2,190
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Engagement as a Threshold Concept for Science Education and Science Communication

&

References

  • Assor, A., Kaplan, H., & Roth, G. (2002). Choice is good, but relevance is excellent: Autonomy-enhancing and suppressing teacher behaviours predicting students’ engagement in schoolwork. British Journal of Educational Psychology, 72(2), 261–278. doi:10.1348/000709902158883
  • Balfakih, N. (2003). The effectiveness of student team-achievement division (STAD) for teaching high school chemistry in the United Arab Emirates. International Journal of Science Education, 25(5), 605–624.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W.H. Freeman.
  • Barradell, S. (2013). The identification of threshold concepts: A review of theoretical complexities and methodological challenges. Higher Education, 65(2), 265–276. doi:10.1007/s10734-012-9524-3
  • Bauer, M. W., Allum, N., & Miller, S. (2007). What can we learn from 25 years of PUS survey research? Liberating and expanding the agenda. Public Understanding of Science, 16(1), 79–95. doi:10.1177/0963662506071287
  • van den Berg, E. (2001). Impact of inservice education in elementary science: Participants revisited a year later. Journal of Science Teacher Education, 12, 29–45.
  • Bray, B., France, B., & Gilbert, J. K. (2012). Identifying the essential elements of effective science communication: What do the experts say? International Journal of Science Education, Part B, 2(1), 23–41. doi:10.1080/21548455.2011.611627
  • Brodie, R. J., Hollebeek, L. D., Juric, B., & Ilic, A. (2011). Customer engagement: Conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 14(3), 252–271. doi:10.1177/1094670511411703
  • Bubela, T., Nisbet, M. C., Borchelt, R., Brunger, F., Critchley, C., Einsiedel, E., … Caulfield, T. (2009). Science communication reconsidered. Nature Biotechnology, 27(6), 514–518.
  • Bucchi, M., & Trench, B. (Eds.). (2008). Handbook of public communication of science and technology. Abingdon: Routledge.
  • Burns, T. W., O'Connor, D. J., & Stocklmayer, S. (2003). Science communication: A contemporary definition. Public Understanding of Science, 12(2), 183–202. doi:10.1177/09636625030122004
  • Bursal, M. (2008). Changes in Turkish pre-service elementary teachers’ personal science teaching efficacy beliefs and science anxieties during a science method course. Journal of Turkish Science Education, 5(1), 99–112.
  • Cloitre, M., & Shinn, T. (1985). Expository practice: Social, cognitive and epistemological linkages. In T. Shinn & R. Whitely (Eds.), Expository science. Forms and functions of popularization (pp. 31–60). Dordrecht: Reidel.
  • Cobern, W. W. (1996). Worldview theory and conceptual change in science education. Science Education, 80(5), 579–610. doi:10.1002/(SICI)1098-237X(199609)80:5<579::AID-SCE5>3.0.CO;2-8
  • Cousin, G. (2006). An introduction to threshold concepts. PlanetSpecial Edition, (17), 4–5.
  • Cousin, G. (2010). Neither teacher-centred nor student-centred: Threshold concepts and research partnerships. Journal of Learning Development in Higher Education, (2), 1–9.
  • Dahlgren, P. (2011). Parameters of online participation: Conceptualising civic contingencies. CMčasopis za upravljanje komuniciranjem [Communication Management Quarterly], 6(21), 87–109.
  • De Boer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601. doi:10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
  • Donghong, C., & Shunke, S. (2008). The more, the earlier, the better: Science communication supports science education. In D. Cheng, M. Claessens, T. Gascoigne, J. Metcalfe, B. Schiele, & S. Shi (Eds.), Communicating science in social contexts (pp. 151–163). Dordrecht: Springer Netherlands.
  • Dorph, R., Goldstein, D., Lee, S., Lepori, K., Schneider, S., & Venkatesan, S. (2007). The status of science education in the Bay Area: Research brief. Berkeley: Lawrence Hall of Science, University of California.
  • van Driel, J. H., Beijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers' practical knowledge. Journal of Research in Science Teaching, 38(2), 137–158. doi:10.1002/1098-2736(200102)38:2<137::AID-TEA1001>3.0.CO;2-U
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. doi:10.3102/0091732X07309371
  • Falk, J. H., Storksdieck, M., & Dierking, L. D. (2007). Investigating public science interest and understanding: Evidence for the importance of free-choice learning. Public Understanding of Science, 16(4), 455–469. doi:10.1177/0963662506064240
  • Falk, J. H., & Needham, M. D. (2011). Measuring the impact of a science centre on its community. Journal of Research in Science Teaching, 48(1), 1–12.
  • Feinstein, N. (2011). Salvaging science literacy. Science Education, 95(1), 168–185. doi:10.1002/sce.20414
  • Flanagan, M., & Smith, J. (2008). From playing to understanding: The transformative potential of discourse versus syntax in learning to program. In R. Land, J. H. F. Meyer, & J. Smith (Eds.), Threshold concepts within the disciplines (pp. 91–104). Rotterdam: Sense.
  • Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109. doi:10.3102/00346543074001059
  • Gencer, A. S., & Cakiroglu, J. (2007). Turkish preservice science teachers’ efficacy beliefs regarding science teaching and their beliefs about classroom management. Teaching and Teacher Education, 23(5), 664–675. doi:10.1016/j.tate.2005.09.013
  • Gilbert, J. K. (2008). Science communication: Towards a proper emphasis on the social aspects of science and technology. Revista de Educação em Ciência e Tecnologia, 1(1), 3–25.
  • Gilbert, J. K. (2013). Helping learning in science communication. In J. K. Gilbert & S. M. Stocklmayer (Eds.), Communication and engagement with science and technology: Issues and dilemmas (pp. 165–179). New York, NY: Routledge.
  • Goodrum, D., Hackling, M., & Rennie, L. (2001). The status and quality of teaching and learning of science in Australian schools. A research report prepared for the Department of Education, Training and Youth Affairs (pp. 1–214). Canberra: Department of Education, Training and Youth Affairs.
  • Goodrum, D., & Rennie, L. J. (2007). Australian school science education national action plan 2008–2012. Canberra: Department of Education, Science and Training.
  • Hand, B., Lawrence, C., & Yore, L. D. (2010). A writing in science framework designed to enhance science literacy. International Journal of Science Education, 21(10), 37–41. doi:10.1080/095006999290165
  • Harris, K., Jensz, F., & Baldwin, G. (2005). Who's teaching science? Meeting the demand for qualified science teachers in Australian secondary schools. Report prepared for Australian Council of Deans of Science (pp. 1–67). Victoria: University of Melbourne.
  • Heath, C., & vom Lehn, D. (2008). Configuring “interactivity”: Enhancing engagement in science centres and museums. Social Studies of Science, 38(1), 63–91. doi:10.1177/0306312707084152
  • Hurd, P. (1958). Science literacy: Its meaning for American schools. Educational Leadership, 16(1), 13–16.
  • Irez, S. (2006). Are we prepared? An assessment of preservice science teacher educators' beliefs about nature of science. Science Education, 90(6), 1113–1143. doi:10.1002/sce.20156
  • Irwin, A. (2008). Risk, science and public communication: Third order thinking about scientific culture. In M. Bucchi & B. Trench (Eds.), Public communication of science and technology handbook (pp. 199–212). London: Routledge.
  • Kahan, D. M. (2013). Ideology, motivated reasoning, and cognitive reflection. Judgement and Decision Making, 8(4), 407–424.
  • Keys, P. M. (2005). Are teachers walking the walk or just talking the talk in science education? Teachers and Teaching: Theory and Practice, 11(5), 499–516. doi:10.1080/13540600500238527
  • Kiley, M., & Wisker, G. (2009). Threshold concepts in research education and evidence of threshold crossing. Higher Education Research & Development, 28(4), 431–441. doi:10.1080/07294360903067930
  • Klassen, R. M., Bong, M., Usher, E. L., Chong, W. H., Huan, V. S., Wong, I. Y. F., & Georgiou, T. (2009). Exploring the validity of a teachers' self-efficacy scale in five countries. Contemporary Educational Psychology, 34(1), 67–76. doi:10.1016/j.cedpsych.2008.08.001
  • Land, R., Cousin, G., Meyer, J. H. F., & Davies, P. (2005). Threshold concepts and troublesome knowledge (3): Implications for course design and evaluation. Paper presented at the 12th improving student learning conference, Oxford.
  • Land, R., Meyer, J. H. F., & Baillie, C. A. (2010). Editors’ preface: Threshold concepts and transformational learning. In R. Land, J. H. F. Meyer, & C. A. Baillie (Eds.), Threshold concepts and transformational learning (pp. x–xlii). Rotterdam: Sense.
  • Lattuca, L. R. (2003). Creating interdisciplinarity: Grounded definitions from college and university faculty. History of Intellectual Culture, 3(1), 1–20.
  • Lawson, M. A., & Lawson, H. A. (2013). New conceptual frameworks for student engagement research, policy, and practice. Review of Educational Research, 83(3), 432–479. doi:10.3102/0034654313480891
  • Loch, B., & McLoughlin, C. (2012). Teaching threshold concepts in engineering mathematics using MathsCasts. Paper presented at the Australasian Association for Engineering Education, Melbourne. Retrieved from http://www.aaee.com.au/conferences/2012/documents/abstracts/aaee2012-submission-160.pdf
  • Lucas, U., & Mladenovic, R. (2007). The potential of threshold concepts: An emerging framework for educational research and practice. London Review of Education, 5(3), 237–248. doi:10.1080/14748460701661294
  • Male, S. A., & Baillie, C. A. (2011). Engineering threshold concepts. Paper presented at the 1st World Engineering Education flash week, Lisbon. Retrieved from http://www.sefi.be/wp-content/papers2011/T7/24.pdf
  • McCall, R., & Groark, C. J. (Eds.). (2007). A perspective on the history and future of disseminating behavioral and social science. Thousand Oaks, CA: Sage.
  • McCallie, E., Bell, L., Lohwater, T., Falk, J. H., Lehr, J. L., Lewenstein, B. V., … Wiehe, B. (2009). Many experts, many audiences: Public engagement with science and informal science education. A CAISE inquiry group report. Washington, DC: Center for Advancement of Informal Science Education (CAISE).
  • McKinnon, M., & Lamberts, R. (2014). Influencing science teaching self-efficacy beliefs of primary school teachers: A longitudinal case study. International Journal of Science Education, Part B, 4(2), 172–194. doi:10.1080/21548455.2013.793432
  • McKinnon, M., Moussa-Inaty, J., & Barza, L. (2014). Science teaching self-efficacy of culturally foreign teachers: A baseline study in Abu Dhabi. International Journal of Educational Research, 66, 78–89. doi:10.1016/j.ijer.2004.03.001
  • Meyer, J. H. F., & Land, R. (Eds.). (2003). Threshold concepts and troublesome knowledge: Linkages to ways of thinking and practising. Oxford: Oxford Centre for Staff and Learning Development (OCSLD).
  • Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge (2): Epistemological considerations and a conceptual framework for teaching and learning. Higher Education, 49(3), 373–388. doi:10.1007/s10734-004-6779-5
  • Mikulak, A. (2011). Mismatches between ‘scientific’ and ‘non-scientific’ ways of knowing and their contributions to public understanding of science. Integrative Psychological and Behavioral Science, 45(2), 201–215. doi:10.1007/s12124-011-9157-8
  • Murphy, C., & Beggs, J. (2005). Primary science in the UK: A scoping study (pp. 1–133). Belfast: Wellcome Trust.
  • Nisbet, M. C. (2009). Framing science: A new paradigm in public engagement. In L. Kahlor & P. Stout (Eds.), Communicating science: New agendas in communication (pp. 40–67). New York, NY: Routledge.
  • Nisbet, M. C., & Goidel, R. K. (2007). Understanding citizen perceptions of science controversy. Public Understanding of Science, 16(4), 421–440. doi:10.1177/0963662506065558
  • Nisbet, M. C., & Scheufele, D. A. (2007). The future of public engagement. The Scientist, 21(10), 39–45.
  • Nisbet, M. C., & Scheufele, D. A. (2009). What's new for science communication—promising directions and lingering distractions. American Journal of Botany, 96(10), 1767–1778. doi:10.3732/ajb.0900041
  • Nowotny, H. (2014). Engaging with the political imaginaries of science: Near misses and future targets. Public Understanding of Science, 23(1), 16–20. doi:10.1177/0963662513476220
  • OECD. (2013). PISA 2012 key findings. PISA 2012 results in focus. Retrieved September 15, 2014, from http://www.oecd.org/pisa/keyfindings/PISA-2012-results-snapshot-Volume-I-ENG.pdf
  • Ogawa, M. (2013). Towards a ‘design approach’ to science communication. In J. K. Gilbert & S. Stocklmayer (Eds.), Communication and engagement with science and technologyissues and dilemmas (pp. 3–18). New York, NY: Routledge.
  • Osborne, J. (2006). Towards a science education for all: The role of ideas, evidence and argument. Paper presented at the ACER research conference: Boosting science learning—What will it take? Canberra.
  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. A report to the Nuffield Foundation. London.
  • Palmer, D. (2006). Durability of changes in self-efficacy of preservice primary teachers. International Journal of Science Education, 28(6), 655–671.
  • Palmer, D. (2008). Practices and innovations in Australian science teacher education programs. Research in Science Education, 38(2), 167–188. doi:10.1007/s11165-007-9043-z
  • Parker, M., Acland, A., Armstrong, H. J., Bellingham, J. R., Bland, J., Bodmer, H. C., … Sutherland, W. J. (2014). Identifying the science and technology dimensions of emerging public policy issues through horizon scanning. Plos One, 9(5). doi:10.1371/journal.pone.0096480
  • Perera, S., & Stocklmayer, S. (2013). Science communication and science education. In J. K. Gilbert & S. Stocklmayer (Eds.), Communication and engagement with science and technologyissues and dilemmas (pp. 180–196). New York, NY: Routledge.
  • Perkins, D. (2006). Constructivism and troublesome knowledge. In J. H. F. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 33–47). London: Routledge—Taylor & Francis Group.
  • Pugh, K. J., Linnenbrink-Garcia, L., Koskey, K. L. K., Stewart, V. C., & Manzey, C. (2009). Motivation, learning and transformative experience: A study of deep engagement in science. Science Education, 94(1), 1–28. doi:10.1002/sce.20344
  • Rennie, L. J., Goodrum, D., & Hackling, M. (2001). Science teaching and learning in Australian schools: Results of a national study. Research in Science Education, 31(4), 455–498. doi:10.1023/A:1013171905815
  • Rennie, L. J., & Williams, G. F. (2002). Science centers and scientific literacy: Promoting a relationship with science. Science Education, 86, 706–726.
  • Rumberger, R. W. (2011). Dropping out: Why students drop out of high school and what can be done about it. Cambridge, MA: Harvard University Press.
  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78.
  • Saunders, A., & Moles, K. (2013). The spatial practice of public engagement: ‘doing’ geography in the South Wales valleys. Social & Cultural Geography, 14(1), 23–40. doi:10.1080/14649365.2012.733407
  • Sjøberg, S., & Schreiner, C. (2005). How do learners in different cultures relate to science and technology? Asia Pacific Forum on Science Learning and Teaching, 6(2). Retrieved from http://roseproject.no/network/countries/norway/eng/nor-sjoberg-apfslt2005.pdf
  • Sjøberg, S., & Schreiner, C. (2010). The ROSE project: An overview and key findings. Retrived November 20, 2014, from http://roseproject.no/network/countries/norway/eng/nor-Sjoberg-Schreiner-overview-2010.pdf
  • Skinner, E., Furrer, C., Marchand, G., & Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of Educational Psychology, 100(4), 765–781. doi:10.1037/a0012840
  • Stocklmayer, S. M., Rennie, L. J., & Gilbert, J. K. (2010). The roles of the formal and informal sectors in the provision of effective science education. Studies in Science Education, 46(1), 1–44. doi:10.1080/03057260903562284
  • Tait, J. (2009). Upstream engagement and the governance of science. The shadow of the genetically modified crops experience in Europe. EMBO Reports, 10(Suppl 1), S18–S22. doi:10.1038/embor.2009.138
  • Tschannen-Moran, M., Woolfolk Hoy, A., & Hoy, W. K. (1998). Teacher efficacy: Its meaning and measure. Review of Educational Research, 68(2), 202–248. doi:10.3102/00346543068002202
  • Tytler, R. (2007). Australian education review: Re-imagining science education. Melbourne: Australian Council for Educational Research.
  • Van der Auweraert, A. (2005). The science communication escalator. Paper presented at the 2nd international living knowledge conference, Seville.
  • Varley, J., Murphy, C., & Veale, O. (2008). Science in primary schools, phase 1, final report. Research commissioned by the National Council for Curriculum and Assessment. Dublin.
  • Vincent, B. B. (2014). The politics of buzzwords at the interface of technoscience, market and society: The case of ‘public engagement in science’. Public Understanding of Science, 23(3), 238–253. doi:10.1177/0963662513515371
  • Wilson, A., Åkerlind, G., Francis, P., Kirkup, L., McKenzie, J., Pearce, D., & Sharma, M. D. (2010, September 29–October 1). Measurement uncertainty as a threshold concept in physics. Paper presented at the 16th UniServe science annual conference, Sydney.
  • Wynne, B. (2014). Further disorientation in the hall of mirrors. Public Understanding of Science, 23(1), 60–70. doi:10.1177/0963662513505397

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.