1,532
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Public Understanding of Plant Biology: Voices from the Bottom of the Garden

References

  • Allen, M. (2014). Misconceptions in primary science (2nd ed.). Maidenhead: Open University Press.
  • Alsop, S. J., & Watts, D. M. (2000). Interviews about scenarios: Exploring the affective dimensions of physics education. Research in Education, 63, 21–32. doi: 10.7227/RIE.63.3
  • Armstrong, J. S. (2012). Natural learning in higher education. Encyclopaedia of the Sciences of Learning. Retrieved from http://repository.upenn.edu/marketing_papers/140
  • Aulls, M. W., & Shore, B. M. (2008). Inquiry in education (Vol. I): The conceptual foundations for research as a curricular imperative. New York, NY: Routledge.
  • Azevedo, F. S. (2013). The tailored practice of hobbies and its implication for the design of interest-Driven learning environments. The Journal of the Learning Sciences, 22(3), 462–510. doi: 10.1080/10508406.2012.730082
  • Baron, H. (2003). What should the citizen know about science? Journal of Research in Social Medicine, 96, 509–511. doi: 10.1258/jrsm.96.10.509
  • Barell, J. (2003). Developing more curious minds. Alexandria, VA: Association for Supervision and Curriculum Development.
  • Bassey, M. (1963). School science for tomorrow's citizens. London: Pergamon Press.
  • Bates, B. R. (2005). Public culture and public understanding of genetics: A focus group study. Public Understanding of Science, 14, 47–65. doi: 10.1177/0963662505048409
  • Bauer, M. W., Allum, N., & Miller, S. (2007). What can we learn from 25 years of PUS survey research? Liberating and expanding the agenda. Public Understanding of Science, 16(1), 79–95. doi: 10.1177/0963662506071287
  • Bereiter, C. (2002). Education and mind in the knowledge age. Mahwah, NJ: Erlbaum.
  • Bowles, M. (2004). Relearning to E-learn: Strategies for electronic learning and knowledge. Melbourne: Melbourne University Press.
  • Chomsky, N. (1995). The minimalist program. Cambridge, MA: The MIT Press.
  • Dabrowska, E., & Lieven, E. (2005). Towards a lexically specific grammar of children's question constructions. Cognitive Linguistics, 16, 437–474. doi: 10.1515/cogl.2005.16.3.437
  • Deignan, T. (2009). Enquiry-based learning: Perspectives on practice. Teaching in Higher Education, 14(1), 13–28. doi: 10.1080/13562510802602467
  • Dennett, D. C. (1991). Consciousness explained. London: Penguin books.
  • Department for Education. (2013). National curriculum in England: Science programmes of study, 11 September 2013, statutory guidance. London: HMSO.
  • DeWitt, J., Osborne, J., Archer, L., Dillon, J., Willis, B., & Wong, B. (2013). Young children's aspirations in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 35(6), 1037–1063. doi: 10.1080/09500693.2011.608197
  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children's ideas in science. Milton Keynes: Open University Press.
  • Facer, K., & Manchester, H. (2012). Mapping learning lives: Final report. Education and Social Research Institute. Manchester: Manchester Metropolitan University.
  • Feinstein, N. (2011). Salvaging science literacy. Science Education, 95(1), 168–185. doi: 10.1002/sce.20414
  • Fensham, P. J., & Harlen, W. (1999). School science and public understanding of science. International Journal of Science Education, 21(7), 755–763. doi: 10.1080/095006999290417
  • Fisher, K., & Naumer, C. (2006). Information grounds: Theoretical basis and empirical findings on information flow in social settings. In A. Spink & C. Cole (Eds.), New directions in human information behaviour (pp. 93–111). Amsterdam: Kluwer.
  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61–98. doi: 10.1080/03057268308559905
  • Gritton, J. (2011). Of serendipity, free association and aimless browsing: do they lead to serendipitous learning? Retrieved from http://www.education.ed.ac.uk/e-learning/gallery/gritton_serendipitous_learning/conclusion/assets/assignment_print_version.pdf
  • Havens, K., & Henderson, S. (2013). Citizen science takes root. American Scientist, 101(5), 378–385. doi: 10.1511/2013.104.378
  • Higher Education Academy. (2007). Enquiry-based learning (EBL). Retrieved May 11, 2013, from http://www.heacademy.ac.uk/835.htm
  • Hodson, D. J. (2014). Learning science, learning about science, doing science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553. doi: 10.1080/09500693.2014.899722
  • Hogben, L. T. (1938). Science for the citizen, a self-educator based on the social background of scientific discovery. London: Allen and Unwin.
  • Hurson, T. (2007). IdeaConnection, interview with Tim Hurson. Retrieved from http://bit.ly/kd5hYj
  • Jenkins, E. W., & Pell, R. G. (2006). The relevance of science education project (ROSE) in England: A summary of findings. Centre for Studies in Science and Mathematics Education, University of Leeds. Retrieved from http://roseproject.no/network/countries/uk-england/rosereport-eng.pdf
  • Krueger, R. A., & Casey, M. A. (2009). Focus groups: A practical guide for applied research (4th ed.). Thousand Oaks, CA: Sage Publications.
  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.
  • Layton, D., Jenkins, E., Macgill, S., & Davey, A. (1993). Inarticulate science? Perspectives on the public understanding of science and some implications for science education. Driffield: Studies in Education.
  • Lloyd-Staples, C. (2014). Government policy: Can short-term strategies bring long-term gain? In D. M. Watts (Ed.), Debates in Science Education (pp. 28–41). London: Routledge.
  • Marsick, V. J., & Volpe, M. (1999). The nature of and need for informal learning. In V. J. Marsick & M. Volpe (Eds.), Informal learning on the job, advances in developing human resources, No. 3 (pp. 1–9). San Francisco, CA: Berrett Koehler.
  • Mikulak, A. (2011). Mismatches between ‘scientific’ and ‘non-scientific’ ways of knowing and their contributions to public understanding of science. Integrative Psychological & Behavioral Science, 45(2), 201–215. doi: 10.1007/s12124-011-9157-8
  • OECD. (2014). PISA 2012 results: Creative problem solving: Students' skills in tackling real-life problems (Volume V). Retrieved from http://www.oecd-ilibrary.org/education/pisa-2012-results-skills-for-life-volume-v_9789264208070-en
  • Pedrosa de Jesus, M. H., Almeida, P. & Watts, D. M. (2005). Orchestrating learning and teaching in inter-disciplinary chemistry. Canadian Journal for Science, Technology and Mathematics Education, 5(1), 71–84.
  • Poell, R. F., Chivers, G. E., Van der Krogt, F. J., & Wildemeersch, D. A. (2000). Learning-network theory: Organizing the dynamic relationships between learning and work. Management Learning, 31(1), 25–49. doi: 10.1177/1350507600311004
  • Powney, J., & Watts, D. M. (1987). Interviewing in educational research. London: Routledge.
  • Price, B. (2003). Studying nursing using problem-based & enquiry-based learning. Hampshire: Palgrave.
  • Price, B. A., & Randall, C. H. (2008). Assessing learning outcomes in quantitative courses: Using embedded questions for direct assessment. Journal of Education for Business, 83(5), 288–294. doi: 10.3200/JOEB.83.5.288-294
  • Rahm, J. (2010). Science in the making at the margin: A multisited ethnography of learning and becoming in an afterschool program, a garden and a math and science upward bound program. Rotterdam: Sense Publishers.
  • Rahm, J., & Grimes, K. (2005). Embedding seeds for better learning: Sneaking up on education in a youth gardening program. Afterschool Matters, 4, 33–41.
  • Rivero, L. (2010). Smart teens’ guide to living with intensity. Tucson, AZ: Great Potential Press.
  • Schreiner, C., & SjØberg, S. (2004). Relevance of science education: Sowing the seeds of ROSE. Oslo: Acta Didactica.
  • Shore, B. M., Birlean, C., Walker, C. L., Ritchie, K. C., LaBanca, F., & Aulls, M. W. (2009). Inquiry literacy: A proposal for a neologism. Learning Landscapes, 3(1), 138–155.
  • Silvertown, J. (2009). A new dawn for citizen science. Trends in Ecology & Evolution, 24(9), 467–471. doi: 10.1016/j.tree.2009.03.017
  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1–34. doi: 10.1080/03057267.2013.802463
  • Taber, K., & Watts, D. M. (1996). The secret life of the chemical bond: Students’ anthropomorphic and animistic references to bonding. International Journal of Science Education, 18(5), 557–568. doi: 10.1080/0950069960180505
  • Toplis, R. (2014). The secondary science curriculum: A grey and dreary landscape? In D. M. Watts (Ed.), Debates in Science Education (pp. 66–78). London: Routledge.
  • Trends in International Mathematics and Science Study. (2011). TIMSS 2011 international results in science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
  • Watts, D. M. (2005). Orchestrating the confluence: A discussion of science, passion and poetry. In S. Alsop (Ed.), Beyond Cartesian dualism: Encountering affect in the teaching and learning of science (pp. 148–159). Series: Science & Technology Education Library, Vol. 29. Dordrecht: Kluwer Press.
  • Watts, D. M. (2014). Debates in science education. London: Routledge.
  • Wynne, B. (1996). May the sheep safely graze? A reflexive view of the expert-lay knowledge divide. In S. Lash, B. Szerszynski, & B. Wynne (Eds.), Risk, environment and modernity: Towards a new ecology (pp. 44–83). London: SAGE.
  • Xia, L. (2010). An examination of consumer browsing behaviors. Qualitative Market Research: An International Journal, 13(2), 154–173. doi: 10.1108/13522751011032593
  • Zeyer, A., & Dillon, J. (2014). Science|Environment|Health—towards a reconceptualization of three critical and inter-linked areas of education. International Journal of Science Education, 36(9), 1409–1411. doi: 10.1080/09500693.2014.904993
  • Zhang, D., Liu, Y., & Si, L. (2011). Serendipitous learning: learning beyond the predefined label space. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, August 21–24, 2011, San Diego, California, pp. 1343–1351.
  • Ziman, J. (1991). Public understanding of science. Science, Technology and Human Values, 16, 99–105. doi: 10.1177/016224399101600106