(5):345–352. doi: 10.1016/j.micinf.2015.01.003
  • Xu L, Li H, Vuong C. Role of the luxS quorum-sensing system in biofilm formation and virulence of staphylococcus epidermidis. Infect Immun. 2006;74(1):488–496. doi: 10.1128/IAI.74.1.488-496.2006
  • Conlon KM, Humphreys H, O’Gara JP. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol. 2004;186(18):6208–6219. doi: 10.1128/JB.186.18.6208-6219.2004
  • Bischoff M, Dunman P, Kormanec J. Microarray-based analysis of the staphylococcus aureus σ B regulon. J Bacteriol. 2004; 186(13):4085–99. doi: 10.1128/JB.186.13.4085-4099.2004
  • Knobloch JK, Bartscht K, Sabottke A. Biofilm formation by staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 2001; 183(8):2624–33. doi: 10.1128/JB.183.8.2624-2633.2001
  • Cotter JJ, Jp O, Mack D. Oxygen-mediated regulation of biofilm development Is controlled by the alternative sigma factor σ B in staphylococcus epidermidis. Appl Environ Microbiol 2009; 75(1):261–4. doi: 10.1128/AEM.00261-08
  • Handke LD, Slater SR, Conlon KM. σ B and SarA independently regulate polysaccharide intercellular adhesin production in Staphylococcus epidermidis. Can J Microbiol 2007; 53(1):82–91. doi: 10.1139/w06-108
  • Jager S, Mack D, Rohde H. Disintegration of staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor σ B. Appl Environ Microbiol 2005; 71(9):5577–81. doi: 10.1128/AEM.71.9.5577-5581.2005
  • Pintens V, Massonet C, Merckx R. The role of σ B in persistence of Staphylococcus epidermidis foreign body infection. Microbiology (Reading) 2008; 154(9):2827–36. doi: 10.1099/mic.0.2007/015768-0
  • Majerczyk CD, Sadykov MR, Luong TT. Staphylococcus aureus CodY negatively regulates virulence gene expression. J Bacteriol. 2008;190(7):2257–2265. doi: 10.1128/JB.01545-07
  • Waters NR, Samuels DJ, Behera RK. A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in staphylococcus aureus. Mol Microbiol. 2016;101(3):495–514. doi: 10.1111/mmi.13404
  • Mlynek KD, Bulock LL, Stone CJ. Genetic and biochemical analysis of CodY-mediated cell aggregation in staphylococcus aureus reveals an interaction between extracellular DNA and polysaccharide in the extracellular matrix. J Bacteriol. 2020;202(8): doi: 10.1128/JB.00593-19
  • Roux A, Todd DA, Velazquez JV. CodY-mediated regulation of the staphylococcus aureus agr system integrates nutritional and population density signals. J Bacteriol. 2014;196(6):1184–1196. doi: 10.1128/JB.00128-13
  • Carvalhais V, Amado F, Cerveira F. Immunoreactive pattern of Staphylococcus epidermidis biofilm against human whole saliva. Electrophoresis. 2015;36(9–10):1228–1233. doi: 10.1002/elps.201500043
  • Gaio V, Lopes N, Cerca N. codY and pdhA expression is induced in staphylococcus epidermidis biofilm and planktonic populations with higher proportions of viable but non-culturable cells. Front Cell Infect Microbiol. 2021; 11:771666. doi: 10.3389/fcimb.2021.771666
  • Majerczyk CD, Dunman PM, Luong TT. Direct targets of CodY in staphylococcus aureus. J Bacteriol. 2010;192(11):2861–2877. doi: 10.1128/JB.00220-10
  • Sadykov MR, Olson ME, Halouska S. Tricarboxylic acid cycle-dependent regulation of saphylococcus epidermidis polysaccharide intercellular adhesin synthesis. J Bacteriol. 2008;190(23):7621–7632. doi: 10.1128/JB.00806-08
  • Cramton SE, Gerke C, Schnell NF. The intercellular adhesion (ica) locus is present in staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999; 67(10):5427–33. doi: 10.1128/IAI.67.10.5427-5433.1999
  • Gill SR, Fouts DE, Archer GL. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol. 2005;187(7):2426–2438. doi: 10.1128/JB.187.7.2426-2438.2005
  • Roche FM, Meehan M, Foster TJ. The staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology (Reading). 2003;149(10):2759–2767. doi: 10.1099/mic.0.26412-0
  • Tormo MA, Marti M, Valle J. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol. 2005;187(7):2348–2356. doi: 10.1128/JB.187.7.2348-2356.2005
  • Lucas AL, Manna AC Phenotypic characterization of sarR mutant in staphylococcus aureus. Microb Pathog. 2013; 57:52–61. doi: 10.1016/j.micpath.2012.11.008
  • Wang L, Li M, Dong D. SarZ is a key regulator of biofilm formation and virulence in staphylococcus epidermidis. J Infect Dis. 2008;197(9):1254–1262. doi: 10.1086/586714
  • Rowe SE, Mahon V, Smith SG. A novel role for SarX in staphylococcus epidermidis biofilm regulation. Microbiology (Reading). 2011;157(4):1042–1049. doi: 10.1099/mic.0.046581-0
  • Cue D, Lei MG, Lee CY. Activation of sarX by Rbf is required for biofilm formation and icaADBC expression in staphylococcus aureus. J Bacteriol. 2013;195(7):1515–1524. doi: 10.1128/JB.00012-13
  • Lim Y, Jana M, Luong TT. Control of glucose- and NaCl-induced biofilm formation by rbf in staphylococcus aureus. J Bacteriol. 2004;186(3):722–729. doi: 10.1128/JB.186.3.722-729.2004
  • Cue D, Lei MG, Luong TT. Rbf promotes biofilm formation by staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol. 2009;191(20):6363–6373. doi: 10.1128/JB.00913-09
  • Rowe SE, Campbell C, Lowry C. AraC-type regulator Rbf controls the staphylococcus epidermidis biofilm phenotype by negatively regulating the icaADBC repressor SarR. J Bacteriol. 2016;198(21):2914–2924. doi: 10.1128/JB.00374-16
  • Liu Q, Yeo WS, Bae T. The SaeRS two-component system of staphylococcus aureus. Genes (Basel). 2016;7(10):81. doi: 10.3390/genes7100081
  • Handke LD, Rogers KL, Olson ME. Staphylococcus epidermidis saeR is an effector of anaerobic growth and a mediator of acute inflammation. Infect Immun. 2008;76(1):141–152. doi: 10.1128/IAI.00556-07
  • Collins MM, Behera RK, Pallister KB. The accessory gene saeP of the SaeR/S two-component gene regulatory system impacts staphylococcus aureus virulence during neutrophil interaction. Front Microbiol 2020; 11:561. doi: 10.3389/fmicb.2020.00561
  • Lou Q, Zhu T, Hu J. Role of the SaeRS two-component regulatory system in staphylococcus epidermidis autolysis and biofilm formation. BMC Microbiol. 2011;11(1):146. doi: 10.1186/1471-2180-11-146
  • Pragman AA, Yarwood JM, Tripp TJ. Characterization of virulence factor regulation by SrrAB, a two-component system in staphylococcus aureus. J Bacteriol. 2004;186(8):2430–2438. doi: 10.1128/JB.186.8.2430-2438.2004
  • Wu Y, Wu Y, Zhu T. Staphylococcus epidermidis SrrAB regulates bacterial growth and biofilm formation differently under oxic and microaerobic conditions. J Bacteriol. 2015;197(3):459–476. doi: 10.1128/JB.02231-14
  • Kraus D, Herbert S, Kristian SA. The GraRS regulatory system controls staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol. 2008;8(1):85. doi: 10.1186/1471-2180-8-85
  • Costa SK, Cho J, Cheung AL. GraS sensory activity in staphylococcus epidermidis is modulated by the “Guard loop” of VraG and the ATPase activity of VraF. J Bacteriol. 2021;203(17):e0017821. doi: 10.1128/JB.00178-21
  • Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell. 2010;1(2):143–152. doi: 10.1007/s13238-010-0004-3
  • Liu WP, Chen YH, Ming X. Design and synthesis of a novel cationic peptide with potent and broad-spectrum antimicrobial activity. Biomed Res Int. 2015; 2015:578764. doi: 10.1155/2015/578764
  • Wang C, Li M, Dong D. Role of ClpP in biofilm formation and virulence of staphylococcus epidermidis. Microbes Infect. 2007;9(11):1376–1383. doi: 10.1016/j.micinf.2007.06.012
  • Frees D, Qazi SN, Hill PJ. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 2003; 48(6):1565–78. doi: 10.1046/j.1365-2958.2003.03524.x
  • Frees D, Gerth U, Ingmer H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of staphylococcus aureus. Int J Med Microbiol. 2014;304(2):142–149. doi: 10.1016/j.ijmm.2013.11.009
  • Alqarzaee AA, Chaudhari SS, Islam MM. Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proc Natl Acad Sci USA. 2021;118(47):e2109671118. doi: 10.1073/pnas.2109671118
  • Mack D, Becker P, Chatterjee I. Mechanisms of biofilm formation in staphylococcus epidermidis and staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol. 2004; 294(2–3):203–12. doi: 10.1016/j.ijmm.2004.06.015
  • Savijoki K, Iivanainen A, Siljamaki P. Genomics and proteomics provide new insight into the commensal and pathogenic lifestyles of bovine- and human-associated staphylococcus epidermidis strains. J Proteome Res. 2014;13(8):3748–3762. doi: 10.1021/pr500322d
  • Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol. 2004;186(7):1911–1918. doi: 10.1128/JB.186.7.1911-1918.2004
  • Pamp SJ, Frees D, Engelmann S. Spx is a global effector impacting stress tolerance and biofilm formation in staphylococcus aureus. J Bacteriol. 2006;188(13):4861–4870. doi: 10.1128/JB.00194-06
  • Wang C, Fan J, Niu C. Role of spx in biofilm formation of Staphylococcus epidermidis. FEMS Immunol Med Microbiol. 2010;59(2):152–160. doi: 10.1111/j.1574-695X.2010.00673.x
  • Ziebuhr W, Dietrich K, Trautmann M. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int J Med Microbiol. 2000;290(1):115–120. doi: 10.1016/S1438-4221(00)80115-0
  • Kozitskaya S, Cho SH, Dietrich K. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun. 2004;72(2):1210–1215. doi: 10.1128/IAI.72.2.1210-1215.2004
  • Hennig S, Nyunt Wai S, Ziebuhr W. Spontaneous switch to PIA-independent biofilm formation in an ica-positive staphylococcus epidermidis isolate. Int J Med Microbiol. 2007;297(2):117–122. doi: 10.1016/j.ijmm.2006.12.001
  • Hennig S, Ziebuhr W. A transposase-independent mechanism gives rise to precise excision of IS256 from insertion sites in staphylococcus epidermidis. J Bacteriol. 2008;190(4):1488–1490. doi: 10.1128/JB.01290-07
  • Gu J, Li H, Li M. Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect. 2005;61(4):342–348. doi: 10.1016/j.jhin.2005.04.017
  • Murugesan S, Mani S, Kuppusamy I. Role of insertion sequence element is256 as a virulence marker and its association with biofilm formation among methicillin-resistant staphylococcus epidermidis from hospital and community settings in Chennai, South India. Indian J Med Microbiol. 2018;36(1):124–126. doi: 10.4103/ijmm.IJMM_17_276
  • Du X, Zhu Y, Song Y. Molecular analysis of Staphylococcus epidermidis strains isolated from community and hospital environments in China. PLOS ONE. 2013;8(5):e62742. doi: 10.1371/journal.pone.0062742
  • Li M, Wang X, Gao Q. Molecular characterization of staphylococcus epidermidis strains isolated from a teaching hospital in Shanghai, China. J Med Microbiol. 2009;58(4):456–461. doi: 10.1099/jmm.0.007567-0
  • Lee JYH, Monk IR, Goncalves da Silva A. Global spread of three multidrug-resistant lineages of staphylococcus epidermidis. Nat Microbiol. 2018;3(10):1175–1185. doi: 10.1038/s41564-018-0230-7
  • Koskela A, Nilsdotter-Augustinsson A, Persson L. Prevalence of the ica operon and insertion sequence IS256 among staphylococcus epidermidis prosthetic joint infection isolates. Eur J Clin Microbiol Infect Dis 2009; 28(6):655–60. doi: 10.1007/s10096-008-0664-6
  • Sanchez A, Benito N, Rivera A. Pathogenesis of staphylococcus epidermidis in prosthetic joint infections: can identification of virulence genes differentiate between infecting and commensal strains? J Hosp Infect. 2020;105(3):561–568. doi: 10.1016/j.jhin.2020.04.026
  • Montanaro L, Campoccia D, Pirini V. Antibiotic multiresistance strictly associated with IS256 and ica genes in staphylococcus epidermidis strains from implant orthopedic infections. J Biomed Mater Res A 2007; 83(3):813–8. doi: 10.1002/jbm.a.31399
  • Petrelli D, Zampaloni C, D’Ercole S. Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur J Clin Microbiol Infect Dis. 2006;25(12):773–781. doi: 10.1007/s10096-006-0226-8
  • Byrne ME, Rouch DA, Skurray RA. Nucleotide sequence analysis of IS256 from the staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene. 1989;81(2):361–367. doi: 10.1016/0378-1119(89)90197-2
  • Montanaro L, Speziale P, Campoccia D. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 2011; 6(11):1329–49. doi: 10.2217/fmb.11.117
  • Sabate Bresco M, L O, Zeiter S. Influence of fracture stability on Staphylococcus epidermidis and staphylococcus aureus infection in a murine femoral fracture model. Eur Cell Mater. 2017; 34:321–40. 10.22203/eCM.v034a20
  • Areschoug T, Gordon S. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. In: Egesten A, A Schmidt H Herwald, editors. Contributions to microbiology. Basel: KARGER; 2008. p 45–60.
  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2009;227(1):221–233. doi: 10.1111/j.1600-065X.2008.00731.x
  • Strunk T, Power Coombs MR, Currie AJ. TLR2 mediates recognition of live Staphylococcus epidermidis and clearance of bacteremia. PLOS ONE. 2010;5(4):e10111. doi: 10.1371/journal.pone.0010111
  • Hajjar AM, O’Mahony DS, Ozinsky A. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol. 2001;166(1):15–19. doi: 10.4049/jimmunol.166.1.15
  • Lai Y, Di Nardo A, Nakatsuji T. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat Med 2009; 15(12):1377–82. doi: 10.1038/nm.2062
  • Hruz P, Zinkernagel AS, Jenikova G. NOD2 contributes to cutaneous defense against staphylococcus aureus through α-toxin-dependent innate immune activation. Proc Natl Acad Sci USA 2009; 106(31):12873–8. doi: 10.1073/pnas.0904958106
  • Muller-Anstett MA, Muller P, Albrecht T. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLOS ONE. 2010;5(10):e13153. doi: 10.1371/journal.pone.0013153
  • Fournier B. The function of TLR2 during staphylococcal diseases. Front Cell Infect Microbiol. 2012; 2:167. 10.3389/fcimb.2012.00167
  • Hanzelmann D, Joo HS, Franz-Wachtel M. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun. 2016;7(1):12304. doi: 10.1038/ncomms12304
  • de Vor L, Rooijakkers SHM, van Strijp JAG. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett. 2020; 594(16):2556–69. doi: 10.1002/1873-3468.13767
  • Naik S, Bouladoux N, Linehan JL. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 2015; 520(7545):104–8. doi: 10.1038/nature14052
  • Scharschmidt TC, Vasquez KS, Truong HA. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015;43(5):1011–1021. doi: 10.1016/j.immuni.2015.10.016
  • Li D, Wang W, Wu Y. Lipopeptide 78 from staphylococcus epidermidis Activates β-Catenin to inhibit skin inflammation. J Immunol 2019; 202(4):1219–28. doi: 10.4049/jimmunol.1800813
  • Ochlich D, Rademacher F, Drerup KA. The influence of the commensal skin bacterium Staphylococcus epidermidis on the epidermal barrier and inflammation: implications for atopic dermatitis. Exp Dermatol. 2023;32(4):555–561. doi: 10.1111/exd.14727
  • Spiliopoulou AI, Kolonitsiou F, Krevvata MI. Bacterial adhesion, intracellular survival and cytokine induction upon stimulation of mononuclear cells with planktonic or biofilm phase staphylococcus epidermidis. FEMS Microbiol Lett. 2012;330(1):56–65. doi: 10.1111/j.1574-6968.2012.02533.x
  • Cerca N, Jefferson KK, Oliveira R. Comparative antibody-mediated phagocytosis of staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun. 2006;74(8):4849–4855. doi: 10.1128/IAI.00230-06
  • Schommer NN, Christner M, Hentschke M. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun. 2011;79(6):2267–2276. doi: 10.1128/IAI.01142-10
  • Kristian SA, Birkenstock TA, Sauder U. Biofilm formation induces C3a release and protects staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis. 2008;197(7):1028–1035. doi: 10.1086/528992
  • Serruto D, Rappuoli R, Scarselli M. Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nat Rev Microbiol. 2010; 8(6):393–9. doi: 10.1038/nrmicro2366
  • Peng P, Baldry M, Gless BH. Effect of Co-inhabiting coagulase negative staphylococci on S. aureus agr quorum sensing, host factor binding, and biofilm formation. Front Microbiol. 2019; 10:2212. doi: 10.3389/fmicb.2019.02212
  • Zhou Y, Xu X, Liu Y. Heterogeneous regulation of staphylococcusAureus by different staphylococcus Epidermidisagr types in atopic dermatitis. J Invest Dermatol. 2023; 143(12):2484–93 e11. doi: 10.1016/j.jid.2023.05.014
  • Cotter PD, Ross RP, Hill C Bacteriocins — a viable alternative to antibiotics? Nat Rev Microbiol 2013; 11(2):95–105. doi: 10.1038/nrmicro2937
  • Janek D, Zipperer A, Kulik A. High frequency and diversity of antimicrobial activities produced by Nasal staphylococcus strains against bacterial competitors. PLOS Pathog. 2016;12(8):e1005812. doi: 10.1371/journal.ppat.1005812
  • Bierbaum G, Gotz F, Peschel A. The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie Van Leeuwenhoek. 1996;69(2):119–127. doi: 10.1007/BF00399417
  • Allgaier H, Jung G, Werner RG. Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic. Eur J Biochem 1986; 160(1):9–22. doi: 10.1111/j.1432-1033.1986.tb09933.x
  • Ekkelenkamp MB, Hanssen M, Danny Hsu ST. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of staphylococcus epidermidis. FEBS Lett. 2005;579(9):1917–1922. doi: 10.1016/j.febslet.2005.01.083
  • Heidrich C, Hantke K, Bierbaum G. Identification and analysis of a gene encoding a Fur-like protein of staphylococcus epidermidis. FEMS Microbiol Lett. 1996;140(2–3):253–259. doi: 10.1111/j.1574-6968.1996.tb08345.x
  • Sandiford S, Upton M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrob Agents Chemother. 2012;56(3):1539–1547. doi: 10.1128/AAC.05397-11
  • Ahle CM, Stodkilde K, Poehlein A. Interference and co-existence of staphylococci and cutibacterium acnes within the healthy human skin microbiome. Commun Biol. 2022;5(1):923. doi: 10.1038/s42003-022-03897-6
  • Nurxat N, Wang L, Wang Q. Commensal staphylococcus epidermidis defends against staphylococcus aureus through SaeRS two-component system. ACS Omega. 2023;8(20):17712–17718. doi: 10.1021/acsomega.3c00263
  • Sugimoto S, Iwamoto T, Takada K. Staphylococcus epidermidis Esp degrades specific proteins associated with staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol. 2013;195(8):1645–1655. doi: 10.1128/JB.01672-12
  • Pastar I, O’Neill K, Padula L. Staphylococcus epidermidis boosts innate immune response by activation of gamma delta T cells and induction of perforin-2 in human skin. Front Immunol 2020; 11:550946. doi: 10.3389/fimmu.2020.550946
  • Lai Y, Gallo RL Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Tar 2008; 8(3):144–55. doi: 10.2174/1871526510808030144
  • Lai Y, Cogen AL, Radek KA. Activation of TLR2 by a small molecule produced by staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211–2221. doi: 10.1038/jid.2010.123
  • Jones KJ, Perris AD, Vernallis AB. Induction of inflammatory cytokines and nitric oxide in J774.2 cells and murine macrophages by lipoteichoic acid and related cell wall antigens from staphylococcus epidermidis. J Med Microbiol. 2005;54(4):315–321. doi: 10.1099/jmm.0.45872-0
  • Rodrigues M, Black GG, white, and gray: macrophages in skin repair and disease. Curr Pathobiol Rep 2017; 5(4):333–42. doi: 10.1007/s40139-017-0152-8
  • Bjerre RD, Bandier J, Skov L. The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol. 2017;177(5):1272–1278. doi: 10.1111/bjd.15390
  • Keshari S, Balasubramaniam A, Myagmardoloonjin B. Butyric acid from probiotic staphylococcus epidermidis in the skin microbiome down-Regulates the ultraviolet-induced pro-inflammatory IL-6 Cytokine via short-chain fatty acid receptor. Int J Mol Sci. 2019;20(18):20. doi: 10.3390/ijms20184477
  • Luqman A, Muttaqin MZ, Yulaipi S. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun Biol. 2020;3(1):277. doi: 10.1038/s42003-020-1000-7
  • Garcia P, Benitez R, Lam M. Coagulase-negative staphylococci: clinical, microbiological and molecular features to predict true bacteraemia. J Med Microbiol. 2004;53(1):67–72. doi: 10.1099/jmm.0.04994-0
  • Papadimitriou-Olivgeri I, Giormezis N, Papadimitriou-Olivgeris M. Number of positive blood cultures, biofilm formation, and adhesin genes in differentiating true coagulase-negative staphylococci bacteremia from contamination. Eur J Clin Microbiol Infect Dis. 2016;35(1):57–66. doi: 10.1007/s10096-015-2506-7
  • Osaki S, Kikuchi K, Moritoki Y. Distinguishing coagulase-negative staphylococcus bacteremia from contamination using blood-culture positive bottle detection pattern and time to positivity. J Infect Chemother. 2020;26(7):672–675. doi: 10.1016/j.jiac.2020.02.004
  • Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977;296(23):1305–1309. doi: 10.1056/NEJM197706092962301
  • Neut D, van Horn JR, van Kooten TG. Detection of biomaterial-associated infections in orthopaedic joint implants. Clin Orthop Relat Res 2003;413:261–8. doi: 10.1097/01.blo.0000073345.50837.84
  • Gbejuade HO, Lovering AM, Webb JC The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015; 86(2):147–58. doi: 10.3109/17453674.2014.966290
  • Egglestone A, Ingoe H, Rees J. Scoping review: diagnosis and management of periprosthetic joint infection in shoulder arthroplasty. Shoulder Elbow. 2019;11(3):167–181. doi: 10.1177/1758573218779076
  • Wurm A, Kuhn J, Kugel K. Raman microscopic spectroscopy as a diagnostic tool to detect staphylococcus epidermidis in bone grafts. Spectrochim Acta A Mol Biomol Spectrosc 2022; 280:121570. doi: 10.1016/j.saa.2022.121570
  • Bras S, Franca A. Transcriptome mining to identify molecular markers for the diagnosis of Staphylococcus epidermidis bloodstream infections. Antibiotics. 2022;11(11):11. doi: 10.3390/antibiotics11111596
  • Jukes L, Mikhail J, Bome-Mannathoko N. Rapid differentiation of staphylococcus aureus, staphylococcus epidermidis and other coagulase-negative staphylococci and meticillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR. J Med Microbiol. 2010;59(12):1456–1461. doi: 10.1099/jmm.0.023168-0
  • Jin WY, Jang SJ, Lee MJ. Evaluation of VITEK 2, MicroScan, and phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis. 2011;70(4):442–447. doi: 10.1016/j.diagmicrobio.2011.04.013
  • Chatzigeorgiou KS, Siafakas N, Petinaki E. Identification of staphylococci by phoenix: validation of a new protocol and comparison with Vitek 2. Diagn Microbiol Infect Dis. 2010;68(4):375–381. doi: 10.1016/j.diagmicrobio.2010.08.010
  • Zhu W, Sieradzki K, Albrecht V. Evaluation of the Biotyper MALDI-TOF MS system for identification of staphylococcus species. J Microbiol Methods. 2015; 117:14–17.10.1016/j.mimet.2015.07.014
  • Peel TN, Cole NC, Dylla BL. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory. Diagn Microbiol Infect Dis. 2015;81(3):163–168. doi: 10.1016/j.diagmicrobio.2014.11.015
  • Al-Manei K, Ghorbani M, Naud S. Clinical microbial identification of severe oral infections by MALDI-TOF mass spectrometry in Stockholm County: an 11-Year (2010 to 2020) epidemiological investigation. Microbiol Spectr 2022; 10(6):e0248722. doi: 10.1128/spectrum.02487-22
  • Rosa NM, Penati M, Fusar-Poli S. Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus staphylococcus, mammaliicoccus, and streptococcus spp. associated with sheep and goat mastitis. Vet Res. 2022; 53(1):84. doi: 10.1186/s13567-022-01102-4
  • Kleinschmidt S, Huygens F, Faoagali J. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol 2015; 10(11):1859–79. doi: 10.2217/fmb.15.98
  • Kuo FC, Chien CC, Lee MS. Rapid diagnosis of periprosthetic joint infection from synovial fluid in blood culture bottles by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLOS ONE. 2020;15(9):e0239290. doi: 10.1371/journal.pone.0239290
  • Schuster D, Josten M, Janssen K. Detection of methicillin-resistant coagulase-negative staphylococci harboring the class a mec complex by MALDI-TOF mass spectrometry. Int J Med Microbiol. 2018;308(5):522–526. doi: 10.1016/j.ijmm.2018.05.001
  • Alksne L, Makarova S, Avsejenko J. Determination of methicillin-resistant staphylococcus aureus and staphylococcus epidermidis by MALDI-TOF MS in clinical isolates from Latvia. Clin Mass Spectrom 2020; 16:33–39. doi: 10.1016/j.clinms.2020.03.001
  • Caputo P, Di Martino MC, Perfetto B. Use of MALDI-TOF MS to discriminate between biofilm-producer and non-producer strains of Staphylococcus epidermidis. Int J Environ Res Public Health. 2018;15(8):15. doi: 10.3390/ijerph15081695
  • Skovdal SM, Jorgensen NP, Meyer RL. JMM profile: staphylococcus epidermidis. J Med Microbiol. 2022;71(10):71. doi: 10.1099/jmm.0.001597
  • Wozniak RAF, Aquavella JV. Antibiotics in ophthalmology practice. Expert Rev Ophthalmol. 2017;12(3):243–250. doi: 10.1080/17469899.2017.1318065
  • Michael E, Welch S, Niederer RL. Rapid treatment of endophthalmitis with intravitreal antibiotics is associated with better vision outcomes. Clin Exp Ophthalmol. 2023;51(2):137–143. doi: 10.1111/ceo.14186
  • Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125(4):353–364. doi: 10.1111/apm.12687
  • Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):158–168. doi: 10.1111/j.1574-695X.2012.00938.x
  • Tesch W, Ryffel C, Strassle A. Evidence of a novel staphylococcal mec-encoded element (mecR) controlling expression of penicillin-binding protein 2’. Antimicrob Agents Chemother. 1990;34(9):1703–1706. doi: 10.1128/AAC.34.9.1703
  • Archer GL, Niemeyer DM. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 1994;2(10):343–347. doi: 10.1016/0966-842X(94)90608-4
  • Wu Z, Li F, Liu D. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome Recombinase, CcrC2. Antimicrob Agents Chemother. 2015;59(12):7597–7601. doi: 10.1128/AAC.01692-15
  • Lee AS, de Lencastre H, Garau J. Methicillin-resistant staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):18033. doi: 10.1038/nrdp.2018.33
  • Lakhundi S, Zhang K. Methicillin-resistant staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4): doi: 10.1128/CMR.00020-18
  • Zhu T, Zhao Y Correlation between type IIIA CRISPR–cas system and SCCmec in Staphylococcus epidermidis. Arch Microbiol 2021; 203(10):6275–86. doi: 10.1007/s00203-021-02595-x
  • Wisplinghoff H, Rosato AE, Enright MC. Related clones containing SCCmec type IV predominate among clinically significant staphylococcus epidermidis isolates. Antimicrob Agents Chemother. 2003;47(11):3574–3579. doi: 10.1128/AAC.47.11.3574-3579.2003
  • Malik S, Coombs GW, Fg O. Molecular typing of methicillin-resistant staphylococci isolated from cats and dogs. J Antimicrob Chemother 2006; 58(2):428–31. doi: 10.1093/jac/dkl253
  • Jamaluddin TZ, Kuwahara-Arai K, Hisata K. Extreme genetic diversity of methicillin-resistant Staphylococcus epidermidis strains disseminated among healthy Japanese children. J Clin Microbiol 2008; 46(11):3778–83. doi: 10.1128/JCM.02262-07
  • Ruppe E, Barbier F, Mesli Y. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant staphylococcus epidermidis and staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother. 2009;53(2):442–449. doi: 10.1128/AAC.00724-08
  • Garza-Gonzalez E, Morfin-Otero R, Llaca-Diaz JM. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect. 2010;138(5):645–654. doi: 10.1017/S0950268809991361
  • Zong Z, Peng C, Lu X. Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLOS ONE. 2011;6(5):e20191. doi: 10.1371/journal.pone.0020191
  • Saber H, Jasni AS, Jamaluddin T. A review of staphylococcal cassette chromosome mec (SCCmec) types in coagulase-negative staphylococci (CoNS) species. Malays J Med Sci. 2017;24(5):7–18. doi: 10.21315/mjms2017.24.5.2
  • Abbasi Montazeri E, Seyed-Mohammadi S, Asarehzadegan Dezfuli A. Investigation of SCC mec types I–IV in clinical isolates of methicillin-resistant coagulase-negative staphylococci in Ahvaz, Southwest Iran. Biosci Rep. 2020;40(5):40. doi: 10.1042/BSR20200847
  • Barbier F, Ruppe E, Hernandez D. Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between staphylococcus epidermidis and major clones of methicillin-resistant staphylococcus aureus. J Infect Dis. 2010;202(2):270–281. doi: 10.1086/653483
  • Bloemendaal AL, Brouwer EC, Fluit AC. Methicillin resistance transfer from staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PLOS ONE 2010; 5:e11841. 7 10.1371/journal.pone.0011841
  • Stojanov M, Sakwinska O, Moreillon P. Expression of SCCmec cassette chromosome recombinases in methicillin-resistant staphylococcus aureus and Staphylococcus epidermidis. J Antimicrob Chemother. 2013;68(4):749–757. doi: 10.1093/jac/dks494
  • Berends MS, Luz CF, Ott A. Trends in occurrence and phenotypic resistance of coagulase-negative staphylococci (CoNS) found in human blood in the Northern Netherlands between 2013 and 2019. Microorganisms. 2022;10(9):1801. doi: 10.3390/microorganisms10091801
  • Salgueiro VC, Iorio NL, Ferreira MC. Methicillin resistance and virulence genes in invasive and nasal staphylococcus epidermidis isolates from neonates. BMC Microbiol 2017; 17(1):15. doi: 10.1186/s12866-017-0930-9
  • Peixoto PB, Massinhani FH, Netto Dos Santos KR. Methicillin-resistant Staphylococcus epidermidis isolates with reduced vancomycin susceptibility from bloodstream infections in a neonatal intensive care unit. J Med Microbiol. 2020;69(1):41–45. doi: 10.1099/jmm.0.001117
  • Hooper DC. Fluoroquinolone resistance among gram-positive cocci. Lancet Infect Dis. 2002;2(9):530–538. doi: 10.1016/S1473-3099(02)00369-9
  • Bispo PJ, Alfonso EC, Flynn HW. Emerging 8-methoxyfluoroquinolone resistance among methicillin-susceptible Staphylococcus epidermidis isolates recovered from patients with endophthalmitis. J Clin Microbiol 2013; 51(9):2959–63. doi: 10.1128/JCM.00846-13
  • Kang JY, Lee W, Noh GM. Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their mutations in quinolone-resistance determining region. Antimicrob Resist Infect Control. 2020;9(1):177. doi: 10.1186/s13756-020-00841-3
  • Darboe KS, Oh TH, Choi SM. Antimicrobial susceptibility of staphylococcus species isolated from prosthetic joints with a focus on fluoroquinolone-resistance mechanisms. Diagn Microbiol Infect Dis. 2021;99(1):115173. doi: 10.1016/j.diagmicrobio.2020.115173
  • Fan KC, Lin J, Yannuzzi NA. In vitro susceptibilities of methicillin-susceptible and resistant staphylococci to traditional antibiotics compared to a novel fluoroquinolone. J Ophthalmic Inflamm Infect. 2020;10(1):9. doi: 10.1186/s12348-020-0200-0
  • Miyanaga M, Nejima R, Miyai T. Changes in drug susceptibility and the quinolone-resistance determining region of Staphylococcus epidermidis after administration of fluoroquinolones. J Cataract Refract Surg. 2009;35(11):1970–1978. doi: 10.1016/j.jcrs.2009.05.049
  • Munier AL, de Lastours V, Barbier F. Comparative dynamics of the emergence of fluoroquinolone resistance in staphylococci from the nasal microbiota of patients treated with fluoroquinolones according to their environment. Int J Antimicrob Agents. 2015;46(6):653–659. doi: 10.1016/j.ijantimicag.2015.09.004
  • Cerca F, Franca A, Perez-Cabezas B. Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. J Med Microbiol 2014; 63(10):1274–83. doi: 10.1099/jmm.0.073163-0
  • Claessens J, Roriz M, Merckx R. Inefficacy of vancomycin and teicoplanin in eradicating and killing staphylococcus epidermidis biofilms in vitro. Int J Antimicrob Agents. 2015;45(4):368–375. doi: 10.1016/j.ijantimicag.2014.11.011
  • Sakimura T, Kajiyama S, Adachi S. Biofilm-forming Staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface. Biomed Res Int 2015; 2015:943056. doi: 10.1155/2015/943056
  • Krcmery V Jr., Trupl J, Drgona L. Nosocomial bacteremia due to vancomycin-resistant Staphylococcus epidermidis in four patients with cancer, neutropenia, and previous treatment with vancomycin. Eur J Clin Microbiol Infect Dis. 1996;15(3):259–261. doi: 10.1007/BF01591369
  • Del’ Alamo L, Cereda RF, Tosin I. Antimicrobial susceptibility of coagulase-negative staphylococci and characterization of isolates with reduced susceptibility to glycopeptides. Diagn Microbiol Infect Dis. 1999;34(3):185–191. doi: 10.1016/S0732-8893(99)00034-6
  • Dunne WM Jr., Qureshi H, Pervez H. Staphylococcus epidermidis with intermediate resistance to vancomycin: elusive phenotype or laboratory artifact? Clin Infect Dis. 2001;33(1):135–137. doi: 10.1086/320890
  • Nakajima J, Hitomi S, Koganemaru H. Isolation of Staphylococcus epidermidis intermediately resistant to vancomycin in a case of central venous catheter-associated bloodstream infection. J Infect Chemother. 2013;19(5):983–986. doi: 10.1007/s10156-013-0562-4
  • Tevell S, Claesson C, Hellmark B. Heterogeneous glycopeptide intermediate staphylococcus epidermidis isolated from prosthetic joint infections. Eur J Clin Microbiol Infect Dis 2014; 33(6):911–7. doi: 10.1007/s10096-013-2025-3
  • Banousi A, Evangelopoulos DS, Stylianakis A. A comparative study of heterogeneous antibiotic resistance of microbial populations in conventional periprosthetic tissue cultures and sonication fluid cultures of orthopaedics explanted prostheses. Eur J Orthop Surg Traumatol. 2020;30(7):1307–1318. doi: 10.1007/s00590-020-02704-4
  • Dao TH, Alsallaq R, Parsons JB. Vancomycin heteroresistance and clinical outcomes in bloodstream infections caused by Coagulase-Negative Staphylococci. Antimicrob Agents Chemother. 2020;64(11):64. doi: 10.1128/AAC.00944-20
  • Biavasco F, Vignaroli C, Varaldo PE. Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis. 2000;19(6):403–417. doi: 10.1007/s100960000299
  • Kresken M, Klare I, Wichelhaus TA. Glycopeptide resistance in Enterococcus spp. And coagulase-negative staphylococci from hospitalised patients in Germany: occurrence, characteristics and dalbavancin susceptibility. J Glob Antimicrob Resist. 2022; 28:102–107. 10.1016/j.jgar.2021.12.016
  • Knafl D, Tobudic S, Cheng SC. Dalbavancin reduces biofilms of methicillin-resistant staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Eur J Clin Microbiol Infect Dis. 2017;36(4):677–680. doi: 10.1007/s10096-016-2845-z
  • Bartoletti M, Mikus E, Pascale R. Clinical experience with dalbavancin for the treatment of deep sternal wound infection. J Glob Antimicrob Resist. 2019; 18:195–198. doi: 10.1016/j.jgar.2019.03.015
  • Azamgarhi T, Donaldson J, Shah A. Dalbavancin to treat infected massive endoprostheses: a case report and cost comparison analysis. J Bone Jt Infect 2019; 4(5):234–7. doi: 10.7150/jbji.37980
  • Ziemyte M, Rodriguez-Diaz JC, Ventero MP. Effect of dalbavancin on staphylococcal biofilms when administered alone or in combination with biofilm-detaching compounds. Front Microbiol. 2020; 11:553. doi: 10.3389/fmicb.2020.00553
  • Di Pilato V, Ceccherini F, Sennati S. In vitro time-kill kinetics of dalbavancin against staphylococcus spp. biofilms over prolonged exposure times. Diagn Microbiol Infect Dis 2020; 96(2):114901. doi: 10.1016/j.diagmicrobio.2019.114901
  • Pantel A, Nachar O, Boudet A. In vitro activity of dalbavancin against Gram-positive bacteria isolated from diabetic foot osteomyelitis. J Antimicrob Chemother. 2021;76(8):2057–2060. doi: 10.1093/jac/dkab117
  • Simon S, Frank BJH, Hartmann S. Dalbavancin in gram-positive periprosthetic joint infections. J Antimicrob Chemother. 2022;77(8):2274–2277. doi: 10.1093/jac/dkac178
  • Jiang J-H, Dexter C, Cameron DR. Evolution of daptomycin resistance in coagulase-negative staphylococci involves mutations of the essential two-component regulator WalKR. Antimicrob Agents Chemother. 2019;63(3):63. doi: 10.1128/AAC.01926-18
  • Al Janabi J, Tevell S, Sieber RN. Emerging resistance in Staphylococcus epidermidis during dalbavancin exposure: a case report and in vitro analysis of isolates from prosthetic joint infections. J Antimicrob Chemother. 2023;78(3):669–677. doi: 10.1093/jac/dkac434
  • O’Neill AJ, Chopra I. Molecular basis of fusB-mediated resistance to fusidic acid in staphylococcus aureus. Mol Microbiol. 2006;59(2):664–676. doi: 10.1111/j.1365-2958.2005.04971.x
  • O’Neill AJ, McLaws F, Kahlmeter G. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother. 2007;51(5):1737–1740. doi: 10.1128/AAC.01542-06
  • Lin YT, Hung WC, Tsai JC. Wide dissemination of SCCfusC in fusidic acid-resistant coagulase-negative staphylococci and implication for its spread to methicillin-resistant staphylococcus aureus in Taiwan. Int J Antimicrob Agents. 2018;51(6):875–880. doi: 10.1016/j.ijantimicag.2018.01.020
  • Chen S, Rao L, Lin C. The dissemination of fusidic acid resistance among staphylococcus epidermidis clinical isolates in Wenzhou, China. Infect Drug Resist. 2022; 15:2537–2544. 10.2147/IDR.S365071
  • Chen HJ, Tsai JC, Hung WC. Identification of fusB-mediated fusidic acid resistance islands in staphylococcus epidermidis isolates. Antimicrob Agents Chemother. 2011;55(12):5842–5849. doi: 10.1128/AAC.00592-11
  • Chen C, Krishnan V, Macon K. Secreted proteases control autolysin-mediated biofilm growth of staphylococcus aureus. J Biol Chem 2013; 288(41):29440–52. doi: 10.1074/jbc.M113.502039
  • Hung WC, Chen HJ, Lin YT. Skin commensal staphylococci may act as reservoir for fusidic acid resistance genes. PLOS ONE. 2015;10(11):e0143106. doi: 10.1371/journal.pone.0143106
  • Long KS, Poehlsgaard J, Kehrenberg C. The cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin a antibiotics. Antimicrob Agents Chemother. 2006;50(7):2500–2505. doi: 10.1128/AAC.00131-06
  • Bonilla H, Huband MD, Seidel J. Multicity outbreak of linezolid-resistant staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis 2010; 51(7):796–800. doi: 10.1086/656281
  • Barros M, Branquinho R, Grosso F. Linezolid-resistant Staphylococcus epidermidis, Portugal, 2012. Emerg Infect Dis. 2014;20(5):903–905. doi: 10.3201/eid2005.130783
  • Decousser JW, Desroches M, Bourgeois-Nicolaos N. Susceptibility trends including emergence of linezolid resistance among coagulase-negative staphylococci and meticillin-resistant staphylococcus aureus from invasive infections. Int J Antimicrob Agents. 2015;46(6):622–630. doi: 10.1016/j.ijantimicag.2015.07.022
  • Bemer P, Aubry A, Tessier E Emergence of methicillin-resistant staphylococcus epidermidis resistant to linezolid: activity of ceftaroline versus ceftobiprole in a French University Hospital. Int J Antimicrob Agents. 2022; 60(3):106613. doi: 10.1016/j.ijantimicag.2022.106613
  • LaMarre JM, Locke JB, Shaw KJ. Low fitness cost of the multidrug resistance gene cfr. Antimicrob Agents Chemother. 2011;55(8):3714–3719. doi: 10.1128/AAC.00153-11
  • Mendes RE, Deshpande LM, Bonilla HF. Dissemination of a pSCFS3-like cfr-carrying plasmid in staphylococcus aureus and Staphylococcus epidermidis clinical isolates recovered from hospitals in Ohio. Antimicrob Agents Chemother. 2013;57(7):2923–2928. doi: 10.1128/AAC.00071-13
  • Brenciani A, Morroni G, Pollini S. Characterization of novel conjugative multiresistance plasmids carrying cfr from linezolid-resistant Staphylococcus epidermidis clinical isolates from Italy. J Antimicrob Chemother. 2016;71(2):307–313. doi: 10.1093/jac/dkv341
  • Brenciani A, Morroni G, Mingoia M. Stability of the cargo regions of the cfr-carrying, multiresistance plasmid pSP01 from Staphylococcus epidermidis. Int J Med Microbiol. 2016;306(8):717–721. doi: 10.1016/j.ijmm.2016.08.002
  • Lazaris A, Coleman DC, Kearns AM. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant staphylococcus epidermidis and vancomycin-resistant enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother. 2017;72(12):3252–3257. doi: 10.1093/jac/dkx292
  • LaMarre J, Mendes RE, Szal T. The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrob Agents Chemother. 2013;57(3):1173–1179. doi: 10.1128/AAC.02047-12
  • Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44(9):2530–2533. doi: 10.1128/AAC.44.9.2530-2533.2000
  • Mendes RE, Deshpande LM, Castanheira M. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother. 2008;52(6):2244–2246. doi: 10.1128/AAC.00231-08
  • Cortes MF, Andre C, Martins Simoes P. Persistence of a multidrug-resistant worldwide-disseminated methicillin-resistant Staphylococcus epidermidis clone harbouring the cfr linezolid resistance gene in a French hospital with evidence of interspecies transfer to several staphylococcus aureus lineages. J Antimicrob Chemother. 2022;77(7):1838–1846. doi: 10.1093/jac/dkac119
  • He HJ, Sun FJ, Wang Q. Erythromycin resistance features and biofilm formation affected by subinhibitory erythromycin in clinical isolates of Staphylococcus epidermidis. J Microbiol Immunol Infect. 2016;49(1):33–40. doi: 10.1016/j.jmii.2014.03.001
  • Bouchami O, Achour W, Ben Hassen A. Prevalence and mechanisms of macrolide resistance among Staphylococcus epidermidis isolates from neutropenic patients in Tunisia. Clin Microbiol Infect. 2007;13(1):103–106. doi: 10.1111/j.1469-0691.2006.01567.x
  • Gatermann SG, Koschinski T, Friedrich S. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect. 2007;13(8):777–781. doi: 10.1111/j.1469-0691.2007.01749.x
  • Juda M, Chudzik-Rzad B, Malm A. The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant Staphylococcus epidermidis. Mem Inst Oswaldo Cruz. 2016;111(3):155–160. doi: 10.1590/0074-02760150356
  • Xu Z, Misra R, Jamrozy D. Whole genome sequence and comparative genomics analysis of multi-drug resistant environmental staphylococcus epidermidis ST59. G3 (Bethesda). 2018; 8(7):2225–30. doi: 10.1534/g3.118.200314
  • Mirzaei R, Yousefimashouf R, Arabestani MR. The issue beyond resistance: Methicillin-resistant Staphylococcus epidermidis biofilm formation is induced by subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin. PLOS ONE. 2022;17(11):e0277287. doi: 10.1371/journal.pone.0277287
  • Aliyu S, McGowan K, Hussain D. Prevalence and outcomes of multi-drug resistant blood stream infections among nursing home residents admitted to an acute care hospital. J Intensive Care Med. 2022;37(4):565–571. doi: 10.1177/08850666211014450
  • Miragaia M, Couto I, Pereira SF. Molecular characterization of methicillin-resistant Staphylococcus epidermidis clones: evidence of geographic dissemination. J Clin Microbiol 2002; 40(2):430–8. doi: 10.1128/JCM.40.2.430-438.2002
  • Farina N, Samudio M, Carpinelli L. Methicillin resistance and biofilm production of staphylococcus epidermidis isolates from infectious and normal flora conjunctiva. Int Ophthalmol. 2017;37(4):819–825. doi: 10.1007/s10792-016-0339-8
  • Hanssen AM, Kjeldsen G, Sollid JU Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother 2004; 48(1):285–96. doi: 10.1128/AAC.48.1.285-296.2004
  • Mongkolrattanothai K, Boyle S, Murphy TV. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(5):1823–1836. doi: 10.1128/AAC.48.5.1823-1836.2004
  • Fisarova L, Pantucek R, Botka T. Variability of resistance plasmids in coagulase-negative staphylococci and their importance as a reservoir of antimicrobial resistance. Res Microbiol. 2019;170(2):105–111. doi: 10.1016/j.resmic.2018.11.004
  • Maree M, Thi Nguyen LT, Ohniwa RL. Natural transformation allows transfer of SCCmec-mediated methicillin resistance in staphylococcus aureus biofilms. Nat Commun. 2022;13(1):2477. doi: 10.1038/s41467-022-29877-2
  • Bucci FA Jr., Evans RE, Amico LM. Antibacterial efficacy of prophylactic besifloxacin 0.6% and moxifloxacin 0.5% in patients undergoing cataract surgery. Clin Ophthalmol. 2015; 9:843–52. doi: 10.2147/OPTH.S83162
  • Liu C, Kakis A, Nichols A. Targeted use of vancomycin as perioperative prophylaxis reduces periprosthetic joint infection in revision TKA. Clin Orthop Relat Res. 2014;472(1):227–231. doi: 10.1007/s11999-013-3029-0
  • Nodzo SR, Boyle KK, Frisch NB Nationwide organism susceptibility patterns to common preoperative prophylactic antibiotics: what are we covering? J Arthroplasty. 2019; 34(7):S302–S6. doi: 10.1016/j.arth.2019.01.017
  • Stavrakis AI, Niska JA, Shahbazian JH. Combination prophylactic therapy with rifampin increases efficacy against an experimental Staphylococcus epidermidis subcutaneous implant-related infection. Antimicrob Agents Chemother. 2014;58(4):2377–2386. doi: 10.1128/AAC.01943-13
  • Bloom HL, Constantin L, Dan D. Implantation success and infection in cardiovascular implantable electronic device procedures utilizing an antibacterial envelope. Pacing Clin Electrophysiol. 2011;34(2):133–142. doi: 10.1111/j.1540-8159.2010.02931.x
  • Austin PD, Stapleton P, Elia M. Comparative effect of seven prophylactic locks to prevent biofilm biomass and viability in intravenous catheters. J Antimicrob Chemother. 2022;77(8):2191–2198. doi: 10.1093/jac/dkac181
  • Kaldirim H, Yazgan S, Kirgiz A. Effect of topical antibiotic prophylaxis on conjunctival flora and antibiotic resistance following intravitreal injections in patients with type 2 diabetes. Korean J Ophthalmol. 2020;34(4):265–273. doi: 10.3341/kjo.2019.0144
  • Kristensen MF, Zeng G, Neu TR. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow. J Oral Microbiol. 2017;9(1):1379826. doi: 10.1080/20002297.2017.1379826
  • Zampino DC, Samperi F, Mancuso M. Polymer blends based on 1-hexadecyl-3-methyl imidazolium 1,3-dimethyl 5-sulfoisophthalate ionic liquid: thermo-mechanical, surface morphology and antibacterial properties. Polymers. 2023;15(4):15. doi: 10.3390/polym15040970
  • Qi S, Kiratzis I, Adoni P. Porous cellulose thin films as sustainable and effective antimicrobial surface coatings. ACS Appl Mater Interfaces. 2023;15(17):20638–20648. doi: 10.1021/acsami.2c23251
  • Basu A, Heitz K, Stromme M. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Carbohydr Polym. 2018; 181:345–350. 10.1016/j.carbpol.2017.10.085
  • Fursatz M, Skog M, Sivler P. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε -poly-L-Lysine. Biomed Mater. 2018; 13(2):025014. doi: 10.1088/1748-605X/aa9486
  • Lopez-Carrizales M, Mendoza-Mendoza E, Peralta-Rodriguez RD. Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids Surf B Biointerfaces. 2020; 196:111292. doi: 10.1016/j.colsurfb.2020.111292
  • Janson O, Gururaj S, Pujari-Palmer S. Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Mater Sci Eng C Mater Biol Appl. 2019; 96:272–279. doi: 10.1016/j.msec.2018.11.021
  • Boix-Lemonche G, Guillem-Marti J, D’Este F. Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity. Colloids Surf B Biointerfaces 2020; 185:110586. doi: 10.1016/j.colsurfb.2019.110586
  • Shi Z, Neoh KG, Kang ET. Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules. 2009;10(6):1603–1611. doi: 10.1021/bm900203w
  • Xie CM, Lu X, Wang KF. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces. 2014;6(11):8580–8589. doi: 10.1021/am501428e
  • Ren X, van der Mei HC, Ren Y. Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. Mater Sci Eng C Mater Biol Appl. 2021; 123:112021. doi: 10.1016/j.msec.2021.112021
  • Os C, On L, Ol ND. Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces coated with silver and strontium-doped hydroxyapatite using a novel blasting process. Drug Deliv Transl Res. 2021;11(2):702–716. doi: 10.1007/s13346-021-00946-1
  • Joo H, Park J, Sutthiwanjampa C. Surface coating with hyaluronic acid-gelatin-crosslinked hydrogel on gelatin-conjugated poly(dimethylsiloxane) for implantable medical device-induced fibrosis. Pharmaceutics. 2021;13(2):269. doi: 10.3390/pharmaceutics13020269
  • Chen J, Xu M, Wang L. Converting lysozyme to hydrogel: A multifunctional wound dressing that is more than antibacterial. Colloids Surf B Biointerfaces. 2022; 219:112854. doi: 10.1016/j.colsurfb.2022.112854
  • Wassmann T, Kreis S, Behr M. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent. 2017;3(1):32. doi: 10.1186/s40729-017-0093-3
  • Gasik M, Braem A, Chaudhari A. Titanium implants with modified surfaces: meta-analysis of in vivo osteointegration. Mater Sci Eng C Mater Biol Appl 2015; 49:152–158. doi: 10.1016/j.msec.2014.12.074
  • Harro JM, Peters BM, O’May GA. Vaccine development in staphylococcus aureus: taking the biofilm phenotype into consideration. FEMS Immunol Med Microbiol. 2010;59(3):306–323. doi: 10.1111/j.1574-695X.2010.00708.x
  • Mirzaei B, Babaei R, Valinejad S. Staphylococcal vaccine antigens related to biofilm formation. Hum Vaccin Immunother. 2021;17(1):293–303. doi: 10.1080/21645515.2020.1767449
  • McKenney D, Pouliot K, Wang Y. Vaccine potential of poly-1-6 β-d-N-succinylglucosamine, an immunoprotective surface polysaccharide of staphylococcus aureus and staphylococcus epidermidis. J Biotechnol. 2000; 83(1–2):37–44. doi: 10.1016/S0168-1656(00)00296-0
  • Rennermalm A, Nilsson M, Flock JI. The fibrinogen binding protein of staphylococcus epidermidis is a target for opsonic antibodies. Infect Immun. 2004;72(5):3081–3083. doi: 10.1128/IAI.72.5.3081-3083.2004
  • Mack D, Davies AP, Harris LG, et al. Staphylococcus epidermidis biofilms: functional molecules, relation to virulence, and vaccine potential. In: Lindhorst T, Oscarson S, editors. GLycoscience and microbial adhesion. Topics in current chemistry. Vol. 288. Berlin, Heidelberg: Springer; 2009. p. 157–82. doi: 10.1007/128_2008_19
  • Sellman BR, Timofeyeva Y, Nanra J. Expression of Staphylococcus epidermidis SdrG increases following exposure to an in vivo environment. Infect Immun. 2008;76(7):2950–2957. doi: 10.1128/IAI.00055-08
  • Shahrooei M, Hira V, Khodaparast L. Vaccination with SesC decreases staphylococcus epidermidis biofilm formation. Infect Immun. 2012;80(10):3660–3668. doi: 10.1128/IAI.00104-12
  • Hofmans D, Khodaparast L, Khodaparast L. Ses proteins as possible targets for vaccine development against staphylococcus epidermidis infections. J Infect. 2018;77(2):119–130. doi: 10.1016/j.jinf.2018.03.013
  • Yan L, Zhang L, Ma H. A single B-repeat of Staphylococcus epidermidis accumulation-associated protein induces protective immune responses in an experimental biomaterial-associated infection mouse model. Clin Vaccine Immunol. 2014;21(9):1206–1214. doi: 10.1128/CVI.00306-14
  • Sellman BR, Howell AP, Kelly-Boyd C. Identification of immunogenic and serum binding proteins of staphylococcus epidermidis. Infect Immun. 2005;73(10):6591–6600. doi: 10.1128/IAI.73.10.6591-6600.2005
  • Anderson AS, Scully IL, Timofeyeva Y. Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. J Infect Dis. 2012;205(11):1688–1696. doi: 10.1093/infdis/jis272
  • Cole LE, Zhang J, Kesselly A. Limitations of murine models for assessment of antibody-mediated therapies or vaccine candidates against staphylococcus epidermidis bloodstream infection. Infect Immun. 2016;84(4):1143–1149. doi: 10.1128/IAI.01472-15
  • Weisman LE, Thackray HM, Steinhorn RH. A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics. 2011;128(2):271–279. doi: 10.1542/peds.2010-3081
  • Patel M, Kaufman DA. Anti-lipoteichoic acid monoclonal antibody (pagibaximab) studies for the prevention of staphylococcal bloodstream infections in preterm infants. Expert Opin Biol Ther. 2015;15(4):595–600. doi: 10.1517/14712598.2015.1019857
  • Pichichero ME. Challenges in vaccination of neonates, infants and young children. Vaccine. 2014;32(31):3886–3894. doi: 10.1016/j.vaccine.2014.05.008
  • Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705. doi: 10.1016/j.arcmed.2005.06.009
  • Ozawa S, Mirelman A, Stack ML. Cost-effectiveness and economic benefits of vaccines in low- and middle-income countries: a systematic review. Vaccine. 2012;31(1):96–108. doi: 10.1016/j.vaccine.2012.10.103
  • Wang CH, Hsieh YH, Powers ZM. Defeating antibiotic-resistant bacteria: exploring alternative therapies for a post-antibiotic era. Int J Mol Sci. 2020;21(3):1061. doi: 10.3390/ijms21031061
  • Kwon JH, Powderly WG. The post-antibiotic era is here. Science. 2021;373(6554):471. doi: 10.1126/science.abl5997