417
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa

, , & ORCID Icon
Pages 100-113 | Received 03 Dec 2020, Accepted 11 Mar 2021, Published online: 29 Mar 2021

References

  • Stenmark H, Olkkonen VM. The rab gtpase family. Genome Biol. 2001;2(5):reviews3007–1.
  • Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128(17):3171–3176.
  • Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–149.
  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–117.
  • Pfeffer S. A model for Rab GTPase localization. Biochem Soc Trans. 2005;33(4):627–630.
  • Colicelli J. Human RAS superfamily proteins and related GTPases. Science’s STKE. 2004;2004(250):re13–re13.
  • Asaoka R, Uemura T, Ito J, et al. Arabidopsis RABA1 GTPases are involved in transport between the trans‐Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J. 2013;73(2):240–249.
  • Gurkan C, Lapp H, Alory C, et al. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell. 2005;16(8):3847–3864.
  • Rutherford S, Moore I. The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol. 2002;5(6):518–528.
  • Vernoud V, Horton AC, Yang Z, et al. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131(3):1191–1208.
  • Brighouse A, Dacks JB, Field MC. Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci. 2010;67(20):3449–3465.
  • Pereira‐Leal JB. The Ypt/Rab family and the evolution of trafficking in fungi. Traffic. 2008;9(1):27–38.
  • Bright LJ, Kambesis N, Nelson SB, et al. Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 2010;6(10):e1001155.
  • Eisen JA, Coyne RS, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4(9):e286.
  • Ezougou CN, Ben-Rached F, Moss DK, et al. Plasmodium falciparum Rab5B is an N-terminally myristoylated Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes. PloS One. 2014;9(2):e87695.
  • Quevillon E, Spielmann T, Brahimi K, et al. The Plasmodiumfalciparum family of Rab GTPases. Gene. 2003;306:13–25.
  • Langsley G, Van Noort V, Carret C, et al. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 2008;10(5):462–470.
  • Ackers JP, Dhir V, Field MC. A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol. 2005;141(1):89–97.
  • Field MC. Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends Parasitol. 2005;21(10):447–450.
  • Fritz-Laylin LK, Prochnik SE, Ginger ML, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642.
  • Carlton JM, Hirt RP, Silva JC, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315(5809):207–212.
  • Lal K, Field MC, Carlton JM, et al. Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol Biochem Parasitol. 2005;143(2):226–235.
  • Eliáš M, Brighouse A, Gabernet-Castello C, et al. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125(10):2500–2508.
  • Petrželková R, Eliáš M. Contrasting patterns in the evolution of the Rab GTPase family in Archaeplastida. Acta Societatis Botanicorum Poloniae. 2014;83:4.
  • Kang S, Tice AK, Spiegel FW, et al. Between a pod and a hard test: the deep evolution of amoebae. Mol Biol Evol. 2017;34(9):2258–2270.
  • Nakada-Tsukui K, Saito-Nakano Y, Husain A, et al. Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology. Exp Parasitol. 2010;126(3):337–347.
  • Lahr DJ, Kosakyan A, Lara E, et al. Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic. Curr Biol. 2019;29(6):991–1001.
  • Diekmann Y, Seixas E, Gouw M, et al. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol. 2011;7(10):e1002217.
  • Saito-Nakano Y, Loftus BJ, Hall N, et al. The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol. 2005;110(3):244–252.
  • Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(5):843–846.
  • Huet D, Blisnick T, Perrot S, et al. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. Elife. 2014;3:e02419.
  • Eguether T, San Agustin JT, Keady BT, et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell. 2014;31(3):279–290.
  • Kanie T, Abbott KL, Mooney NA, et al. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev Cell. 2017;42(1):22–36.
  • Lim YS, Tang BL. A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci. 2015;128(16):2996–3008.
  • Lo JC, Jamsai D, O’Connor AE, et al. (2012). RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly.
  • Lumb JH, Field MC. Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res Notes. 2011;4(1):190.
  • Qin H, Wang Z, Diener D, et al. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol. 2007;17(3):193–202.
  • Wang Y, Ng EL, Tang BL. Rab23: what exactly does it traffic? Traffic. 2006;7(6):746–750.
  • Yoshimura SI, Egerer J, Fuchs E, et al. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol. 2007;178(3):363–369.
  • Hess S, Eme L, Roger AJ, et al. A natural toroidal microswimmer with a rotary eukaryotic flagellum. Nat Microbiol. 2019;4(10):1620–1626.
  • Fiore‐Donno AM, Tice AK, Brown MW. A non‐flagellated member of the myxogastria and expansion of the echinosteliida. J Eukaryotic Microbiol. 2019;66(4):538–544.
  • Reinhardt DJ, Olive LS. Echinosteliopsis, a new genus of the Mycetozoa. Mycologia. 1966;58(6):966–970.
  • Field MC, Carrington M. Intracellular membrane transport systems in Trypanosoma brucei. Traffic. 2004;5(12):905–913.
  • Field MC, Natesan SKA, Gabernet‐Castello C, et al. Intracellular trafficking in the trypanosomatids. Traffic. 2007;8(6):629–639.
  • Eichinger L, Pachebat JA, Glöckner G, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435(7038):43–57.
  • Loftus B, Anderson I, Davies R, et al. The genome of the protist parasite Entamoeba histolytica. Nature. 2005;433(7028):865–868.
  • Lorenzi HA, Puiu D, Miller JR, et al. New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis. 2010;4(6):e716.
  • Žárský V, Klimeš V, Pačes J, et al. (2021). The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Molecular biology and evolution, msab020.
  • Mitra BN, Saito‐Nakano Y, Nakada‐Tsukui K, et al. Rab11B small GTPase regulates secretion of cysteine proteases in the enteric protozoan parasite Entamoeba histolytica. Cell Microbiol. 2007;9(9):2112–2125.
  • Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases. 2020;11(5):320–333.
  • McGugan GC, Temesvari LA. Characterization of a Rab11-like GTPase, EhRab11, of entamoeba histolytica. Mol Biochem Parasitol. 2003;129(2):137–146.
  • Okada M, Nozaki T. New insights into molecular mechanisms of phagocytosis in Entamoeba histolytica by proteomic analysis. Arch Med Res. 2006;37(2):244–251.
  • Saito-Nakano Y, Yasuda T, Nakada-Tsukui K, et al. Rab5-associated vacuoles play a unique role in phagocytosis of the enteric protozoan parasite Entamoeba histolytica. J Biol Chem. 2004;279(47):49497–49507.
  • Rupper A, Grove B, Cardelli J. Rab7 regulates phagosome maturation in Dictyostelium. J Cell Sci. 2001;114(13):2449–2460.
  • Saito‐Nakano Y, Wahyuni R, Nakada‐Tsukui K, et al. Rab7D small GTPase is involved in phago‐, trogocytosis and cytoskeletal reorganization in the enteric protozoan Entamoeba histolytica. Cell Microbiol. 2021;23(1):e13267.
  • Stein MP, Dong J, Wandinger-Ness A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev. 2003;55(11):1421–1437.
  • Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In: Gene prediction. Humana: New York, NY; 2019. p. 227–245.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402.
  • Surkont J, Diekmann Y, Pereira-Leal JB. Rabifier2: an improved bioinformatic classifier of Rab GTPases. Bioinformatics. 2017;33(4):568–570.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.
  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973.
  • Kalyaanamoorthy S, Minh BQ, Wong TK, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589.
  • Hoang DT, Chernomor O, Von Haeseler A, et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–522.
  • Nguyen LT, Schmidt HA, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274.
  • Adl SM, Bass D, Lane CE, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryotic Microbiol. 2019;66(1):4–119.
  • Schilde C, Lawal HM, Kin K, et al. A well supported multi gene phylogeny of 52 dictyostelia. Mol Phylogenet Evol. 2019;134:66–73.
  • Cui Z, Li J, Chen Y, et al. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Genetics and Evolution: Infection; 2019. p. 75, 104018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.