1,117
Views
33
CrossRef citations to date
0
Altmetric
Review

Membrane orientation dynamics of lipid-modified small GTPases

&
Pages 129-138 | Received 28 May 2016, Accepted 01 Jul 2016, Published online: 11 Aug 2016

References

  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9:112-24; PMID:18216768; https://doi.org/10.1038/nrm2330
  • Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 2012; 20:15-27; PMID:22193136; https://doi.org/10.1016/j.str.2011.11.012
  • Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995; 92:10472-6; PMID:7479822; https://doi.org/10.1073/pnas.92.23.10472
  • Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 2008; 9:99-111; PMID:18216767; https://doi.org/10.1038/nrm2328
  • Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005; 118:843-6; PMID:15731001; https://doi.org/10.1242/jcs.01660
  • Abankwa D, Gorfe AA, Inder K, Hancock JF. Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci U S A 2010; 107:1130-5; PMID:20080631; https://doi.org/10.1073/pnas.0903907107
  • Abankwa D, Hanzal-Bayer M, Ariotti N, Plowman SJ, Gorfe AA, Parton RG, McCammon JA, Hancock JF. A novel switch region regulates H-ras membrane orientation and signal output. EMBO J 2008; 27:727-35; PMID:18273062; https://doi.org/10.1038/emboj.2008.10
  • Gorfe AA, Hanzal-Bayer M, Abankwa D, Hancock JF, McCammon JA. Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 2007; 50:674-84; PMID:17263520; https://doi.org/10.1021/jm061053f
  • Liu Y, Kahn RA, Prestegard JH. Dynamic structure of membrane-anchored Arf*GTP. Nat Struct Mol Biol 2010; 17:876-81; PMID:20601958; https://doi.org/10.1038/nsmb.1853
  • Weise K, Kapoor S, Denter C, Nikolaus J, Opitz N, Koch S, Triola G, Herrmann A, Waldmann H, Winter R. Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms. J Am Chem Soc 2011; 133:880-7; PMID:21141956; https://doi.org/10.1021/ja107532q
  • Kapoor S, Triola G, Vetter IR, Erlkamp M, Waldmann H, Winter R. Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proc Natl Acad Sci U S A 2012; 109:460-5; PMID:22203965; https://doi.org/10.1073/pnas.1110553109
  • Kapoor S, Weise K, Erlkamp M, Triola G, Waldmann H, Winter R. The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction. Eur Biophys J 2012; 41:801-13; PMID:22851002; https://doi.org/10.1007/s00249-012-0841-5
  • Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GM, Stathopulos PB, Inagaki F, Kay LE, Neel BG, Ikura M. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A 2015; 112(21):6625-30; PMID:25941399; https://doi.org/10.1073/pnas.1419895112
  • Mazhab-Jafari MT, Marshall CB, Stathopulos PB, Kobashigawa Y, Stambolic V, Kay LE, Inagaki F, Ikura M. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J Am Chem Soc 2013; 135:3367-70; PMID:23409921; https://doi.org/10.1021/ja312508w
  • Prakash P, Zhou Y, Liang H, Hancock JF, Gorfe AA. Oncogenic K-Ras binds to an anionic membrane in two distinct orientations: A molecular dynamics analysis. Biophys J 2016; 110:1125-38; PMID:26958889; https://doi.org/10.1016/j.bpj.2016.01.019
  • Abankwa D, Gorfe AA, Hancock JF. Mechanisms of Ras membrane organization and signalling: Ras on a rocker. Cell Cycle 2008; 7:2667-73; PMID:18758236; https://doi.org/10.4161/cc.7.17.6596
  • Macara IG, Lounsbury KM, Richards SA, McKiernan C, Bar-Sagi D. The Ras superfamily of GTPases. FASEB J 1996; 10:625-30; PMID:8621061
  • Goitre L, Trapani E, Trabalzini L, Retta SF. The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 2014; 1120:1-18; PMID:24470015; https://doi.org/10.1007/978-1-62703-791-4_1
  • Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 2012; 196:189-201; PMID:22270915; https://doi.org/10.1083/jcb.201103008
  • Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2010; 1:2-27; PMID:21686117; https://doi.org/10.4161/sgtp.1.1.12178
  • Clarke PR, Zhang C. Ran GTPase: a master regulator of nuclear structure and function during the eukaryotic cell division cycle? Trends Cell Biol 2001; 11:366-71; PMID:11514190; https://doi.org/10.1016/S0962-8924(01)02071-2
  • Wennerberg K, Der CJ. Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 2004; 117:1301-12; PMID:15020670; https://doi.org/10.1242/jcs.01118
  • Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75; PMID:21587297; https://doi.org/10.1038/nrm3117
  • Li G, Marlin MC. Rab family of GTPases. Methods Mol Biol 2015; 1298:1-15; PMID:25800828; https://doi.org/10.1007/978-1-4939-2569-8_1
  • Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 2011; 7:e1002217; PMID:22022256; https://doi.org/10.1371/journal.pcbi.1002217
  • Klopper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 2012; 10:71; PMID:22873208; https://doi.org/10.1186/1741-7007-10-71
  • Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 1991; 353:769-72; PMID:1944536; https://doi.org/10.1038/353769a0
  • Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57:1167-77; PMID:2661017; https://doi.org/10.1016/0092-8674(89)90054-8
  • Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71; PMID:21675921; https://doi.org/10.1146/annurev-biochem-062708-134043
  • Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 2003; 4:373-84; PMID:12728271; https://doi.org/10.1038/nrm1105
  • Prior IA, Hancock JF. Compartmentalization of Ras proteins. J Cell Sci 2001; 114:1603-8; PMID:11309191
  • Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 2001; 3:368-75; PMID:11283610; https://doi.org/10.1038/35070050
  • Weise K, Triola G, Brunsveld L, Waldmann H, Winter R. Influence of the lipidation motif on the partitioning and association of N-Ras in model membrane subdomains. J Am Chem Soc 2009; 131:1557-64; PMID:19133719; https://doi.org/10.1021/ja808691r
  • Nishimoto T. Upstream and downstream of ran GTPase. Biol Chem 2000; 381:397-405; PMID:10937870; https://doi.org/10.1515/BC.2000.052
  • Vetter IR, Wittinghofer A. The Guanine Nucleotide-Binding Switch in Three Dimensions. Science 2001; 294:1299-304; PMID:11701921; https://doi.org/10.1126/science.1062023
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129:865-77; PMID:17540168; https://doi.org/10.1016/j.cell.2007.05.018
  • Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10:842-57; PMID:21102635; https://doi.org/10.1038/nrc2960
  • Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9:517-31; PMID:18568040; https://doi.org/10.1038/nrm2438
  • Vasiliev JM, Omelchenko T, Gelfand IM, Feder HH, Bonder EM. Rho overexpression leads to mitosis-associated detachment of cells from epithelial sheets: a link to the mechanism of cancer dissemination. Proc Natl Acad Sci U S A 2004; 101:12526-30; PMID:15304643; https://doi.org/10.1073/pnas.0404723101
  • Seixas E, Barros M, Seabra MC, Barral DC. Rab and Arf proteins in genetic diseases. Traffic 2013; 14:871-85; PMID:23565987; https://doi.org/10.1111/tra.12072
  • Saxena S, Gandhi A, Lim PW, Relles D, Sarosiek K, Kang C, Chipitsyna G, Sendecki J, Yeo CJ, Arafat HA. RAN GTPase and Osteopontin in Pancreatic Cancer. Pancreat Disord Ther 2013; 3:113; PMID:24749004; https://doi.org/10.4172/2165-7092.1000113
  • Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7:295-308; PMID:17384584; https://doi.org/10.1038/nrc2109
  • Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett 2008; 582:2093-101; PMID:18460342; https://doi.org/10.1016/j.febslet.2008.04.039
  • Zeitouni D, Pylayeva-Gupta Y, Der JC, Bryant LK. KRAS Mutant Pancreatic Cancer: No Lone Path to an Effective Treatment. Cancers 2016; 8:E45; PMID:27096871; https://doi.org/10.3390/cancers8040045
  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission Possible? Nat Rev Drug Discov 2014; 13:828-51; PMID:25323927; https://doi.org/10.1038/nrd4389
  • Doherty KJ, McKay C, Chan KK, El-Tanani MK. RAN GTPase as a target for cancer therapy: Ran binding proteins. Curr Mol Med 2011; 11:686-95; PMID:21902650; https://doi.org/10.2174/156652411797536688
  • Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H. Small-molecule modulation of Ras signaling. Nat Chem Biol 2014; 10:613-22; PMID:24929527; https://doi.org/10.1038/nchembio.1560
  • Wang W, Fang G, Rudolph J. Ras inhibition via direct Ras binding—is there a path forward?. Bioorg Med Chem Lett 2012; 22:5766-76; PMID:22902659; https://doi.org/10.1016/j.bmcl.2012.07.082
  • Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 2007; 6:541-55; PMID:17585331; https://doi.org/10.1038/nrd2221
  • Nguyen UT, Goodall A, Alexandrov K, Abankwa D. Isoprenoid modifications. In Post- translational modifications in health and disease. (Vidal CJ ed.), 1st Ed., Springer. pp 486.
  • Williams CL. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal 2003; 15:1071-80; PMID:14575862; https://doi.org/10.1016/S0898-6568(03)00098-6
  • Spoerner M, Herrmann C, Vetter IR, Kalbitzer HR, Wittinghofer A. Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc Natl Acad Sci U S A 2001; 98:4944-9; PMID:11320243; https://doi.org/10.1073/pnas.081441398
  • Gorfe AA, Grant BJ, McCammon JA. Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Structure 2008; 16:885-96; PMID:18547521; https://doi.org/10.1016/j.str.2008.03.009
  • Grant BJ, McCammon JA, Gorfe AA. Conformational selection in G-proteins: lessons from Ras and Rho. Biophys J 2010; 99:L87-9; PMID:21112273; https://doi.org/10.1016/j.bpj.2010.10.020
  • Raimondi F, Orozco M, Fanelli F. Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily. Structure 2010; 18:402-14; PMID:20223222; https://doi.org/10.1016/j.str.2009.12.015
  • Buhrman G, Holzapfel G, Fetics S, Mattos C. Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proc Natl Acad Sci U S A 2010; 107:4931-6; PMID:20194776; https://doi.org/10.1073/pnas.0912226107
  • Grecco HE, Schmick M, Bastiaens P. Signaling from the living plasma membrane. Cell 2011; 6:897-909; https://doi.org/10.1016/j.cell.2011.01.029
  • Vartak N, Bastiaens P. Spatial cycles in G-protein crowd control. Embo J 2010; 29:2689-99; PMID:20717139; https://doi.org/10.1038/emboj.2010.184
  • Iversen L, Tu HL, Lin WC, Christensen SM, Abel SM, Iwig J, Wu HJ, Gureasko J, Rhodes C, Petit RS, et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 2014; 345:50-4; PMID:24994643; https://doi.org/10.1126/science.1250373
  • Groves JT, Kuriyan J. Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 2010; 17:659-65; PMID:20495561; https://doi.org/10.1038/nsmb.1844
  • Blazevits O, Mideksa YG, Solman M, Liqabue A, Ariotti N, Nakhaeizadeh H, et al. Galectin-1 dimers can scaffold Raf-effectors to increase H-Ras nanoclustering. Sci Rep 2016; 6:24165; PMID:27087647; https://doi.org/10.1038/srep24165
  • Guldenhaupt J, Rudack T, Bachler P, Mann D, Triola G, Waldmann H, Kötting C, Gerwert K. N-Ras forms dimers at POPC membranes. Biophys J 2012; 103:1585-93; PMID:23062351; https://doi.org/10.1016/j.bpj.2012.08.043
  • Hancock JF, Paterson H, Fau-Marshall CJ, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63:133-9; PMID:2208277; https://doi.org/10.1016/0092-8674(90)90294-O
  • Lukman S, Grant BJ, Gorfe AA, Grant GH, McCammon JA. The distinct conformational dynamics of K-Ras and H-Ras A59G. PLoS Comput Biol 2010; 6:e1000922; PMID:20838576; https://doi.org/10.1371/journal.pcbi.1000922
  • Solman M, Liqabue A, Blazevits O, Jaiswal A, Zhou Y, Liang H, Lectez B, Kopra K, Guzmán C, Härmä H, et al. Specific cancer-associated mutations in the switch-III region of Ras increase tumorigenicity by nanocluster augmentation. Elife 2015; 4:e08905; PMID:26274561; https://doi.org/10.7554/eLife.08905
  • Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, et al. GTP-dependent K-Ras dimerization. Structure 2015; 23:1325-35; PMID:26051715; https://doi.org/10.1016/j.str.2015.04.019
  • Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, Lewis S, Gray JW, McCormick F, Chu S. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci U S A 2015; 112:7996-8001; PMID:26080442; https://doi.org/10.1073/pnas.1509123112
  • Sayyed-Ahmad A, Cho KJ, Hancock JF, Gorfe AA. Computational equilibrium thermodynamic and kinetic analysis of K-Ras dimerization through an effector binding surface suggests limited functional role. J Phys Chem B 2016; PMID:27072779
  • Cho KJ, Hancock JF. Ras nanoclusters: a new drug target. Small GTPases 2013; 4:57-60; PMID:23419283; https://doi.org/10.4161/sgtp.23145
  • Zhou Y, Hancock JF. Ras nanoclusters: Versatile lipid-based signaling platforms. Biochim Biophys Acta 2015; 1853:841-9; PMID:25234412; https://doi.org/10.1016/j.bbamcr.2014.09.008
  • Abankwa D, Gorfe AA, Hancock JF. Ras nanoclusters: molecular structure and assembly. Semin Cell Dev Biol 2007; 18:599-607; PMID:17897845; https://doi.org/10.1016/j.semcdb.2007.08.003
  • Li Z, Cao S, Buck M. K-Ras at anionic membranes: Orienation, orientation…orientation. Recent simulations and experiments. Biophys J 2016; 110:1033-5; PMID:26958879; https://doi.org/10.1016/j.bpj.2016.01.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.