2,018
Views
7
CrossRef citations to date
0
Altmetric
Commentary

A functional antagonism between RhoJ and Cdc42 regulates fibronectin remodelling during angiogenesis

ORCID Icon &
Pages 241-245 | Received 08 Jul 2020, Accepted 07 Aug 2020, Published online: 28 Aug 2020

References

  • Bryan BA, D’Amore PA. What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci. 2007;64:2053–2065.
  • Yuan L, Sacharidou A, Stratman AN, et al. RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood. 2011;118:1145–1153.
  • Vignal E, De Toledo M, Comunale F, et al. Characterization of TCL, a new GTPase of the rho family related to TC10 andCcdc42. J Biol Chem. 2000;275:36457–36464.
  • Sundararaman A, Fukushima Y, Norman JC, et al. RhoJ regulates alpha5beta1 integrin trafficking to control fibronectin remodeling during angiogenesis. Curr Biol. 2020;30:2146–2155.e5.
  • Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–399.
  • Madaule P, Axel R. A novel ras-related gene family. Cell. 1985;41:31–40.
  • Wherlock M, Mellor H. The Rho GTPase family: a Racs to Wrchs story. J Cell Sci. 2002;115:239–240.
  • Fort P. Rho signaling: an historical and evolutionary perspective. In: Edited By: Philippe Fort (French National Center for Scientific Research (CNRS), France) and Anne Blangy (French National Center for Scientific Research (CNRS), France). Rho GTPases. (WORLD SCIENTIFIC); 2017. p. 3–18.
  • Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314.
  • Barry DM, Xu K, Meadows SM, et al. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development. 2015;142:3058–3070.
  • Fukushima Y, Nishiyama K, Kataoka H, et al. RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells. Embo J. 2020;39: e102930.
  • Mana G, Valdembri D, Serini G. Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans. 2020;48:83–93.
  • Mana G, Clapero F, Panieri E, et al. PPFIA1 drives active alpha5beta1 integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nat Commun. 2016;7:13546.
  • Zimmerman SP, Asokan SB, Kuhlman B, et al. Cells lay their own tracks - optogenetic Cdc42 activation stimulates fibronectin deposition supporting directed migration. J Cell Sci. 2017;130:2971–2983.
  • Hashimoto S, Tsubouchi A, Mazaki Y, et al. Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J Biol Chem. 2001;276:6037–6045.
  • Combeau G, Kreis P, Domenichini F, et al. The p21-activated kinase PAK3 forms heterodimers with PAK1 in brain implementing trans-regulation of PAK3 activity. J Biol Chem. 2012;287:30084–30096.
  • Peters JH, Chen GE, Hynes RO. Fibronectin isoform distribution in the mouse. II. Differential distribution of the alternatively spliced EIIIB, EIIIA, and V segments in the adult mouse. Cell Adhes Commun. 1996;4:127–148.
  • Kim C, Yang H, Fukushima Y, et al. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell. 2014;25:102–117.
  • Richards M, Hetheridge C, Mellor H. The formin FMNL3 controls early apical specification in endothelial cells by regulating the polarized trafficking of podocalyxin. Curr Biol. 2015;25:2325–2331.
  • Fukushima Y, Okada M, Kataoka H, et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest. 2011;121:1974–1985.
  • Kusuhara S, Fukushima Y, Fukuhara S, et al. Arhgef15 promotes retinal angiogenesis by mediating VEGF-induced Cdc42 activation and potentiating RhoJ inactivation in endothelial cells. PLoS One. 2012;7:e45858.
  • Kaur S, Leszczynska K, Abraham S, et al. RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arterioscler Thromb Vasc Biol. 2011;31:657–664.
  • Wierzbicka-Patynowski I, Schwarzbauer JE. The ins and outs of fibronectin matrix assembly. J Cell Sci. 2003;116:3269–3276.
  • Chardin P. Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol. 2006;7:54–62.
  • Wennerberg K, Forget MA, Ellerbroek SM, et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol. 2003;13:1106–1115.
  • Durkin CH, Leite F, Cordeiro JV, et al. RhoD inhibits RhoC-ROCK-dependent cell contraction via PAK6. Dev Cell. 2017;41:315–329 e317.
  • Suleymanova N, Crudden C, Shibano T, et al. Functional antagonism of beta-arrestin isoforms balance IGF-1R expression and signalling with distinct cancer-related biological outcomes. Oncogene. 2017;36:5734–5744.
  • Arjonen A, Alanko J, Veltel S, et al. Distinct recycling of active and inactive beta1 integrins. Traffic. 2012;13:610–625.
  • Wang Y, Arjonen A, Pouwels J, et al. Formin-like 2 promotes beta1-integrin trafficking and invasive motility downstream of PKCalpha. Dev Cell. 2015;34:475–483.
  • Gardberg M, Talvinen K, Kaipio K, et al. Characterization of diaphanous-related formin FMNL2 in human tissues. BMC Cell Biol. 2010;11:55.
  • Kage F, Steffen A, Ellinger A, et al. FMNL2 and −3 regulate Golgi architecture and anterograde transport downstream of Cdc42. Sci Rep. 2017;7:9791.
  • Valdembri D, Serini G. Angiogenesis: the importance of RHOJ-mediated trafficking of active integrins. Curr Biol. 2020;30:R652–R654.
  • Schwarzbauer JE, DeSimone DW. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol. 2011;3:a005041-a005041.
  • Astrof S, Hynes RO. Fibronectins in vascular morphogenesis. Angiogenesis. 2009;12:165–175.
  • Al-Yafeai Z, Yurdagul A Jr., Peretik JM, et al. Endothelial FN (Fibronectin) deposition by alpha5beta1 integrins drives atherogenic inflammation. Arterioscler Thromb Vasc Biol. 2018;38:2601–2614.
  • Tan MH, Sun Z, Opitz SL, et al. Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood. 2004;104:11–18.
  • Rohwedder I, Montanez E, Beckmann K, et al. Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation. EMBO Mol Med. 2012;4:564–576.
  • Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005;97:1093–1107.