824
Views
3
CrossRef citations to date
0
Altmetric
Points-of-View

Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited

Pages 268-274 | Received 17 Mar 2017, Accepted 17 Apr 2017, Published online: 25 Jul 2017

References

  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21:247-269; PMID:16212495; https://doi.org/10.1146/annurev.cellbio.21.020604.150721
  • Craddock C, Lavagi I, Yang Z. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol 2012; 22:492-501; PMID:22795444; https://doi.org/10.1016/j.tcb.2012.05.002
  • Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-2137; PMID:23028141; https://doi.org/10.1101/gad.200303.112
  • Egloff S, Dienstbier M, Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012; 28:333-341; PMID:22622228; https://doi.org/10.1016/j.tig.2012.03.007
  • Hajheidari M, Koncz C, Eick D. Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends Plant Sci 2013; 18:633-643; PMID:23910452; https://doi.org/10.1016/j.tplants.2013.07.001
  • Aristizabal MJ, Kobor MS. A single flexible RNAPII-CTD integrates many different transcriptional programs. Transcription 2016; 7:50-56; PMID:26985717; https://doi.org/10.1080/21541264.2016.1163451
  • Zaborowska J, Egloff S, Murphy S. The pol II CTD: new twists in the tail. Nat Struct Mol Biol 2016; 23:771-777; PMID:27605205; https://doi.org/10.1038/nsmb.3285
  • Harlen KM, Churchman LS. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol 2017; 18(4):263-273; PMID:28248323; https://doi.org/10.1038/nrm.2017.10
  • Marshall C. How do small GTPase signal transduction pathways regulate cell cycle entry? Curr Opin Cell Biol 1999; 11:732-736; PMID:10600705; https://doi.org/10.1016/S0955-0674(99)00044-7
  • Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 2011; 1813:1619-1633; PMID:21167873; https://doi.org/10.1016/j.bbamcr.2010.12.012
  • Luse DS. The RNA polymerase II preinitiation complex: through what pathway is the complex assembled? Transcription 2013; 5:e27050; PMID:24406342; https://doi.org/10.4161/trns.27050
  • Wong KH, Jin Y, Struhl K. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol Cell 2014; 54:601-612; PMID:24746699; https://doi.org/10.1016/j.molcel.2014.03.024
  • Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-166; PMID:25693131; https://doi.org/10.1038/nrm3951
  • Kuchin S, Treich I, Carlson M. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 2000; 97:7916-7920; PMID:10869433; https://doi.org/10.1073/pnas.140109897
  • Howard SC, Budovskaya YV, Chang YW, Herman PK. The C-terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway. J Biol Chem 2002; 277:19488-19497; PMID:12032176; https://doi.org/10.1074/jbc.M201878200
  • Chang YW, Howard SC, Herman PK. The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the general RNA polymerase II transcription apparatus. Mol Cell 2004; 15:107-116; PMID:15225552; https://doi.org/10.1016/j.molcel.2004.05.021
  • Inglis DO, Sherlock G. Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryotic Cell 2013; 12:1316-1325; PMID:23913542; https://doi.org/10.1128/EC.00094-13
  • Abdellatif M, Packer SE, Michael LH, Zhang D, Charng MJ, Schneider MD. A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol Cell Biol 1998; 18:6729-6736; PMID:9774686; https://doi.org/10.1128/MCB.18.11.6729
  • Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 1995; 81:1137-1146; PMID:7600581; https://doi.org/10.1016/S0092-8674(05)80018-2
  • Minden A, Lin A, Claret FX, Abo A, Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 1995; 81:1147-1157; PMID:7600582; https://doi.org/10.1016/S0092-8674(05)80019-4
  • Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 1995; 81:1159-1170; PMID:7600583; https://doi.org/10.1016/S0092-8674(05)80020-0
  • Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 2011; 23:1415-1423; PMID:21515363; https://doi.org/10.1016/j.cellsig.2011.04.001
  • Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal 2013; 25:1955-1961; PMID:23669310; https://doi.org/10.1016/j.cellsig.2013.04.009
  • Porter AP, Papaioannou A, Malliri A. Deregulation of Rho GTPases in cancer. Small GTPases 2016; 7:123-138; PMID:27104658; https://doi.org/10.1080/21541248.2016.1173767
  • Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, Abraham BJ, Sharma B, Yeung C, Altabef A et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159:1126-1139; PMID:25416950; https://doi.org/10.1016/j.cell.2014.10.024
  • Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 2015; 163:174-186; PMID:26406377; https://doi.org/10.1016/j.cell.2015.08.063
  • Zhang B, Yang G, Chen Y, Zhao Y, Gao P, Liu B, Wang H, Zheng ZL. C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc Natl Acad Sci U S A 2016; 113:E8197-E8206; PMID:27911772; https://doi.org/10.1073/pnas.1605871113
  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 2005; 120:687-700; PMID:15766531; https://doi.org/10.1016/j.cell.2004.12.026
  • Tao LZ, Cheung AY, Nibau C, Wu HM. RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 2005; 17:2369-2383; PMID:15994909; https://doi.org/10.1105/tpc.105.032987
  • Koiwa H, Hausmann S, Bang WY, Ueda A, Kondo N, Hiraguri A, Fukuhara T, Bahk JD, Yun DJ, Bressan RA et al. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proc Natl Acad Sci U S A 2004; 101:14539-14544; PMID:15388846; https://doi.org/10.1073/pnas.0403174101
  • Navarro-Lerida I, Pellinen T, Sanchez SA, Guadamillas MC, Wang Y, Mirtti T, Calvo E, Del Pozo MA. Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion. Dev Cell 2015; 32:318-334; PMID:25640224; https://doi.org/10.1016/j.devcel.2014.12.019
  • Staus DP, Weise-Cross L, Mangum KD, Medlin MD, Mangiante L, Taylor JM, Mack CP. Nuclear RhoA signaling regulates MRTF-dependent SMC-specific transcription. Am J Physiol Heart Circ Physiol 2014; 307:H379-H390; PMID:24906914; https://doi.org/10.1152/ajpheart.01002.2013
  • Li Z, Li Z, Gao X, Chinnusamy V, Bressan R, Wang ZX, Zhu JK, Wu JW, Liu D. ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. J Integr Plant Biol 2012; 54:180-188; PMID:22251383; https://doi.org/10.1111/j.1744-7909.2012.01101.x
  • Schwer B, Bitton DA, Sanchez AM, Bahler J, Shuman S. Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast. Proc Natl Acad Sci U S A 2014; 111:4185-4190; PMID:24591591; https://doi.org/10.1073/pnas.1321842111
  • Schuller R, Forne I, Straub T, Schreieck A, Texier Y, Shah N, Decker TM, Cramer P, Imhof A, Eick D. Heptad-specific phosphorylation of RNA polymerase II CTD. Mol Cell 2016; 61:305-314; PMID:26799765; https://doi.org/10.1016/j.molcel.2015.12.003
  • Suh H, Ficarro SB, Kang UB, Chun Y, Marto JA, Buratowski S. Direct analysis of phosphorylation sites on the Rpb1 C-terminal domain of RNA polymerase II. Mol Cell 2016; 61:297-304; PMID:26799764; https://doi.org/10.1016/j.molcel.2015.12.021
  • Mayfield JE, Robinson MR, Cotham VC, Irani S, Matthews WL, Ram A, Gilmour DS, Cannon JR, Zhang YJ, Brodbelt JS. Mapping the phosphorylation pattern of drosophila melanogaster RNA polymerase II carboxyl-terminal domain using ultraviolet photodissociation mass spectrometry. ACS Chem Biol 2017; 12:153-162; PMID:28103682; https://doi.org/10.1021/acschembio.6b00729
  • Bellier S, Dubois MF, Nishida E, Almouzni G, Bensaude O. Phosphorylation of the RNA polymerase II largest subunit during Xenopus laevis oocyte maturation. Mol Cell Biol 1997; 17:1434-1440; PMID:9032270; https://doi.org/10.1128/MCB.17.3.1434
  • Tee WW, Shen SS, Oksuz O, Narendra V, Reinberg D. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 2014; 156:678-690; PMID:24529373; https://doi.org/10.1016/j.cell.2014.01.009
  • Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 2013; 50:212-222; PMID:23523369; https://doi.org/10.1016/j.molcel.2013.02.015
  • Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, Johnston J, Chen K, Gilmour DS, Zeitlinger J et al. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell 2013; 153:976-987; PMID:23706736; https://doi.org/10.1016/j.cell.2013.04.045
  • Saunders A, Core LJ, Sutcliffe C, Lis JT, Ashe HL. Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 2013; 27:1146-1158; PMID:23699410; https://doi.org/10.1101/gad.215459.113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.