1,110
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

A New Crosslinking Assay to Study Guanine Nucleotide Binding in the Gtr Heterodimer of S. cerevisiae

, & ORCID Icon
Pages 327-334 | Received 23 Aug 2022, Accepted 24 Oct 2022, Published online: 03 Nov 2022

References

  • Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat Metab. 2019;1(3):321–333.
  • Battaglioni S, Benjamin D, Wälchli M, et al. MTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–1836.
  • Jewell JL, Russell RC, Guan K-L. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14(3):133–139.
  • Liu GY, Sabatini DM. MTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203.
  • Manning BD, Tee AR, Logsdon MN, et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell. 2002;10(1):151–162.
  • Orozco JM, Krawczyk PA, Scaria SM, et al. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Nat Metab. 2020;2(9):893–901.
  • Salt IP, Johnson G, Ashcroft SJH, et al. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem J. 1998;335(3):533–539.
  • Hara K, Yonezawa K, Weng Q-P, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism *. J Biol Chem. 1998;273(23):14484–14494.
  • Wang S, Tsun Z-Y, Wolfson RL, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347(6218):188–194.
  • Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol. 2015;35(14):2479–2494.
  • Rebsamen M, Pochini L, Stasyk T, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477–481.
  • Chantranupong L, Wolfson RL, Orozco JM, et al. The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 2014;9(1):1–8.
  • Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351(6268):43–48.
  • Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR proteins are arginine sensors for the mTORC1 Pathway. Cell. 2016;165(1):153–164.
  • Gu X, Orozco JM, Saxton RA, et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science. 2017;358(6364):813–818.
  • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.
  • Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15(6):555–564.
  • Yeh WC, Bierer BE, McKnight SL. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Nat Acad Sci. 1995;92(24):11086–11090.
  • Huffman TA, Mothe-Satney I, Lawrence JC Jr. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci USA. 2002;99(2):1047–1052.
  • Dufner A, Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res. 1999;253(1):100–109.
  • Fingar DC, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16(12):1472–1487.
  • Gingras A-C, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807–826.
  • Rohde J, Heitman J, Cardenas ME. The TOR kinases link nutrient sensing to cell growth*. J Biol Chem. 2001;276(13):9583–9586.
  • Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290–303.
  • Kim E, Goraksha-Hicks P, Li L, et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008;10(8):935–945.
  • Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829–1834.
  • Li Y, Inoki K, Guan K-L. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol. 2004;24(18):7965–7975.
  • Menon S, Dibble CC, Talbott G, et al. Spatial Control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the Lysosome. Cell. 2014;156(4):771–785.
  • Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae Putative G Protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics. 1999;152(3):853–867.
  • Schürmann A, Brauers A, Maßmann S, et al. Cloning of a novel family of mammalian GTP-binding Proteins (RagA, RagBs, RagB1) with Remote Similarity to the Ras-related GTPases *. J Biol Chem. 1995;270(48):28982–28988.
  • Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–1501.
  • Shen K, Choe A, Sabatini DM. Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability. Mol Cell. 2017;68(3):552–565.e8.
  • Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases. J Cell Biol. 2013;202(7):1107–1122.
  • Tsun Z-Y, Bar-Peled L, Chantranupong L, et al. The Folliculin Tumor Suppressor Is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell. 2013;52(4):495–505.
  • Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Nat Acad Sci. 2018;115(38):9545–9550.
  • Bar-Peled L, Schweitzer LD, Zoncu R, et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150(6):1196–1208.
  • Doxsey DD, Shen K. Purification and biochemical characterization of the Rag GTPase heterodimer. Methods Enzymol. 2022;675:131–158.
  • Sekiguchi T, Hirose E, Nakashima N, et al. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B*. J Biol Chem. 2001;276(10):7246–7257.
  • Feig LA, Cooper GM. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol Cell Biol. 1988;8(8):3235–3243.
  • Jeong J-H, Lee K-H, Kim Y-M, et al. Crystal structure of the Gtr1pGTP-Gtr2pGDP protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion*. J Biol Chem. 2012;287(35):29648–29653.
  • Gong R, Li L, Liu Y, et al. Crystal structure of the Gtr1p–Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 2011;25(16):1668–1673.
  • Zhang T, Péli-Gulli M-P, Zhang Z, et al. Structural insights into the EGO-TC–mediated membrane tethering of the TORC1-regulatory Rag GTPases. Sci Adv. 2019;5(9):eaax8164.
  • Hatakeyama R, Péli-Gulli M-P, Hu Z, et al. Spatially distinct pools of TORC1 balance protein homeostasis. Mol Cell. 2019;73(2):325–338.e8.
  • Algret R, Fernandez-Martinez J, Shi Y, et al. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway*. Mol Cell Proteomics. 2014;13(11):2855–2870.
  • González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36(4):397–408.
  • Urano J, Tabancay AP, Yang W, et al. The Saccharomyces cerevisiae Rheb G-protein Is Involved in regulating canavanine resistance and arginine uptake *. J Biol Chem. 2000;275(15):11198–11206.