8,410
Views
132
CrossRef citations to date
0
Altmetric
Review

Molecular control of Rab activity by GEFs, GAPs and GDI

ORCID Icon & ORCID Icon
Pages 5-21 | Received 17 Aug 2016, Accepted 21 Dec 2016, Published online: 01 Feb 2017

References

  • Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol 2010; 22(4):461-70; PMID:20466531; http://dx.doi.org/10.1016/j.ceb.2010.04.007
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10(8):513-25; PMID:19603039; http://dx.doi.org/10.1038/nrm2728
  • Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21(1):205-15; PMID:6996832; http://dx.doi.org/10.1016/0092-8674(80)90128-2
  • Salminen A, Novick PJ. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 1987; 49(4):527-38; PMID:3552249; http://dx.doi.org/10.1016/0092-8674(87)90455-7
  • Schmitt HD, Wagner P, Pfaff E, Gallwitz D. The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Cell 1986; 47(3):401-12; PMID:3094963; http://dx.doi.org/10.1016/0092-8674(86)90597-0
  • Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65:241-69; PMID:8811180; http://dx.doi.org/10.1146/annurev.bi.65.070196.001325
  • Andres DA, Seabra MC, Brown MS, Armstrong SA, Smeland TE, Cremers FP, Goldstein JL. cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell 1993; 73(6):1091-9; PMID:8513495; http://dx.doi.org/10.1016/0092-8674(93)90639-8
  • Alexandrov K, Simon I, Yurchenko V, Iakovenko A, Rostkova E, Scheidig AJ, Goody RS. Characterization of the ternary complex between Rab7, REP-1 and Rab geranylgeranyl transferase. Eur J Biochem 1999; 265(1):160-70; PMID:10491170; http://dx.doi.org/10.1046/j.1432-1327.1999.00699.x
  • Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 1994; 13(22):5262-73; PMID:7957092
  • Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994; 140(1):1-22; PMID:7877593; http://dx.doi.org/10.1007/BF00928361
  • Oesterlin LK, Pylypenko O, Goud B. Effectors of Rab GTPases: Rab Binding Specificity and Their Role in Coordination of Rab Function and Localization, in Ras Superfamily Small G Proteins: Biology and Mechanisms 2, A. Wittinghofer, Editor. 2014, Springer International Publishing, 39-66. http://dx.doi.org/10.1007/978-3-319-07761-1
  • Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5(11):886-96; PMID:15520808; http://dx.doi.org/10.1038/nrm1500
  • Milburn MV, Tong L, deVos AM, Brünger A, Yamaizumi Z, Nishimura S, Kim SH. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 1990; 247(4945):939-45; PMID:2406906; http://dx.doi.org/10.1126/science.2406906
  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 1989; 341(6239):209-14; PMID:2476675; http://dx.doi.org/10.1038/341209a0
  • Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science 2001; 294(5545):1299-304; PMID:11701921; http://dx.doi.org/10.1126/science.1062023
  • Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349(6305):117-27; PMID:1898771; http://dx.doi.org/10.1038/349117a0
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1(8):945-51; PMID:6329717
  • Prive GG, Milburn MV, Tong L, de Vos AM, Yamaizumi Z, Nishimura S, Kim SH. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc Natl Acad Sci U S A 1992; 89(8):3649-53; PMID:1565661; http://dx.doi.org/10.1073/pnas.89.8.3649
  • Rensland H, John J, Linke R, Simon I, Schlichting I, Wittinghofer A, Goody RS. Substrate and product structural requirements for binding of nucleotides to H-ras p21: the mechanism of discrimination between guanosine and adenosine nucleotides. Biochemistry 1995; 34(2):593-9; PMID:7819254; http://dx.doi.org/10.1021/bi00002a026
  • Pereira-Leal JB, Seabra MC. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 2000; 301(4):1077-87; PMID:10966806; http://dx.doi.org/10.1006/jmbi.2000.4010
  • Pereira-Leal JB, Seabra MC. Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 2001; 313(4):889-901; PMID:11697911; http://dx.doi.org/10.1006/jmbi.2001.5072
  • Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93(1):269-309; PMID:23303910; http://dx.doi.org/10.1152/physrev.00003.2012
  • Hama H, Tall GG, Horazdovsky BF. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J Biol Chem 1999; 274(21):15284-91; PMID:10329739; http://dx.doi.org/10.1074/jbc.274.21.15284
  • Allaire PD, Marat AL, Dall'Armi C, Di Paolo G, McPherson PS, Ritter B. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol Cell 2010; 37(3):370-82; PMID:20159556; http://dx.doi.org/10.1016/j.molcel.2009.12.037
  • Koch D, et al. A pull-down procedure for the identification of unknown GEFs for small GTPases. Small GTPases 2016:1-14. PMID: 26918858; http://dx.doi.org/10.1080/21541248.2016.1156803
  • Carney DS, Davies BA, Horazdovsky BF. Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol 2006; 16(1):27-35; PMID:16330212; http://dx.doi.org/10.1016/j.tcb.2005.11.001
  • Burd CG, Mustol PA, Schu PV, Emr SD. A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins. Mol Cell Biol 1996; 16(5):2369-77; PMID:8628304; http://dx.doi.org/10.1128/MCB.16.5.2369
  • Horiuchi H, Lippé R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 1997; 90(6):1149-59; PMID:9323142; http://dx.doi.org/10.1016/S0092-8674(00)80380-3
  • Marat AL, Dokainish H, McPherson PS. DENN domain proteins: regulators of Rab GTPases. J Biol Chem 2011; 286(16):13791-800; PMID:21330364; http://dx.doi.org/10.1074/jbc.R110.217067
  • Levivier E, et al. uDENN, DENN, and dDENN: Indissociable domains in Rab and MAP kinases signaling pathways. Biochem Biophys Res Commun 2001; 287(3):688-695; PMID:11563850; http://dx.doi.org/10.1006/bbrc.2001.5652
  • Levine TP, Goud B, Souchet M, Calmels TP, Mornon JP, Callebaut I. Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 2013; 4(2):62-9; PMID:23511850; http://dx.doi.org/10.4161/sgtp.24262
  • Wu X, Bradley MJ, Cai Y, Kümmel D, De La Cruz EM, Barr FA, Reinisch KM. Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate. Proc Natl Acad Sci U S A 2011; 108(46):18672-7; PMID:22065758; http://dx.doi.org/10.1073/pnas.1110415108
  • Jones S, Newman C, Liu F, Segev N. The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 2000; 11(12):4403-4411; PMID:11102533; http://dx.doi.org/10.1091/mbc.11.12.4403
  • Nordmann M, Cabrera M, Perz A, Bröcker C, Ostrowicz C, Engelbrecht-Vandré S, Ungermann C. The mon1-Ccz1 complex is the GEF of the late endosomal rab7 homolog Ypt7. Curr Biol 2010; 20(18):1654-1659; PMID:20797862; http://dx.doi.org/10.1016/j.cub.2010.08.002
  • Pusapati GV, Luchetti G, Pfeffer SR. Ric1-Rgp1 complex is a guanine nucleotide exchange factor for the late golgi Rab6A GTPase and an effector of the medial golgi Rab33B GTPase. J Biol Chem 2012; 287(50):42129-37; PMID:23091056; http://dx.doi.org/10.1074/jbc.M112.414565
  • Gerondopoulos A, Langemeyer L, Liang JR, Linford A, Barr FA. BLOC-3 mutated in hermansky-pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr Biol 2012; 22(22):2135-9; PMID:23084991; http://dx.doi.org/10.1016/j.cub.2012.09.020
  • Hattula K, Furuhjelm J, Arffman A, Peränen J. A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 2002; 13(9):3268-80; PMID:12221131; http://dx.doi.org/10.1091/mbc.E02-03-0143
  • WalchSolimena C, Collins RN, Novick PJ. Sec 2p mediates nucleotide exchange on Sec 4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 1997; 137(7):1495-509; PMID:9199166; http://dx.doi.org/10.1083/jcb.137.7.1495
  • Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K. Sato K5. REI-1 is a guanine nucleotide exchange factor regulating RAB-11 localization and function in C. elegans Embryos. Dev Cell 2015; 35(2):211-21; PMID:26506309; http://dx.doi.org/10.1016/j.devcel.2015.09.013
  • Lippe R, Miaczynska M, Rybin V, Runge A, Zerial M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 2001; 12(7):2219-28; PMID:11452015; http://dx.doi.org/10.1091/mbc.12.7.2219
  • Nottingham RM, Pfeffer SR. Defining the boundaries: Rab GEFs and GAPs. Proc Natl Acad Sci U S A 2009; 106(34):14185-6; PMID:19706500; http://dx.doi.org/10.1073/pnas.0907725106
  • Ortiz D, Medkova M, Walch-Solimena C, Novick P. Ypt32 recruits the Sec 4p guanine nucleotide exchange factor, Sec 2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 2002; 157(6):1005-15; PMID:12045183; http://dx.doi.org/10.1083/jcb.200201003
  • Blumer J, Rey J, Dehmelt L, Mazel T, Wu YW, Bastiaens P, Goody RS, Itzen A. RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biol 2013; 200(3):287-300; PMID:23382462; http://dx.doi.org/10.1083/jcb.201209113
  • Li F, Yi L, Zhao L, Itzen A, Goody RS, Wu YW. The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc Natl Acad Sci U S A 2014; 111(7):2572-7; PMID:24550285; http://dx.doi.org/10.1073/pnas.1313655111
  • Stein MP, Müller MP, Wandinger-Ness A. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches. Traffic 2012; 13(12):1565-88; PMID:22901006; http://dx.doi.org/10.1111/tra.12000
  • Heidtman M, Chen EJ, Moy MY, Isberg RR. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 2009; 11(2):230-48; PMID:19016775; http://dx.doi.org/10.1111/j.1462-5822.2008.01249.x
  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 2006; 8(9):971-7; PMID:16906144; http://dx.doi.org/10.1038/ncb1463
  • Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 2009; 36(6):1060-72; PMID:20064470; http://dx.doi.org/10.1016/j.molcel.2009.11.014
  • Mukherjee K, Parashuraman S, Raje M, Mukhopadhyay A. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem 2001; 276(26):23607-15; PMID:11316807; http://dx.doi.org/10.1074/jbc.M101034200
  • Itzen A, Pylypenko O, Goody RS, Alexandrov K, Rak A. Nucleotide exchange via local protein unfolding–structure of Rab8 in complex with MSS4. EMBO J 2006; 25(7):1445-55; PMID:16541104; http://dx.doi.org/10.1038/sj.emboj.7601044
  • Dong G, Medkova M, Novick P, Reinisch KM. A catalytic coiled coil: structural insights into the activation of the Rab GTPase Sec 4p by Sec 2p. Mol Cell 2007; 25(3):455-62; PMID:17289591; http://dx.doi.org/10.1016/j.molcel.2007.01.013
  • Sato Y, Fukai S, Ishitani R, Nureki O. Crystal structure of the Sec 4p.Sec 2p complex in the nucleotide exchanging intermediate state. Proc Natl Acad Sci U S A 2007; 104(20):8305-10; PMID:17488829; http://dx.doi.org/10.1073/pnas.0701550104
  • Delprato A, Lambright DG. Structural basis for Rab GTPase activation by VPS9 domain exchange factors. Nat Struct Mol Biol 2007; 14(5):406-12; PMID:17450153; http://dx.doi.org/10.1038/nsmb1232
  • Cai Y, Chin HF, Lazarova D, Menon S, Fu C, Cai H, Sclafani A, Rodgers DW, De La Cruz EM, Ferro-Novick S. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 2008; 133(7):1202-13; PMID:18585354; http://dx.doi.org/10.1016/j.cell.2008.04.049
  • Guo Z, Hou X, Goody RS, Itzen A. Intermediates in the guanine nucleotide exchange reaction of Rab8 protein catalyzed by guanine nucleotide exchange factors Rabin8 and GRAB. J Biol Chem 2013; 288(45):32466-74; PMID:24072714; http://dx.doi.org/10.1074/jbc.M113.498329
  • Zhang Z, Zhang T, Wang S, Gong Z, Tang C, Chen J, Ding J. Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5. Elife 2014; 3. PMID:24957337; http://dx.doi.org/10.7554/eLife.02687
  • Uejima T, Ihara K, Goh T, Ito E, Sunada M, Ueda T, Nakano A, Wakatsuki S. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5.Vps9 system. J Biol Chem 2010; 285(47):36689-97; PMID:20833725; http://dx.doi.org/10.1074/jbc.M110.152132
  • Langemeyer L, Nunes Bastos R, Cai Y, Itzen A, Reinisch KM, Barr FA. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. Elife 2014; 3:e01623; PMID:24520163; http://dx.doi.org/10.7554/eLife.01623
  • Esters H, Alexandrov K, Constantinescu AT, Goody RS, Scheidig AJ. High-resolution crystal structure of S. cerevisiae Ypt51(DeltaC15)-GppNHp, a small GTP-binding protein involved in regulation of endocytosis. J Mol Biol 2000; 298(1):111-21; PMID:10756108; http://dx.doi.org/10.1006/jmbi.2000.3645
  • Huber SK, Scheidig AJ. High resolution crystal structures of human Rab4a in its active and inactive conformations. FEBS Lett 2005; 579(13):2821-9; PMID:15907487; http://dx.doi.org/10.1016/j.febslet.2005.04.020
  • Rensland H, Lautwein A, Wittinghofer A, Goody RS. Is There a Rate-Limiting Step before Gtp Cleavage by H-Ras P21. Biochemistry 1991; 30(46):11181-85; PMID:1932038; http://dx.doi.org/10.1021/bi00110a023
  • Simon I, Zerial M, Goody RS. Kinetics of interaction of Rab5 and Rab7 with nucleotides and magnesium ions. J Biol Chem 1996; 271(34):20470-8; PMID:8702787; http://dx.doi.org/10.1074/jbc.271.34.20470
  • Fukuda M. TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep 2011; 31(3):159-68; PMID:21250943; http://dx.doi.org/10.1042/BSR20100112
  • Strom M, Vollmer P, Tan TJ, Gallwitz D. A yeast GTPase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 1993; 361(6414):736-9; PMID:8441469; http://dx.doi.org/10.1038/361736a0
  • Nagano F, Sasaki T, Fukui K, Asakura T, Imazumi K, Takai Y. Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein. J Biol Chem 1998; 273(38):24781-5; PMID:9733780; http://dx.doi.org/10.1074/jbc.273.38.24781
  • Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM. Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 2012; 13(2):67-73; PMID:22251903
  • Rivera-Molina FE, Novick PJ. A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc Natl Acad Sci U S A 2009; 106(34):14408-13; PMID:19666511; http://dx.doi.org/10.1073/pnas.0906536106
  • Suda Y, Kurokawa K, Hirata R, Nakano A. Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. Proc Natl Acad Sci U S A 2013; 110(47):18976-81; PMID:24194547; http://dx.doi.org/10.1073/pnas.1308627110
  • Ingmundson A, Delprato A, Lambright DG, Roy CR. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 2007; 450(7168):365-9; PMID:17952054; http://dx.doi.org/10.1038/nature06336
  • Mihai Gazdag E, Streller A, Haneburger I, Hilbi H, Vetter IR, Goody RS, Itzen A. Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB. EMBO Rep 2013; 14(2):199-205; http://dx.doi.org/10.1038/embor.2012.211
  • Rak A, Fedorov R, Alexandrov K, Albert S, Goody RS, Gallwitz D, Scheidig AJ. Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. Embo J 2000; 19(19):5105-13; http://dx.doi.org/10.1093/emboj/19.19.5105
  • Pan XJ, Eathiraj S, Munson M, Lambright DG. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 2006; 442(7100):303-6; PMID:16855591; http://dx.doi.org/10.1038/nature04847
  • Goody RS, Rak A, Alexandrov K. The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cell Mol Life Sci 2005; 62(15):1657-70; PMID:15924270; http://dx.doi.org/10.1007/s00018-005-4486-8
  • Kamiya Y, Sakurai A, Tamura S, Takahashi N. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem Biophys Res Commun 1978; 83(3):1077-83; PMID:708426; http://dx.doi.org/10.1016/0006-291X(78)91505-X
  • Casey PJ, Solski PA, Der CJ, Buss JE. P21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci U S A 1989; 86(21):8323-7; PMID:2682646; http://dx.doi.org/10.1073/pnas.86.21.8323
  • Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57(7):1167-77; PMID:2661017; http://dx.doi.org/10.1016/0092-8674(89)90054-8
  • Schafer WR, Kim R, Sterne R, Thorner J, Kim SH, Rine J. Genetic and Pharmacological Suppression of Oncogenic Mutations in Ras Genes of Yeast and Humans. Science 1989; 245(4916):379-85; PMID:2569235; http://dx.doi.org/10.1126/science.2569235
  • Farnsworth CC, Kawata M, Yoshida Y, Takai Y, Gelb MH, Glomset JA. C terminus of the small GTP-binding protein smg p25A contains two geranylgeranylated cysteine residues and a methyl ester. Proc Natl Acad Sci U S A 1991; 88(14):6196-200; PMID:1906176; http://dx.doi.org/10.1073/pnas.88.14.6196
  • Khosravi-Far R, Clark GJ, Abe K, Cox AD, McLain T, Lutz RJ, Sinensky M, Der CJ. Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J Biol Chem 1992; 267(34):24363-8; PMID:1332953
  • Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS. Inhibition of purified P21ras farnesyl - protein transferase by Cys-Aax tetrapeptides. Cell 1990; 62(1):81-88; PMID:2194674; http://dx.doi.org/10.1016/0092-8674(90)90242-7
  • Seabra MC, Reiss Y, Casey PJ, Brown MS, Goldstein JL. Protein farnesyltransferase and geranylgeranyltransferase share a common alpha-subunit. Cell 1991; 65(3):429-34; PMID:2018975; http://dx.doi.org/10.1016/0092-8674(91)90460-G
  • Seabra MC, Goldstein JL, Südhof TC, Brown MS. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 1992; 267(20):14497-503; PMID:1321151
  • Smeland TE, Seabra MC, Goldstein JL, Brown MS. Geranylgeranylated rab proteins terminating in Cys-Ala-Cys, but not Cys-Cys, are carboxyl-methylated by bovine brain membranes in-vitro. Proc Natl Acad Sci U S A 1994; 91(22):10712-6; PMID:7938016; http://dx.doi.org/10.1073/pnas.91.22.10712
  • Thoma NH, Niculae A, Goody RS, Alexandrov K. Double prenylation by RabGGTase can proceed without dissociation of the mono-prenylated intermediate. J Biol Chem 2001; 276(52):48631-6; PMID:11591706; http://dx.doi.org/10.1074/jbc.M106470200
  • Thoma NH, Iakovenko A, Goody RS, Alexandrov K. Phosphoisoprenoids modulate association of Rab geranylgeranyltransferase with REP-1. J Biol Chem 2001; 276(52):48637-43; PMID:11675392; http://dx.doi.org/10.1074/jbc.M108241200
  • Thoma NH, Iakovenko A, Kalinin A, Waldmann H, Goody RS, Alexandrov K. Allosteric regulation of substrate binding and product release in geranylgeranyltransferase type II. Biochemistry 2001; 40(1):268-274; PMID:11141079; http://dx.doi.org/10.1021/bi002034p
  • Rak A, Pylypenko O, Niculae A, Pyatkov K, Goody RS, Alexandrov K. Structure of the Rab7 : REP-1 complex: Insights into the mechanism of rab prenylation and choroideremia disease. Cell 2004; 117(6):749-60; PMID:15186776; http://dx.doi.org/10.1016/j.cell.2004.05.017
  • Pylypenko O, Rak A, Reents R, Niculae A, Sidorovitch V, Cioaca MD, Bessolitsyna E, Thomä NH, Waldmann H, Schlichting I. Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol Cell 2003; 11(2):483-94; PMID:12620235; http://dx.doi.org/10.1016/S1097-2765(03)00044-3
  • Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res 2006; 47(3):467-75; PMID:16401880; http://dx.doi.org/10.1194/jlr.R500017-JLR200
  • Waldherr M, Ragnini A, Schweyer RJ, Boguski MS. MRS6–yeast homologue of the choroideraemia gene. Nat Genet 1993; 3(3):193-4; PMID:8387377; http://dx.doi.org/10.1038/ng0393-193
  • Sasaki T, Kikuchi A, Araki S, Hata Y, Isomura M, Kuroda S, Takai Y. Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP-binding protein. J Biol Chem 1990; 265(4):2333-7; PMID:2105320
  • Wu YW, Tan KT, Waldmann H, Goody RS, Alexandrov K. Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proc Natl Acad Sci U S A 2007; 104(30):12294-9; PMID:17640890; http://dx.doi.org/10.1073/pnas.0701817104
  • Alexandrov K, Simon I, Iakovenko A, Holz B, Goody RS, Scheidig AJ. Moderate discrimination of REP-1 between Rab7-GDP and Rab7-GTP arises from a difference of an order of magnitude in dissociation rates. Febs Lett 1998; 425(3):460-4; PMID:9563513; http://dx.doi.org/10.1016/S0014-5793(98)00290-7
  • Schalk I, Zeng K, Wu SK, Stura EA, Matteson J, Huang M, Tandon A, Wilson IA, Balch WE. Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature 1996; 381(6577):42-8; PMID:8609986; http://dx.doi.org/10.1038/381042a0
  • An Y, Shao Y, Alory C, Matteson J, Sakisaka T, Chen W, Gibbs RA, Wilson IA, Balch WE. Geranylgeranyl switching regulates GDI-Rab GTPase recycling. Structure 2003; 11(3):347-57; PMID:12623022; http://dx.doi.org/10.1016/S0969-2126(03)00034-0
  • Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 2003; 302(5645):646-50; PMID:14576435; http://dx.doi.org/10.1126/science.1087761
  • Pylypenko O, Rak A, Durek T, Kushnir S, Dursina BE, Thomae NH, Constantinescu AT, Brunsveld L, Watzke A, Waldmann H. Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO J 2006; 25(1):13-23; PMID:16395334; http://dx.doi.org/10.1038/sj.emboj.7600921
  • Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M. Hypervariable C-terminal domain of Rab proteins acts as a targeting signal. Nature 1991; 353(6346):769-72; PMID:1944536; http://dx.doi.org/10.1038/353769a0
  • Stenmark H, Valencia A, Martinez O, Ullrich O, Goud B, Zerial M. Distinct structural elements of Rab5 define its functional specificity. Embo J 1994; 13(3):575-83; PMID:8313902
  • Ali BR, Wasmeier C, Lamoreux L, Strom M, Seabra MC. Multiple regions contribute to membrane targeting of Rab GTPases. J Cell Sci 2004; 117(26):6401-12; PMID:15561774; http://dx.doi.org/10.1242/jcs.01542
  • DiracSvejstrup AB, Sumizawa T, Pfeffer SR. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. Embo J 1997; 16(3):465-72; PMID:9034329; http://dx.doi.org/10.1093/emboj/16.3.465
  • Sivars U, Aivazian D, Pfeffer SR. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 2003; 425(6960):856-9; PMID:14574414; http://dx.doi.org/10.1038/nature02057
  • Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS. Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes. Nat Chem Biol 2010; 6(7):534-40; PMID:20512138; http://dx.doi.org/10.1038/nchembio.386
  • Bailly E, McCaffrey M, Touchot N, Zahraoui A, Goud B, Bornens M. Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2. Nature 1991; 350(6320):715-8; PMID:1902553; http://dx.doi.org/10.1038/350715a0
  • Vandersluijs P, Hull M, Huber LA, Mâle P, Goud B, Mellman I. Reversible phosphorylation dephosphorylation determines the localization of Rab4 during the cell-cycle. Embo J 1992; 11(12):4379-89; PMID:1425574
  • Walther DJ, Peter JU, Winter S, Höltje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 2003; 115(7):851-62; PMID:14697203; http://dx.doi.org/10.1016/S0092-8674(03)01014-6
  • Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, Skelin M, Jevsek M, Fink H, Rupnik M, et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol 2009; 7(10):e1000229; PMID:19859528; http://dx.doi.org/10.1371/journal.pbio.1000229
  • Lai YC, Kondapalli C, Lehneck R, Procter JB, Dill BD, Woodroof HI, Gourlay R, Peggie M, Macartney TJ, Corti O, et al. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J 2015; 34(22):2840-61; PMID:26471730; http://dx.doi.org/10.15252/embj.201591593
  • Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, et al. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife 2016; 5:e12813; PMID:26824392; http://dx.doi.org/10.7554/eLife.12813
  • Levin RS, Hertz NT, Burlingame AL, Shokat KM, Mukherjee S. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Proc Natl Acad Sci U S A 2016; 113:E4776-83; PMID:27482120
  • Peck GR, Chavez JA, Roach WG, Budnik BA, Lane WS, Karlsson HK, Zierath JR, Lienhard GE. Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation. J Biol Chem 2009; 284(44):30016-23; PMID:19740738; http://dx.doi.org/10.1074/jbc.M109.035568
  • Sano H, Kane S, Sano E, Mîinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 2003; 278(17):14599-602; PMID:12637568; http://dx.doi.org/10.1074/jbc.C300063200
  • Liu W, Yuen EY, Yan Z. The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem 2010; 285(9):6101-8; PMID:20051515; http://dx.doi.org/10.1074/jbc.M109.050229
  • Steele-Mortimer O, Gruenberg J, Clague MJ. Phosphorylation of GDI and membrane cycling of rab proteins. FEBS Lett 1993; 329(3):313-8; PMID:8365473; http://dx.doi.org/10.1016/0014-5793(93)80244-O
  • Kulasekaran G, Nossova N, Marat AL, Lund I, Cremer C, Ioannou MS, McPherson PS. Phosphorylation-dependent regulation of connecdenn/DENND1 guanine nucleotide exchange factors. J Biol Chem 2015; 290(29):17999-8008; PMID:26055712; http://dx.doi.org/10.1074/jbc.M115.636712
  • Muller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010; 329(5994):946-9; PMID:20651120; http://dx.doi.org/10.1126/science.1192276
  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP. De-AMPylation of the small GTPase Rab1 by the pathogen legionella pneumophila. Science 2011; 333(6041):453-6; PMID:21680813; http://dx.doi.org/10.1126/science.1207193
  • Tan YH, Luo ZQ. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 2011; 475(7357):506-U102; PMID:21734656; http://dx.doi.org/10.1038/nature10307
  • Müller MP, Shkumatov AV, Oesterlin LK, Schoebel S, Goody PR, Goody RS, Itzen A. Characterization of enzymes from Legionella pneumophila involved in reversible adenylylation of Rab1 protein. J Biol Chem 2012; 287(42):35036-46; PMID:22872634; http://dx.doi.org/10.1074/jbc.M112.396861
  • Goody PR, Heller K, Oesterlin LK, Müller MP, Itzen A, Goody RS. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 2012; 31(7):1774-84; PMID:22307087; http://dx.doi.org/10.1038/emboj.2012.16
  • Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 2011; 477(7362):103-6; PMID:21822290; http://dx.doi.org/10.1038/nature10335
  • Tan Y, Arnold RJ, Luo ZQ. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 2011; 108(52):21212-7; PMID:22158903; http://dx.doi.org/10.1073/pnas.1114023109
  • Oesterlin LK, Goody RS, Itzen A. Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor. Proc Natl Acad Sci U S A 2012; 109(15):5621-6; PMID:22411835; http://dx.doi.org/10.1073/pnas.1121161109
  • Seixas E, Barros M, Seabra MC, Barral DC. Rab and Arf proteins in genetic diseases. Traffic 2013; 14(8):871-85; PMID:23565987; http://dx.doi.org/10.1111/tra.12072
  • Aligianis IA, Johnson CA, Gissen P, Chen D, Hampshire D, Hoffmann K, Maina EN, Morgan NV, Tee L, Morton J, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat Genet 2005; 37(3):221-3; PMID:15696165; http://dx.doi.org/10.1038/ng1517
  • Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl DJ, Carpanini S, Posmyk R, et al. Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet 2013; 93(6):1001-14; PMID:24239381; http://dx.doi.org/10.1016/j.ajhg.2013.10.011
  • Aligianis IA, Morgan NV, Mione M, Johnson CA, Rosser E, Hennekam RC, Adams G, Trembath RC, Pilz DT, Stoodley N, et al. Mutation in Rab3 GTPase-activating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome. Am J Hum Genet 2006; 78(4):702-7; PMID:16532399; http://dx.doi.org/10.1086/502681
  • Corbier C, Sellier C. C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates autophagy. Small GTPases 2016; 5:1-6. PMID:27494456; http://dx.doi.org/10.1080/21541248.2016.1212688
  • Ciura S, Sellier C, Campanari ML, Charlet-Berguerand N, Kabashi E. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy 2016; 12(8):1406-8; PMID:27245636; http://dx.doi.org/10.1080/15548627.2016.1189070
  • Coxon FP, Taylor A, Stewart CA, Baron R, Seabra MC, Ebetino FH, Rogers MJ. The gunmetal mouse reveals Rab geranylgeranyl transferase to be the major molecular target of phosphonocarboxylate analogues of bisphosphonates. Bone 2011; 49(1):111-21; PMID:21419243; http://dx.doi.org/10.1016/j.bone.2011.03.686
  • Seabra MC. New insights into the pathogenesis of choroideremia: A tale of two REPs. Ophthalmic Genetics 1996; 17(2):43-46; PMID:8832719; http://dx.doi.org/10.3109/13816819609057869
  • van den Hurk JA, Schwartz M, van Bokhoven H, van de Pol TJ, Bogerd L, Pinckers AJ, Bleeker-Wagemakers EM, Pawlowitzki IH, Rüther K, Ropers HH, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat 1997; 9(2):110-7; PMID:9067750; http://dx.doi.org/10.1002/(SICI)1098-1004(1997)9:2%3c110::AID-HUMU2%3e3.0.CO;2-D
  • D'Adamo P, Menegon A, Lo Nigro C, Grasso M, Gulisano M, Tamanini F, Bienvenu T, Gedeon AK, Oostra B, Wu SK, et al. Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet 1998; 19(2):134-9; PMID:9620768; http://dx.doi.org/10.1038/487
  • Klopper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 2012; 10:71; PMID:22873208; http://dx.doi.org/10.1186/1741-7007-10-71
  • Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J Cell Biol 2010; 191(2):367-81; PMID:20937701; http://dx.doi.org/10.1083/jcb.201008051
  • Ishida M, Oguchi ME, Fukuda M. Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct Funct 2016; 41:61-79; PMID:27246931
  • Clabecq A, Henry JP, Darchen F. Biochemical characterization of Rab3-GTPase-activating protein reveals a mechanism similar to that of Ras-GAP. J Biol Chem 2000; 275(41):31786-91; PMID:10859313; http://dx.doi.org/10.1074/jbc.M003705200
  • Delprato A, Merithew E, Lambright DG. Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 2004; 118(5):607-17; PMID:15339665; http://dx.doi.org/10.1016/j.cell.2004.08.009
  • Park SY, Jin W, Woo JR, Shoelson SE. Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating protein (RabGAP) domains reveal critical elements for GLUT4 translocation. J Biol Chem 2011; 286(20):18130-8; PMID:21454505; http://dx.doi.org/10.1074/jbc.M110.217323
  • Moya M, Roberts D, Novick P. DSS4-1 is a dominant suppressor of sec 4-8 that encodes a nucleotide exchange protein that aids Sec 4p function. Nature 1993; 361(6411):460-3; PMID:8429886; http://dx.doi.org/10.1038/361460a0
  • Chin HF, Cai Y, Menon S, Ferro-Novick S, Reinisch KM, De La Cruz EM. Kinetic analysis of the guanine nucleotide exchange activity of TRAPP, a multimeric Ypt1p exchange factor. J Mol Biol 2009; 389(2):275-88; PMID:19361519; http://dx.doi.org/10.1016/j.jmb.2009.03.068
  • Esters H, Alexandrov K, Iakovenko A, Ivanova T, Thomä N, Rybin V, Zerial M, Scheidig AJ, Goody RS. Vps9, Rabex-5 and DSS4: proteins with weak but distinct nucleotide-exchange activities for Rab proteins. J Mol Biol 2001; 310(1):141-56; PMID:11419942; http://dx.doi.org/10.1006/jmbi.2001.4735
  • Du LL, Novick P. Yeast rab GTPase-activating protein Gyp1p localizes to the Golgi apparatus and is a negative regulator of Ypt1p. Mol Biol Cell 2001; 12(5):1215-26; PMID:11359917; http://dx.doi.org/10.1091/mbc.12.5.1215
  • Albert S, Gallwitz D. Two new members of a family of Ypt/Rab GTPase activating proteins. Promiscuity of substrate recognition. J Biol Chem 1999; 274(47):33186-9; PMID:10559187; http://dx.doi.org/10.1074/jbc.274.47.33186
  • Will E, Gallwitz D. Biochemical characterization of Gyp6p, a Ypt/Rab-specific GTPase-activating protein from yeast. J Biol Chem 2001; 276(15):12135-9; PMID:11278907; http://dx.doi.org/10.1074/jbc.M011451200
  • Vollmer P, Will E, Scheglmann D, Strom M, Gallwitz D. Primary structure and biochemical characterization of yeast GTPase-activating proteins with substrate preference for the transport GTPase Ypt7p. Eur J Biochem 1999; 260(1):284-90; PMID:10091609; http://dx.doi.org/10.1046/j.1432-1327.1999.00192.x
  • Will E, Albert S, Gallwitz D. Expression, purification, and biochemical properties of Ypt/Rab GTPase-activating proteins of Gyp family. Methods Enzymol 2001; 329:50-8; PMID:11210571
  • Itzen A, Rak A, Goody RS. Sec 2 is a highly efficient exchange factor for the Rab protein Sec 4. J Mol Biol 2007; 365(5):1359-67; PMID:17134721; http://dx.doi.org/10.1016/j.jmb.2006.10.096
  • Albert S, Will E, Gallwitz D. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. Embo J 1999; 18(19):5216-5225; PMID:10508155; http://dx.doi.org/10.1093/emboj/18.19.5216
  • Nickerson DP, Russell MR, Lo SY, Chapin HC, Milnes JM, Merz AJ. Termination of isoform-selective Vps21/Rab5 signaling at endolysosomal organelles by Msb3/Gyp3. Traffic 2012; 13(10):1411-28; PMID:22748138; http://dx.doi.org/10.1111/j.1600-0854.2012.01390.x