1,919
Views
28
CrossRef citations to date
0
Altmetric
Review

The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells

&
Pages 135-144 | Received 10 Sep 2014, Accepted 07 May 2015, Published online: 20 Aug 2015

References

  • Sever R, Brugge JC. Signal transduction in Cancer. Cold Spring Harb Perspect Med 2015 Apr 1; 5(4). pii: a006098; PMID:25833940; http://dx.doi.org/10.1101/cshperspect.a006098
  • Albelda SM. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 1993; 68(1):4; PMID:8423675
  • Fidler IJ. Host and tumour factors in cancer metastasis. Eur J Clin Invest 1990; 20(5):481. 10. Balaji K, Colicelli J. RIN1 regulates cell migration through RAB5 GTPases and ABL tyrosine kinases. Commun Integr Biol 2013; 6(5):e25421; PMID:24265854; http://dx.doi.org/10.1111/j.1365-2362.1990.tb01889.x
  • Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med 2013; 19(11):1450; PMID:24202397; http://dx.doi.org/10.1038/nm.3391
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57; PMID:10647931; http://dx.doi.org/10.1016/S0092-8674(00)81683-9
  • Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1–2):43; PMID:23237552; http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40
  • Shin S, Wolgamott L, Yoon SO. Integrin trafficking and tumor progression. Int J Cell Biol 2012; 2012:516789; PMID:22121362; http://dx.doi.org/10.1155/2012/516789
  • Kawauchi T. Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int J Mol Sci 2012; 13(4):4564; PMID:22605996; http://dx.doi.org/10.3390/ijms13044564
  • Mutch LJ, Howden JD, Jenner EP, Poulter NS, Rappoport JZ. Polarised clathrin-mediated endocytosis of EGFR during chemotactic invasion. Traffic 2014 15(6):648; PMID:24921075; http://dx.doi.org/10.1111/tra.12165
  • Balaji K, Coliccelli J. Rin1 regulates cell migration thriught Rab5 GTPases abd ABL tyrpsinr kinases. Commun Interg Biol 2013; 6(5):e25421; http://dx.doi.org/10.4161/cib.25421
  • Pellinen T, Ivaska J. Integrin traffic. J Cell Sci 2006; 119(Pt 18):3723; PMID:16959902; http://dx.doi.org/10.1242/jcs.03216
  • Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol 2009; 174(5):1588; PMID:19342369; http://dx.doi.org/10.2353/ajpath.2009.080545
  • Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28(1–2):15; PMID:19169796; http://dx.doi.org/10.1007/s10555-008-9169-0
  • Friedl P, Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 2008; 68(18):7247; PMID:18794108; http://dx.doi.org/10.1158/0008-5472.CAN-08-0784
  • Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188(1):11; PMID:19951899; http://dx.doi.org/10.1083/jcb.200909003
  • Madsen CD, Sahai E. Cancer dissemination–lessons from leukocytes. Dev Cell 2010; 19(1):13; PMID:20643347; http://dx.doi.org/10.1016/j.devcel.2010.06.013
  • Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 2009; 185(1):11; PMID:19332889; http://dx.doi.org/10.1083/jcb.200807195
  • Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9(4):239; PMID:19279573; http://dx.doi.org/10.1038/nrc2618
  • Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006; 6(10):764; PMID:16990854; http://dx.doi.org/10.1038/nrc1949
  • Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 2008; 29(1):22; PMID:18037508; http://dx.doi.org/10.1016/j.tips.2007.10.011
  • Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 2002 4(7):487; PMID:12105419; http://dx.doi.org/10.1038/ncb807
  • Walsh LA, Damjanovski S. IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-beta1 resulting in epithelial to mesenchymal transition. Cell Commun Signal 2011; 9(1):10; PMID:21535875; http://dx.doi.org/10.1186/1478-811X-9-10
  • Tomaskovic-Crook E, Thompson EW, Thiery JP. Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res 2009; 11(6):213; PMID:19909494; http://dx.doi.org/10.1186/bcr2416
  • Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 2013; 126(Pt 2):393; PMID:23525005; http://dx.doi.org/10.1242/jcs.100115
  • Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004; 64(23):8585; PMID:15574765; http://dx.doi.org/10.1158/0008-5472.CAN-04-1136
  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003; 160(2):267; PMID:12527751; http://dx.doi.org/10.1083/jcb.200209006
  • Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den Broecke R, Lambert J, Van Belle S, Cocquyt V, Gespach C, et al. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 2010; 102(12):866; PMID:20484105; http://dx.doi.org/10.1093/jnci/djq153
  • Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet 2007; 369(9574):1742; PMID:17512859; http://dx.doi.org/10.1016/S0140-6736(07)60781-8
  • Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8:23; PMID:20822528; http://dx.doi.org/10.1186/1478-811X-8-23
  • Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett 2008; 582(14):2093; PMID:18460342; http://dx.doi.org/10.1016/j.febslet.2008.04.039
  • Wang HR, Ogunjimi AA, Zhang Y, Ozdamar B, Bose R, Wrana JL. Degradation of RhoA by Smurf1 ubiquitin ligase. Methods Enzymol 2006; 406:437; PMID:16472676; http://dx.doi.org/10.1016/S0076-6879(06)06032-0
  • Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 2006; 16(15):1515; PMID:16890527; http://dx.doi.org/10.1016/j.cub.2006.05.065
  • Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155(7):1639; PMID:24332913; http://dx.doi.org/10.1016/j.cell.2013.11.029
  • Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9(12):1392; PMID:18037882; http://dx.doi.org/10.1038/ncb1658
  • Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol 2012; 14(8):777; PMID:22854810; http://dx.doi.org/10.1038/ncb2548
  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162):557; PMID:17914389; http://dx.doi.org/10.1038/nature06188
  • Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141(1):39; PMID:20371344; http://dx.doi.org/10.1016/j.cell.2010.03.014
  • Hu CT, Wu JR, Wu WS. The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal 2013; 25(7):1539; PMID:23571269; http://dx.doi.org/10.1016/j.cellsig.2013.03.022
  • Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen B. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol 2005; 18(8):1027; PMID:15920544; http://dx.doi.org/10.1038/modpathol.3800438
  • Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, Wheeler DL. Nuclear EGFR as a molecular target in cancer. Radiother Oncol 2013; 108(3):370.
  • Fitzpatrick SL, LaChance MP, Schultz GS. Characterization of epidermal growth factor receptor and action on human breast cancer cells in culture. Cancer Res 1984; 44(8):3442; PMID:6331647
  • Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 2012; 136(2):331; PMID:23073759; http://dx.doi.org/10.1007/s10549-012-2289-9
  • Milanezi F, Carvalho S, Schmitt FC. EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy. Expert Rev Mol Diagn 2008; 8(4):417; PMID:18598224; http://dx.doi.org/10.1586/14737159.8.4.417
  • Henriksen L, Grandal MV, Knudsen SL, van Deurs B, Grøvdal LM. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS One 2013; 8(3):e58148; PMID:23472148; http://dx.doi.org/10.1371/journal.pone.0058148
  • Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 2008; 15(2):209; PMID:18694561; http://dx.doi.org/10.1016/j.devcel.2008.06.012
  • Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2013 Nov 1; 5(11):a016790; PMID:24186068; http://dx.doi.org/10.1101/cshperspect.a016790
  • Orth JD, Krueger EW, Weller SG, McNiven MA. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res 2006; 66(7):3603; PMID:16585185; http://dx.doi.org/10.1158/0008-5472.CAN-05-2916
  • Yoon HY, Lee JS, Randazzo PA. ARAP1 regulates endocytosis of EGFR. Traffic 2008; 9(12):2236; PMID:18939958; http://dx.doi.org/10.1111/j.1600-0854.2008.00839.x
  • Mutch LJ, Howden JD, Jenner EP, Poulter NS, Rappoport JZ. Polarised clathrin-mediated endocytosis of EGFR during chemotactic invasion. Traffic 2014; 15(6):648; PMID:24921075; http://dx.doi.org/10.1111/tra.12165
  • Zhao Z, Liu XF, Wu HC, Zou SB, Wang JY, Ni PH, Chen XH, Fan QS. Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathway. Cancer Sci 2010; 101(6):1454; PMID:20412119; http://dx.doi.org/10.1111/j.1349-7006.2010.01558.x
  • Onodera Y, Nam JM, Hashimoto A, Norman JC, Shirato H, Hashimoto S, Sabe H. Rab5c promotes AMAP1-PRKD2 complex formation to enhance beta1 integrin recycling in EGF-induced cancer invasion. J Cell Biol 2012; 197(7):983; PMID:22734003; http://dx.doi.org/10.1083/jcb.201201065
  • Palmieri D, Bouadis A, Ronchetti R, Merino MJ, Steeg PS. Rab11a differentially modulates epidermal growth factor-induced proliferation and motility in immortal breast cells. Breast Cancer Res Treat 2006; 100(2):127; PMID:16791477; http://dx.doi.org/10.1007/s10549-006-9244-6
  • Allaire PD, Seyed Sadr M, Chaineau M, Seyed Sadr E, Konefal S, Fotouhi M, Maret D, Ritter B, Del Maestro RF, McPherson PS. Interplay between Rab35 and Arf6 controls cargo recycling to coordinate cell adhesion and migration. J Cell Sci 2013; 126(Pt 3):722; PMID:23264734; http://dx.doi.org/10.1242/jcs.112375
  • Hammond DE, Carter S, Clague MJ. Met receptor dynamics and signalling. Curr Top Microbiol Immunol 2004; 286:21; PMID:15645709
  • Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29(2):117; PMID:11586292; http://dx.doi.org/10.1038/ng1001-117
  • Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003; 5(5):410; PMID:12717440; http://dx.doi.org/10.1038/ncb975
  • Mitchell H, Choudhury A, Pagano RE, Leof EB. Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 2004; 15(9):4166; PMID:15229286; http://dx.doi.org/10.1091/mbc.E04-03-0245
  • Park I, Son HK, Che ZM, Kim d. A novel gain-of-function mutation of TGF-beta receptor II promotes cancer progression via delayed receptor internalization in oral squamous cell carcinoma. Cancer Lett 2012; 315(2):161; PMID:22093616; http://dx.doi.org/10.1016/j.canlet.2011.09.036
  • Livingstone C. IGF2 and cancer. Endocr Relat Cancer 2013; 20(6):R321-39; PMID:24080445; http://dx.doi.org/10.1530/ERC-13-0231
  • Pollak M. IGF-I physiology and breast cancer. Recent Results Cancer Res 1998; 152:63; PMID:9928547; http://dx.doi.org/10.1007/978-3-642-45769-2_6
  • Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28(1):20; PMID:16931767; http://dx.doi.org/10.1210/er.2006-0001
  • Ellis MJ, Jenkins S, Hanfelt J, Redington ME, Taylor M, Leek R, Siddle K, Harris A. Insulin-like growth factors in human breast cancer. Breast Cancer Res Treat 1998; 52(1–3):175; PMID:10066081; http://dx.doi.org/10.1023/A:1006127621512
  • Furstenberger G, Senn HJ. Insulin-like growth factors and cancer. Lancet Oncol 2002; 3(5):298; PMID:12067807; http://dx.doi.org/10.1016/S1470-2045(02)00731-3
  • Martins AS, Ordóñez JL, Amaral AT, Prins F, Floris G, Debiec-Rychter M, Hogendoorn PC, de Alava E. IGF1R signaling in Ewing sarcoma is shaped by clathrin-/caveolin-dependent endocytosis. PLoS One 2011; 6(5):e19846; PMID:21611203; http://dx.doi.org/10.1371/journal.pone.0019846
  • Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD, Protheroe AS, Howarth M, Macaulay VM. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 2010; 70(16):6412-9
  • Lundquist EA. Small GTPases. WormBook 2006; 1
  • Wennerberg K, Rossman KL., Der CJ. The Ras superfamily at a glance. J Cell Sci 2005; 118(Pt 5):843; PMID:15731001; http://dx.doi.org/10.1242/jcs.01660
  • Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9(7):517; PMID:18568040; http://dx.doi.org/10.1038/nrm2438
  • Bryan BA, D'Amore PA. What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci 2007; 64(16):2053; PMID:17530172; http://dx.doi.org/10.1007/s00018-007-7008-z
  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2(2):107; PMID:11252952; http://dx.doi.org/10.1038/35052055
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10(8):513; PMID:19603039; http://dx.doi.org/10.1038/nrm2728
  • Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res 2005; 65(7):2516; PMID:15805241; http://dx.doi.org/10.1158/0008-5472.CAN-05-0573
  • Mitra S., Cheng KW, Mills GB. Rab GTPases implicated in inherited and acquired disorders. Semin Cell Dev Biol 2011; 22(1):57; PMID:21147240; http://dx.doi.org/10.1016/j.semcdb.2010.12.005
  • Ho JR, Chapeaublanc E, Kirkwood L, Nicolle R, Benhamou S, Lebret T, Allory Y, Southgate J, Radvanyi F, Goud B. Deregulation of Rab and Rab effector genes in bladder cancer. PLoS One 2012; 7(6):e39469; PMID:22724020; http://dx.doi.org/10.1371/journal.pone.0039469
  • Hou Q, Wu YH, Grabsch H, Zhu Y, Leong SH, Ganesan K, Cross D, Tan LK, Tao J, Gopalakrishnan V, et al. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res 2008; 68(12):4623; PMID:18559507; http://dx.doi.org/10.1158/0008-5472.CAN-07-5870
  • Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 2004; 10(11):1251; PMID:15502842; http://dx.doi.org/10.1038/nm1125
  • Cheng JM, Ding M, Aribi A, Shah P, Rao K. Loss of RAB25 expression in breast cancer. Int J Cancer 2006; 118(12):2957; PMID:16395697; http://dx.doi.org/10.1002/ijc.21739
  • Cheng JM, Volk L, Janaki DK, Vyakaranam S, Ran S, Rao KA. Tumor suppressor function of Rab25 in triple-negative breast cancer. Int J Cancer 2010; 126(12):2799; PMID:19795443
  • Yin YX, Shen F, Pei H, Ding Y, Zhao H, Zhao M, Chen Q. Increased expression of Rab25 in breast cancer correlates with lymphatic metastasis. Tumour Biol 2012; 33(5):1581; PMID:22644676; http://dx.doi.org/10.1007/s13277-012-0412-5
  • Amornphimoltham P, Rechache K, Thompson J, Masedunskas A, Leelahavanichkul K, Patel V, Molinolo A, Gutkind JS, Weigert R. Rab25 regulates invasion and metastasis in head and neck cancer. Clin Cancer Res 2013; 19(6):1375-88; PMID:23340300; http://dx.doi.org/10.1158/1078-0432.CCR-12-2858
  • Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, et al. Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 2010; 120(3):840; PMID:20197623; http://dx.doi.org/10.1172/JCI40728
  • Mueller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 2009; 129(7):1740; PMID:19212343; http://dx.doi.org/10.1038/jid.2008.452
  • Shibata D, Mori Y, Cai K, Zhang L, Yin J, Elahi A, Hamelin R, Wong YF, Lo WK, Chung TK, et al. RAB32 hypermethylation and microsatellite instability in gastric and endometrial adenocarcinomas. Int J Cancer 2006; 119(4):801; PMID:16557577; http://dx.doi.org/10.1002/ijc.21912
  • Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, Nie N, Liu B, Wu X. Down-regulated miR-9, miR-433 in human gastric carcinoma. J Exp Clin Cancer Res 2009; 28:82; PMID:19531230; http://dx.doi.org/10.1186/1756-9966-28-82
  • Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 2011; 30(23):2644; PMID:21358675; http://dx.doi.org/10.1038/onc.2010.642
  • Sheng Y, Li J, Zou C, Wang S, Cao Y, Zhang J, Huang A, Tang H. Downregulation of miR-101-3p by hepatitis B virus promotes proliferation and migration of hepatocellular carcinoma cells by targeting Rab5a. Arch Virol 2014; 159(9):2397-410; PMID:24788845
  • Nakano T, Shimizu K, Kawashima O, Kamiyoshihara M, Kakegawa S, Sugano M, Ibe T, Nagashima T, Kaira K, Sunaga N, et al. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer. Oncol Rep 2012; 28(5):1727; PMID:22922681
  • Wu CY, Tseng RC, Hsu HS, Wang YC, Hsu MT. Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer 2009; 63(3):360; PMID:18687502; http://dx.doi.org/10.1016/j.lungcan.2008.06.014
  • He H, Dai F, Yu L, She X, Zhao Y, Jiang J, Chen X, Zhao S. Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr 2002; 10(5–6):231; PMID:12450215
  • Shimada K, Uzawa K, Kato M, Endo Y, Shiiba M, Bukawa H, Yokoe H, Seki N, Tanzawa H. Aberrant expression of RAB1A in human tongue cancer. Br J Cancer 2005; 92(10):1915; PMID:15870709; http://dx.doi.org/10.1038/sj.bjc.6602594
  • Ni X, Ma Y, Cheng H, Jiang M, Guo L, Ji C, Gu S, Cao Y, Xie Y, Mao Y. Molecular cloning and characterization of a novel human Rab ( Rab2B) gene. J Hum Genet 2002; 47(10):548; PMID:12376746; http://dx.doi.org/10.1007/s100380200083
  • Laezza C, Bucci C, Santillo M, Bruni CB, Bifulco M. Control of Rab5 and Rab7 expression by the isoprenoid pathway. Biochem Biophys Res Commun 1998; 248(3):469; PMID:9703948; http://dx.doi.org/10.1006/bbrc.1998.9007
  • Kotzsch M, Sieuwerts AM, Grosser M, Meye A, Fuessel S, Meijer-van Gelder ME, Smid M, Schmitt M, Baretton G, Luther T, et al. Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 2008; 111(2):229; PMID:17952591; http://dx.doi.org/10.1007/s10549-007-9782-6
  • Yang PS, Yin PH, Tseng LM, Yang CH, Hsu CY, Lee MY, Horng CF, Chi CW. Rab5A is associated with axillary lymph node metastasis in breast cancer patients. Cancer Sci 2011; 102(12):2172; PMID:21895870; http://dx.doi.org/10.1111/j.1349-7006.2011.02089.x
  • Chua CE, Lim YS, Tang BL. Rab35–a vesicular traffic-regulating small GTPase with actin modulating roles. FEBS Lett 2010; 584(1):1; PMID:19931531; http://dx.doi.org/10.1016/j.febslet.2009.11.051
  • Zhu Y, Shen T, Liu J, Zheng J, Zhang Y, Xu R, Sun C, Du J, Chen Y, Gu L. Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells. Cell Signal 2013; 25(5):1075; PMID:23353182; http://dx.doi.org/10.1016/j.cellsig.2013.01.015
  • Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S, et al. Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 2012; 72(22):6024; PMID:22991305; http://dx.doi.org/10.1158/0008-5472.CAN-12-1269
  • Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den Berghe PV, von Thun A, Morton JP, Gourley C, Timpson P, Nixon C, et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 2012; 22(1):131; PMID:22197222; http://dx.doi.org/10.1016/j.devcel.2011.11.008
  • Kessler D, Gruen GC, Heider D, Morgner J, Reis H, Schmid KW, Jendrossek V. The action of small GTPases Rab11 and Rab25 in vesicle trafficking during cell migration. Cell Physiol Biochem 2012; 29(5–6):647; PMID:22613965; http://dx.doi.org/10.1159/000295249
  • Paladino L, Silverberg M, Charchaflieh JG, Eason JK, Wright BJ, Palamidessi N, Arquilla B, Sinert R, Manoach S. Increasing ventilator surge capacity in disasters: ventilation of four adult-human-sized sheep on a single ventilator with a modified circuit. Resuscitation 2008; 77(1):121; PMID:18164798; http://dx.doi.org/10.1016/j.resuscitation.2007.10.016
  • Spaargaren M, Bos JL. Rab5 induces Rac-independent lamellipodia formation and cell migration. Mol Biol Cell 1999; 10(10):3239; PMID:10512863; http://dx.doi.org/10.1091/mbc.10.10.3239
  • Barbieri MA, Roberts RL, Gumusboga A, Highfield H, Alvarez-Dominguez C, Wells A, Stahl PD. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J Cell Biol 2000; 151(3):539; PMID:11062256; http://dx.doi.org/10.1083/jcb.151.3.539
  • Lanzetti L, Palamidessi A, Areces L, Scita G, Di Fiore PP. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 2004; 429(6989):309; PMID:15152255; http://dx.doi.org/10.1038/nature02542
  • Yu L, Hui-chen F, Chen Y, Zou R, Yan S, Chun-xiang L, Wu-ru W, Li P. Differential expression of RAB5A in human lung adenocarcinoma cells with different metastasis potential. Clin Exp Metastasis 1999; 17(3):213; PMID:10432006; http://dx.doi.org/10.1023/A:1006617016451
  • Liu SS, Chen XM, Zheng HX, Shi SL, Li Y. Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway. J Biomed Sci 2011; 18(1):58; PMID:21849022; http://dx.doi.org/10.1186/1423-0127-18-58
  • Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo K, Nakajima K, Nabeshima Y, Hoshino M. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 2010; 67(4):588; PMID:20797536; http://dx.doi.org/10.1016/j.neuron.2010.07.007
  • Shaye DD, Casanova J, Llimargas M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol 2008; 10(8):964; PMID:18641639; http://dx.doi.org/10.1038/ncb1756
  • Fukui K, Tamura S, Wada A, Kamada Y, Igura T, Kiso S, Hayashi N. Expression of Rab5a in hepatocellular carcinoma: Possible involvement in epidermal growth factor signaling. Hepatol Res 2007; 37(11):957; PMID:17581187; http://dx.doi.org/10.1111/j.1872-034X.2007.00143.x
  • Janssens K, Sung HH, Rorth P. Direct detection of guidance receptor activity during border cell migration. Proc Natl Acad Sci U S A 2010; 107(16):7323; PMID:20368415; http://dx.doi.org/10.1073/pnas.0915075107
  • Jekely G, Sung HH, Luque CM, Rørth P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 2005; 9(2):197; PMID:16054027; http://dx.doi.org/10.1016/j.devcel.2005.06.004
  • Torres VA, Mielgo A, Barilà D, Anderson DH, Stupack D. Caspase 8 promotes peripheral localization and activation of Rab5. J Biol Chem 2008; 283(52):36280; PMID:18974049; http://dx.doi.org/10.1074/jbc.M805878200
  • Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 2014; 5:e27958; PMID:24607953; http://dx.doi.org/10.4161/sgtp.27958
  • Zech T, Machesky L. Rab5 and rac team up in cell motility. Cell 2008; 134(1):18; PMID:18614005; http://dx.doi.org/10.1016/j.cell.2008.06.039
  • Steffan JJ. PloS One 2014; 9(2):e878829; http://dx.doi.org/10.1371/journal.pone.0087882
  • Williams KC, Coppolino MG. Phosphorylation of membrane type 1-matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J Biol Chem 2011; 286(5):43405-16; PMID:22002060
  • Runkle KB. Cancer Biol Ther 2012; 13(10):956; PMID:22785202; http://dx.doi.org/10.4161/cbt.20951
  • Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3(5):362; PMID:12724734; http://dx.doi.org/10.1038/nrc1075
  • Bravo-Cordero JJ, Marrero-Diaz R, Megías D, Genís L, García-Grande A, García MA, Arroyo AG, Montoya MC. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007; 26(6):1499; PMID:17332756; http://dx.doi.org/10.1038/sj.emboj.7601606
  • Alonso-Curbelo D, Riveiro-Falkenbach E, Pérez-Guijarro E, Cifdaloz M, Karras P, Osterloh L, Megías D, Cañón E, Calvo TG, Olmeda D, et al. RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway. Cancer Cell 2014; 26(1):61; PMID:24981740; http://dx.doi.org/10.1016/j.ccr.2014.04.030
  • Yoon SO, Shin S, Mercurio AM. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 2005; 65(7):2761; PMID:15805276; http://dx.doi.org/10.1158/0008-5472.CAN-04-4122
  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6(10):931; PMID:15448698; http://dx.doi.org/10.1038/ncb1173
  • Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 2007; 13(4):496; PMID:17925226; http://dx.doi.org/10.1016/j.devcel.2007.08.012
  • Zhang J, Liu X, Datta A, Govindarajan K, Tam WL, Han J, George J, Wong C, Ramnarayanan K, Phua TY, et al. RCP is a human breast cancer-promoting gene with Ras-activating function. J Clin Invest 2009; 119(8):2171; PMID:19620787
  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139(7):1327; PMID:20064378
  • Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Théry C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 2012; 72(19):4920; PMID:22865453; http://dx.doi.org/10.1158/0008-5472.CAN-12-0925
  • Dong WW, Mou Q, Chen J, Cui JT, Li WM, Xiao WH. Differential expression of Rab27A/B correlates with clinical outcome in hepatocellular carcinoma. World J Gastroenterol 2012; 18(15):1806; PMID:22553406; http://dx.doi.org/10.3748/wjg.v18.i15.1806
  • Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den Broecke R, Lambert J, Van Belle S, Cocquyt V, Gespach C, et al. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst 2010; 102(12):866-80; PMID:20484105; http://dx.doi.org/10.1093/jnci/djq153
  • Montel V, Huang TY, Mose E, Pestonjamasp K, Tarin D. Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am J Pathol 2005; 166(5):1565; PMID:15855655; http://dx.doi.org/10.1016/S0002-9440(10)62372-3
  • Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res 2008; 6(3):372; PMID:18337447; http://dx.doi.org/10.1158/1541-7786.MCR-07-0162
  • Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G, Li X. Exosomes derived from Rab27aoverexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep 2013; 8(6):1876; PMID:24146068
  • Hou Q, Wu YH, Grabsch H, Zhu Y, Leong SH, Ganesan K, Cross D, Tan LK, Tao J, Gopalakrishnan V, et al. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res 2008; 68(12):4623; PMID:18559507; http://dx.doi.org/10.1158/0008-5472.CAN-07-5870
  • Grismayer B, Sölch S, Seubert B, Kirchner T, Schäfer S, Baretton G, Schmitt M, Luther T, Krüger A, Kotzsch M, et al. Rab31 expression levels modulate tumor-relevant characteristics of breast cancer cells. Mol. Cancer 2012; 11:62; PMID:22920728; http://dx.doi.org/10.1186/1476-4598-11-62
  • Barbarin A, Frade R. Procathepsin L secretion, which triggers tumour progression, is regulated by Rab4a in human melanoma cells. Biochem J 2011; 437(1):97; PMID:21501115; http://dx.doi.org/10.1042/BJ20110361
  • Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F, Malinverno C, Mazzarol G, Viale G, Martin-Padura I, Garré M, et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J Cell Biol 2014; 206(2):307; PMID:25049275; http://dx.doi.org/10.1083/jcb.201403127
  • Arsenault D, Lucien F, Dubois CM. Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. J Cell Physiol 2012; 227(2):789; PMID:21503879; http://dx.doi.org/10.1002/jcp.22792
  • Kuznetsov HS, Marsh T, Markens BA, Castaño Z, Greene-Colozzi A, Hay SA, Brown VE, Richardson AL, Signoretti S, Battinelli EM, et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov 2012; 2(12):1150; PMID:22896036; http://dx.doi.org/10.1158/2159-8290.CD-12-0216
  • Hendrix A, De Wever O. Rab27 GTPases distribute extracellular nanomaps for invasive growth and metastasis: implications for prognosis and treatment. Int J Mol Sci 2013; 14(5):9883; PMID:23665896; http://dx.doi.org/10.3390/ijms14059883
  • Yi Su C, et al. Overexpression of Rab3C, a secretory Rab GTPase, as a predictive marker of survival outcome and adjuvant chemotherapy response for colorectal cancer patients (59.5). 2014; 28(1 Supplement)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.