907
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Ral function in muscle is required for flight maintenance in Drosophila

ORCID IconORCID Icon & ORCID IconORCID Icon
Pages 174-179 | Received 15 May 2017, Accepted 10 Aug 2017, Published online: 28 Dec 2017

References

  • Feig LA. Ral-GTPases: Approaching their 15 minutes of fame. Trends in Cell Biology. 2003;13:419-425. https://doi.org/10.1016/S0962-8924(03)00152-1. PMID:12888294
  • Shirakawa R, Horiuchi H. Ral GTPases: Crucial mediators of exocytosis and tumourigenesis. J. Biochem. 2015;157:285-299. https://doi.org/10.1093/jb/mvv029. PMID:25796063
  • Chardin P, Tavitian A. Coding sequences of human ralA and ralB cDNAs. Nucleic Acids Res. 1989;17:4380. https://doi.org/10.1093/nar/17.11.4380. PMID:2662142
  • Moskalenko S, Tong C, Rosse C, Mirey G., Formstecher E, Daviet L, Camonis J, White MA. Ral GTPases Regulate Exocyst Assembly through Dual Subunit Interactions. J. Biol. Chem. 2003;278:51743-51748. https://doi.org/10.1074/jbc.M308702200. PMID:14525976
  • Li G, Han L, Chou T, Fujita Y, Arunachalam L, Xu A, Wong A, Chiew SK, Wan Q, Wang L, et al. RalA and RalB function as the critical GTP sensors for GTP-dependent exocytosis. J. Neurosci. 2007;27:190-202. https://doi.org/10.1523/JNEUROSCI.2537-06.2007. PMID:17202486
  • Lalli G, Hall A. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J. Cell Biol. 2005;171:857-869. https://doi.org/10.1083/jcb.200507061. PMID:16330713
  • Lopez JA, Kwan EP, Xie L, He Y, James D, Gaisano HY The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells. J. Biol. Chem. 2008;283:17939-17945. https://doi.org/10.1074/jbc.M800321200. PMID:18426794
  • Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR. Activation of RalA Is Required for Insulin-Stimulated Glut4 Trafficking to the Plasma Membrane via the Exocyst and the Motor Protein Myo1c. Dev. Cell. 2007;13:391-404. https://doi.org/10.1016/j.devcel.2007.07.007. PMID:17765682
  • Sawamoto K, Winge P, Koyama S, Hirota Y, Yamada C, Miyao S, Yoshikawa S, Jin MH, Kikuchi A, Okano H. The Drosophila Ral GTPase regulates developmental cell shape changes through the Jun NH(2)-terminal kinase pathway. J. Cell Biol. 1999;146:361-72. https://doi.org/10.1083/jcb.146.2.361. PMID:10427090
  • Moskalenko S, et al. The exocyst is a Ral effector complex. Nat. Cell Biol. 2002;4:66-72. https://doi.org/10.1038/ncb728. PMID:11740492
  • Holly RM, Mavor LM, Zuo Z, Blankenship JT. A rapid, membrane-dependent pathway directs furrow formation through RalA in the early Drosophila embryo. Development. 2015;142:2316-2328. https://doi.org/10.1242/dev.120998. PMID:26092850
  • Cho B, Fischer JA. Ral GTPase promotes asymmetric Notch activation in the Drosophila eye in response to Frizzled/PCP signaling by repressing ligand-independent receptor activation. Development. 2011;138:1349-1359. https://doi.org/10.1242/dev.056002. PMID:21350007
  • Teodoro RO, Pekkurnaz G, Nasser A, Higashi-Kovtun ME, Balakireva M, McLachlan IG, Camonis J, Schwarz TL. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. EMBO J. 2013;32:2039-55. https://doi.org/10.1038/emboj.2013.147. PMID:23812009
  • Klose M, Duvall L, Li W, Liang X, Ren C, Steinbach JH, Taghert PH. Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation. Neuron. 2016;90:1-14. https://doi.org/10.1016/j.neuron.2016.04.002. PMID:27054611
  • Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Sci. Rep. 2017;7:42586. https://doi.org/10.1038/srep42586. PMID:28195208
  • Dickinson MH, Tu MS. The function of dipteran flight muscle. Comparative Biochemistry and Physiology — A Physiology. 1997;116:223-238. https://doi.org/10.1016/S0300-9629(96)00162-4
  • Fry SN, Sayaman R, Dickinson MH. The aerodynamics of free-flight maneuvers in Drosophila. Science. 2003;300:495-8. https://doi.org/10.1126/science.1081944. PMID:12702878
  • Sadaf S, Reddy OV, Sane SP, Hasan G. Neural control of wing coordination in flies. Curr. Biol. 2015;25:80-86. https://doi.org/10.1016/j.cub.2014.10.069. PMID:25496964
  • Ghiglione C, Devergne O, Cerezo D, Noselli S. Drosophila RalA is essential for the maintenance of Jak/Stat signalling in ovarian follicles. EMBO Rep. 2008;9:676-82. https://doi.org/10.1038/embor.2008.79. PMID:18552769
  • Prakriya M, Lewis R S. Store-Operated Calcium Channels. Physiol. Rev. 2015;95:1383-1436. https://doi.org/10.1152/physrev.00020.2014. PMID:26400989
  • Feske S Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 2007;7:690-702. https://doi.org/10.1038/nri2152. PMID:17703229
  • Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, et al. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 2008;10:688-697. https://doi.org/10.1038/ncb1731. PMID:18488020
  • Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 Are Critical for Breast Tumor Cell Migration and Metastasis. Cancer Cell. 2009;15:124-134. https://doi.org/10.1016/j.ccr.2008.12.019. PMID:19185847
  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE JR, Meyer T. STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx. Curr. Biol. 2005;15:1235-1241. https://doi.org/10.1016/j.cub.2005.05.055. PMID:16005298
  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179-185. https://doi.org/10.1038/nature04702. PMID:16582901
  • Venkiteswaran G, Hasan G. Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc. Natl. Acad. Sci. 2009;106:10326-10331. https://doi.org/10.1073/pnas.0902982106
  • Ranganayakulu G, Schulz RA, Olson EN. Wingless Signaling Induces nautilus Expression in the Ventral Mesoderm of the Drosophila Embryo. Dev. Biol. 1996;176:143-148. https://doi.org/10.1006/dbio.1996.9987. PMID:8654890
  • Klein P, Müller-Rischart AK, Motori E, Schönbauer C, Schnorrer F, Winklhofer KF, Klein R. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 2014;33:341-355. https://doi.org/10.1002/embj.201284290. PMID:24473149
  • Bernard F, Lalouette A, Gullaud M, Jeantet AY, Cossard R, Zider A, Ferveur JF, Silber J. Control of apterous by vestigial drives indirect flight muscle development in Drosophila. Dev. Biol. 2003;260:391-403. https://doi.org/10.1016/S0012-1606(03)00255-0. PMID:12921740
  • Swank DM. Mechanical analysis of Drosophila indirect flight and jump muscles. Methods. 2013;56:69-77. https://doi.org/10.1016/j.ymeth.2011.10.015
  • Mukherjee P, Gildor B, Shilo B, Vijayraghavan K, Schejter ED. The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis. Development. 2011;2357:2347-2357.
  • Venkiteswaran G, Hasan G. Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc. Natl. Acad. Sci. U. S. A. 2009;106:10326-10331. https://doi.org/10.1073/pnas.0902982106. PMID:19515818
  • Sanyal S, Consoulas C, Kuromi H, Basole A, Mukai L, Kidokoro Y, Krishnan KS, Ramaswami M. Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics. 2005;169:737-750. https://doi.org/10.1534/genetics.104.031930. PMID:15520268
  • Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J. Neurosci. 2015;35:13784-13799. https://doi.org/10.1523/JNEUROSCI.1680-15.2015. PMID:26446229
  • Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM. Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila. Dev. Biol. 2012;361:191-207. https://doi.org/10.1016/j.ydbio.2011.09.031. PMID:22008792
  • Pan Z, Brotto M, Ma J. Store-operated Ca2+ entry in muscle physiology and diseases. BMB reports. 2014;47:69-79. https://doi.org/10.5483/BMBRep.2014.47.2.015. PMID:24411466
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open source platform for biological image analysis. Nat. Methods. 2012;9:676-682. https://doi.org/10.1038/nmeth.2019. PMID:22743772
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2^-ΔΔCT Method. Methods. 2001;25:402-408. https://doi.org/10.1006/meth.2001.1262. PMID:11846609
  • Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat. Methods. 2014;11:121-2. https://doi.org/10.1038/nmeth.2811. PMID:24481215