337
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Essential roles of Rad6 in conidial property, stress tolerance, and pathogenicity of Beauveria bassiana

ORCID Icon, , & ORCID Icon
Article: 2362748 | Received 12 Jan 2024, Accepted 28 May 2024, Published online: 11 Jun 2024

References

  • Zhang LB, Feng MG. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biot. 2018;102(12):4995–13. doi: 10.1007/s00253-018-9033-2
  • Wang DY, Fu B, Tong SM, et al. Two photolyases repair distinct DNA lesions and reactivate UVB-inactivated conidia of an insect mycopathogen under visible light. Appl Environ Microb. 2019;85(4):e02459–18. doi: 10.1128/AEM.02459-18
  • Engelberg D, Klein C, Martinetto H, et al. The UV response involving the ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell. 1994;77(3):381–390. doi: 10.1016/0092-8674(94)90153-8
  • Griffiths HR, Mistry P, Herbert KE, et al. Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Cl Lab Sci. 1998;35(3):189–237. doi: 10.1080/10408369891234192
  • Cox MM, Goodman MF, Kreuzer KN, et al. The importance of repairing stalled replication forks. Nature. 2000;404(6773):37–41. doi: 10.1038/35003501
  • Osborn AJ, Elledge SJ, Zou L. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol. 2002;12(11):509–516. doi: 10.1016/S0962-8924(02)02380-2
  • Friedberg EC. Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Bio. 2005;6(12):943–953. doi: 10.1038/nrm1781
  • Zhang HS, Lawrence CW. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. P Natl Acad Sci USA. 2005;102(44):15954–15959. doi: 10.1073/pnas.0504586102
  • Xu X, Blackwell S, Lin A, et al. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Mutat Res-Rev Mutat. 2015;764:43–50. doi: 10.1016/j.mrrev.2015.02.001
  • Daigaku Y, Davies AA, Ulrich HD. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature. 2010;465(7300):951–955. doi: 10.1038/nature09097
  • Karras GI, Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell. 2010;141(2):255–267. doi: 10.1016/j.cell.2010.02.028
  • Parker JL, Ulrich HD. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. Embo J. 2009;28(23):3657–3666. doi: 10.1038/emboj.2009.303
  • Das-Bradoo S, Nguyen HD, Wood JL, et al. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol. 2010;12(1):74–9; sup pp 1–20. doi: 10.1038/ncb2007
  • Silva GM, Finley D, Vogel C. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol. 2015;22(2):116–123. doi: 10.1038/nsmb.2955
  • Piro AS, Mayekar MK, Warner MH, et al. Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. P Natl Acad Sci USA. 2012;109(27):10837–10842. doi: 10.1073/pnas.1116994109
  • Kim J, Roeder RG. Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J Biol Chem. 2009;284(31):20582–20592. doi: 10.1074/jbc.M109.017442
  • Van Oss SB, Shirra MK, Bataille AR, et al. The histone modification domain of Paf1 complex subunit Rtf1 directly stimulates H2B ubiquitylation through an interaction with Rad6. Mol Cell. 2016;64(4):815–825. doi: 10.1016/j.molcel.2016.10.008
  • Wu Z, Liu J, Zhang QD, et al. Rad6-Bre1-mediated H2B ubiquitination regulates telomere replication by promoting telomere-end resection. Nucleic Acids Res. 2017;45(6):3308–3322. doi: 10.1093/nar/gkx101
  • Fu Y, Zhu Y, Zhang K, et al. Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell. 2008;133(4):601–611. doi: 10.1016/j.cell.2008.02.050
  • Song Y-H, Ahn SH. A Bre1-associated protein, large 1 (Lge1), promotes H2B ubiquitylation during the early stages of transcription elongation. J Biol Chem. 2010;285(4):2361–2367. doi: 10.1074/jbc.M109.039255
  • Nakanishi S, Lee JS, Gardner KE, et al. Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J Cell Bio. 2009;186(3):371–377. doi: 10.1083/jcb.200906005
  • Robzyk K, Recht L, Osley MA. Rad6-dependent ubiquitination of histone H2B in yeast. Science. 2000;287(5452):501–504. doi: 10.1126/science.287.5452.501
  • Schulze JM, Jackson J, Nakanishi S, et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell. 2009;35(5):626–641. doi: 10.1016/j.molcel.2009.07.017
  • Rhie B-H, Song Y-H, Ryu H-Y, et al. Cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. Biochem Biophys Res Commun. 2013;439(4):570–575. doi: 10.1016/j.bbrc.2013.09.017
  • Latham JA, Chosed RJ, Wang S, et al. Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell. 2011;146(5):709–719. doi: 10.1016/j.cell.2011.07.025
  • Huang H, Kahana A, Gottschling DE, et al. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol Cell Biol. 1997;17(11):6693–6699. doi: 10.1128/MCB.17.11.6693
  • Albrecht D, Hurlimann HC, Ceschin J, et al. Multiple chemo-genetic interactions between a toxic metabolite and the ubiquitin pathway in yeast. Curr Genet. 2018;64(6):1275–1286. doi: 10.1007/s00294-018-0843-7
  • Storchova Z, Gil APR, Janderova B, et al. The involvement of the RAD6 gene in starvation-induced reverse mutation in Saccharomyces cerevisiae. Mol Gen Genet. 1998;258(5):546–552. doi: 10.1007/s004380050766
  • de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007;43(3):237–256. doi: 10.1016/j.biocontrol.2007.08.001
  • Ying SH, Feng MG. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Virulence. 2018;9(1):1–4. doi: 10.1080/21505594.2017.1320012
  • Tong SM, Feng MG. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biot. 2019;103(2):577–587. doi: 10.1007/s00253-018-9516-1
  • Amobonye A, Bhagwat P, Singh S, et al. Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte. Fungal Biol. 2021;125(1):39–48. doi: 10.1016/j.funbio.2020.10.003
  • Mishra S, Malik A. Nutritional optimization of a native beauveria bassiana isolate (HQ917687) pathogenic to housefly, Musca domestica L. J Parasit Dis. 2013;37(2):199–207. doi: 10.1007/s12639-012-0165-5
  • Aynalem B, Muleta D, Venegas J, et al. Molecular phylogeny and pathogenicity of indigenous beauveria bassiana against the tomato leafminer, tuta absoluta meyrick 1917 (lepidoptera: gelechiidae), in Ethiopia. J Genet Eng Biotechnol. 2021;19(1):127. doi: 10.1186/s43141-021-00227-x
  • Gencer D. Isolation and characterization of a high-efficacy Beauveria bassiana strain from the European tent caterpillar, Malacosoma neustria Linnaeus (Lepidoptera: Lasiocampidae). Linnaeus (Lepidoptera: Lasiocampidae). Folia Microbiol (Praha). 2023;68(4):579–586. doi: 10.1007/s12223-023-01037-z
  • Shi H-B, Chen G-Q, Chen Y-P, et al. MoRad6-mediated ubiquitination pathways are essential for development and pathogenicity in magnaporthe oryzae. Environ Microbiol. 2016;18(11):4170–4187. doi: 10.1111/1462-2920.13515
  • Luo XC, Yu L, Xu SY, et al. Rad6, a ubiquitin conjugator required for insect-pathogenic lifestyle, UV damage repair, and genomic expression of Beauveria bassiana. Microbiol Res. 2024;281:127622. doi: 10.1016/j.micres.2024.127622
  • Game JC, Williamson MS, Spicakova T, et al. The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. Genetics. 2006;173(4):1951–1968. doi: 10.1534/genetics.106.057794
  • Sancar G, Sancar C, Bruegger B, et al. A global circadian repressor controls antiphasic expression of metabolic genes in neurospora. Mol Cell. 2011;44(5):687–697. doi: 10.1016/j.molcel.2011.10.019
  • Mascarin GM, Jaronski ST. The production and uses of Beauveria bassiana as a microbial insecticide. World J Microb Biot. 2016;32(11):177. doi: 10.1007/s11274-016-2131-3
  • Wang H, Peng H, Li W, et al. The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Front Microbiol. 2021;12:705343. doi: 10.3389/fmicb.2021.705343
  • Alali S, Mereghetti V, Faoro F, et al. Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLOS ONE. 2019;14(2):e0211457. doi: 10.1371/journal.pone.0211457
  • Liu R, Chen X, Zhao F, et al. The COMPASS complex regulates fungal development and virulence through histone crosstalk in the fungal pathogen Cryptococcus neoformans. J Fungi. 2023;9(6):672. doi: 10.3390/jof9060672
  • Willocquet L, Colombet D, Rougier M, et al. Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur J Plant Pathol. 1996;102(5):441–449. doi: 10.1007/BF01877138
  • Vlckova V, Zuffova Z, Brozmanova J. UV-induced mutability in repair-deficientrad6-1 strains of Saccharomyces cerevisiae is caused by a suppressor gene. Folia Microbiol. 1992;37(4):267–272. doi: 10.1007/BF02814561
  • Cai Q, Wang JJ, Shao W, et al. Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana. Pest Manag Sci. 2018;74(11):2626–2635. doi: 10.1002/ps.5054
  • Fan L, Bi T, Wang L, et al. DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J. 2020;477(14):2655–2677. doi: 10.1042/BCJ20190579
  • Freiberg G, Mesecar AD, Huang HH, et al. Characterization of novel rad6/ubc2 ubiquitin-conjugating enzyme mutants in yeast. Curr Genet. 2000;37(4):221–233. doi: 10.1007/s002940050523
  • Litwin A, Nowak M, Rozalska S. Entomopathogenic fungi: unconventional applications. Rev Environ Sci Bio. 2020;19(1):23–42. doi: 10.1007/s11157-020-09525-1
  • Gao BJ, Mou YN, Tong SM, et al. Subtilisin-like Pr1 proteases marking the evolution of pathogenicity in a wide-spectrum insect-pathogenic fungus. Virulence. 2020;11(1):365–380. doi: 10.1080/21505594.2020.1749487
  • Wang J, Ying SH, Hu Y, et al. Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen. Environ Microbiol. 2016;18(3):1037–1047. doi: 10.1111/1462-2920.13197
  • Heller J, Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol. 2011;49(1):369–390. doi: 10.1146/annurev-phyto-072910-095355
  • Zhang AX, Mouhoumed AZ, Tong SM, et al. BrlA and AbaA govern virulence-required dimorphic switch, conidiation, and pathogenicity in a fungal insect pathogen. mSystems. 2019;4(4):e00140–19. doi: 10.1128/mSystems.00140-19
  • Selvam K, Rahman SA, Forrester D, et al. Histone H4 LRS mutations can attenuate UV mutagenesis without affecting PCNA ubiquitination or sumoylation. DNA Repair. 2020;95:102959.
  • Li F, Ball LG, Fan L, et al. Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr Genet. 2018;64(2):459–468. doi: 10.1007/s00294-017-0753-0