6,619
Views
51
CrossRef citations to date
0
Altmetric
Perspectives

Nanomaterials for biomedical applications

, , &
Pages 90-98 | Received 07 Jul 2013, Accepted 22 Nov 2013, Published online: 23 Jan 2014

References

  • Adler DC, Huang SW, Huber R, Fujimoto JG. 2008. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express. 16:4376–4393. doi: 10.1364/OE.16.004376
  • Agrawal A, Huang S, Wei Haw Lin A, Lee MH, Barton JK, Drezek RA, Pfefer TJ. 2006. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. J Biomed Opt. 11:041121. doi: 10.1117/1.2339071
  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. 2002. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 99:12617–12621. doi: 10.1073/pnas.152463399
  • Albrecht C, Knaapen AM, Becker A, Höhr D, Haberzett P, van Schooten FJ, Borm PJA, Schins RPF. 2005. The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respir Res. 6:129. doi: 10.1186/1465-9921-6-129
  • Allen TM, Cullis PR. 2004. Drug delivery systems: entering the mainstream. Science. 303:1818–1822. doi: 10.1126/science.1095833
  • Ananta JS, Godin B, Sethi R, Moriggi L, Liu X, Serda RE, Krishnamurthy R, Muthupillai R, Bolskar RD, Helm L, et al. 2010. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol. 5:815–821. doi: 10.1038/nnano.2010.203
  • Andreescu S, Luck LA. 2008. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application. Anal Biochem. 375:282–290. doi: 10.1016/j.ab.2007.12.035
  • Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG, Woodward WA, Krishnan S, Chang JC, Rosen JM. 2010. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med. 2:55–79. doi: 10.1126/scitranslmed.3001447
  • Baek MJ, Park JY, Xu W, Kattel K, Kim HG, Lee EJ, Patel AK, Lee JJ, Chang Y, Kim TJ, Bae JE, Chae KS, Lee GH. 2010. Water-soluble MnO nanocolloid for a molecular T1 MR imaging: a facile one-pot synthesis, in vivo T1 MR images, and account for relaxivities. ACS Appl Mater Interfaces. 2:2949–2955. doi: 10.1021/am100641z
  • Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R. 2008. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem. 391:943–950. doi: 10.1007/s00216-007-1768-z
  • Barras A, Martin FA, Bande O, Baumann JS, Ghigo JM, Boukherroub R, Beloin C, Siriwardena A, Szunerits S. 2013. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesive. Nanoscale. 5:2307–2316. doi: 10.1039/c3nr33826f
  • Boisselier E, Astruc D. 2009. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 38:1759–1782. doi: 10.1039/b806051g
  • Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S. 2010. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express. 18:8867–8878. doi: 10.1364/OE.18.008867
  • Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee ST, Liu Z. 2011. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl. 50:7385–790.
  • Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z. 2012. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 33:2215–2222. doi: 10.1016/j.biomaterials.2011.11.069
  • Christiansen SH, Becker M, Fahlbusch S, Michler J, Sivakov V, Andrä G, Geiger R. 2007. Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour-liquid-solid growth. Nanotechnology. 18:035503. doi: 10.1088/0957-4484/18/3/035503
  • Claussen JC, Kumar A, Jaroch DB, Khawaja MH, Hibbard AB, Porterfield DM, Fisher TS. 2012. Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Adv Funct Mater. 22: 3399–3405. doi: 10.1002/adfm.201200551
  • Corchero JL, Villaverde A. 2009. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 27:468–476. doi: 10.1016/j.tibtech.2009.04.003
  • Crommelin DJ, Storm G. 2003. Liposomes: from the bench to the bed. J Liposome Res. 13:33–36. doi: 10.1081/LPR-120017488
  • Cullis PR, Hope MJ, Bally MB, Madden TD, Mayer LD, Fenske DB. 1997. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophy. Acta (Review on Biomembranes). 1331:187–211.
  • Das M, Bandyopadhyay D, Mishra D, Datir S, Dhak P, Jain S, Maiti TK, Basak A, Pramanik P. 2011. “Clickable”, trifunctional magnetite nanoparticles and their chemoselective biofunctionalization. Bioconjugate Chem. 22:1181–1193. doi: 10.1021/bc2000484
  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. 2006. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 114:1172–1178. doi: 10.1289/ehp.9030
  • Gao J, Liang G, Cheung JS, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu EX, Xu B. 2008. Multifunctional yolk–shell nanoparticles: a potential mri contrast and anticancer agent. J Am Chem Soc. 130:11828–11833. doi: 10.1021/ja803920b
  • Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. 2006. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 27:3482–3490. doi: 10.1016/j.biomaterials.2006.01.038
  • Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V. 2011. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target. 19:837–845. doi: 10.3109/1061186X.2011.589435
  • Guo HC, Qian HS, Idris NM, Zhang Y. 2010. Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomed-Nanotechnol. 6:486–495. doi: 10.1016/j.nano.2009.11.004
  • Gupta AK, Curtis ASG. 2004. Surface modified supermagnetic nanoparticles for drug delivery: interaction studies with human firbroblasts in culture. J Mater Sci: Mat in Med. 15:493–496.
  • Harrison BS, Atala A. 2007. Carbon nanotube applications for tissue engineering. Biomaterials. 28:344–353. doi: 10.1016/j.biomaterials.2006.07.044
  • Haun JB, Yoon TJ, Lee H, Weissleder R. 2011. Molecular detection of biomarkers and cells using magnetic nanoparticles and diagnostic magnetic resonance. Methods Mol Biol. 726:33–49. doi: 10.1007/978-1-61779-052-2_3
  • He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. 2000. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 122:9071–9077. doi: 10.1021/ja001215b
  • He Q, Zhang Z, Gao F, Li Y, Shi J. 2011. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 7: 271–280. doi: 10.1002/smll.201001459
  • Hoshino A, Hanaki K, Suzuki K, Yamamoto K. 2004. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun. 314:46–53. doi: 10.1016/j.bbrc.2003.11.185
  • Ivan ES, Huang X, Fima M, Joseph OH, Randall K, Mostafa ES. 2007. Effect of plasmonic gold nanoparticles on benign and malignant cellular autofluorescence: a novel probe for fluorescence based detection of cancer technology in cancer research & treatment. Tech Canc Res Treat. 6:403–412.
  • Jaiswal JK, Goldman ER, Mattoussi H, Simon SM. 2004. Use of quantum dots for live cell imaging. Nat Methods. 1:73–78. doi: 10.1038/nmeth1004-73
  • Jena BK, Raj CR. 2006. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem. 15:6332–6339. doi: 10.1021/ac052143f
  • Jiang L, Qian J, Cai F, He S. 2011. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Anal Bioanal Chem. 400:2793–2800. doi: 10.1007/s00216-011-4894-6
  • Jin Y, Jia C, Huang SW, O'Donnell M, Gao X. 2010. Multifunctional nanoparticles as coupled contrast agents. Nat Commun. 1:41. doi: 10.1038/ncomms1042
  • Jong WHD, Borm PJA. 2008. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 3:133–149. doi: 10.2147/IJN.S596
  • Kaneda Y. 2000. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv Drug Delivery Rev. 43:197–205. doi: 10.1016/S0169-409X(00)00069-7
  • Khan Y, El-Amin SF, Laurencin CT. 2006. In vitro and in vivo evaluation of a novel polymer-ceramic composite scaffold for bone tissue engineering. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society. New York, USA. 1:529–530.
  • Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, et al. 2011. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T(1) contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc. 133:2955–2961. doi: 10.1021/ja1084095
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. 2006. The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol. 6:2712–2735. doi: 10.1166/jnn.2006.441
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. 1995. Passage of peptides through the bloodbrain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171–174. doi: 10.1016/0006-8993(95)00023-J
  • Lai SM, Tsai TY, Hsu CY, Tsai JL, Liao MY, Lai PS. 2012. Bifunctional silica-coated superparamagnetic fept nanoparticles for fluorescence/MR dual imaging. J Nano Mat. 2012:1–7. doi: 10.1155/2012/631584
  • Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW. 2009. Near-Infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater. 19:215–222. doi: 10.1002/adfm.200800753
  • Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L. 2013. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 26:2078–89. doi: 10.1021/nn3043463
  • Lee YE, Kopelman R. 2011. Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol. 726:151–178. doi: 10.1007/978-1-61779-052-2_11
  • Leung JP, Wu S, Chou KC, Signorell R. 2013. Investigation of sub-100 nm gold nanoparticles for laser-induced thermotherapy of cancer. Nanomaterials. 3:86–106. doi: 10.3390/nano3010086
  • Li J, Zhu JJ. 2013. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst. 138:2506–2515. doi: 10.1039/c3an36705c
  • Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y. 2010. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem. 82:7008–7014. doi: 10.1021/ac101405a
  • Lia Y, Schluesenerb HJ, Xua S. 2010. Gold nanoparticle-based biosensors. Gold Bull. 43:29–41. doi: 10.1007/BF03214964
  • Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S. 2011. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater. 23:2436–2442. doi: 10.1002/adma.201100351
  • Liu CY, Hu JM. 2009. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens Bioelectron. 24:2149–2154. doi: 10.1016/j.bios.2008.11.007
  • Liu M, Li H, Luo G, Liu Q, Wang Y. 2008. Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res. 31:547–554. doi: 10.1007/s12272-001-1191-8
  • Liu T, Tang J, Jiang L. 2004. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun. 313:3–7. doi: 10.1016/j.bbrc.2003.11.098
  • Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC. 2010. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface. J Am Chem Soc. 132:18103–18114. doi: 10.1021/ja104924b
  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Thiesen H, Budach V, Jordan A. 2011. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 103:317–324. doi: 10.1007/s11060-010-0389-0
  • Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE. 2010. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 4:4539–4550. doi: 10.1021/nn100690m
  • Metselaar JM, Storm G. 2005. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv. 2:465–476. doi: 10.1517/17425247.2.3.465
  • Minko T, Pakunlu RI, Wang Y, Khandare JJ, Saad M. 2006. New generation of liposomal drugs for cancer. Anticancer Agents Med Chem. 6:537–552. doi: 10.2174/187152006778699095
  • Mitra S, Bano S, Patra P, Chandra S, Debnath N, Das S, Banerjee R, Kundu SC, Pramanik P, Goswami A. 2012. Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications. J Mat Chem. 22:24145–24154. doi: 10.1039/c2jm35013k
  • Mitra S, Chandra S, Laha D, Patra P, Debnath N, Pramanik A, Pramanik P, Goswami A. 2012. Unique chemical grafting of carbon nanoparticle on fabricated ZnO nanorod: antibacterial and bioimaging property. Mater Res Bull. 47: 586–594. doi: 10.1016/j.materresbull.2011.12.036
  • Na BHB, Song IC, Hyeon T. 2009. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21:2133–2148. doi: 10.1002/adma.200802366
  • Nobs L, Buchegger F, Gurny R, Allémann E. 2004. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Eur J Pharm Biopharm. 58: 483–490. doi: 10.1016/j.ejpb.2004.04.006
  • Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan C, Du Mond LD, Mamelok RD, Henry DH. 1998. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi's sarcoma: results of a randomized phase III clinical trial. J Clin Oncol. 16:2445–2451.
  • Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B. 2005. Photodynamic treatment with fractionated light decreases production of reactive oxygen species and cytotoxicity in vitro via regeneration of glutathione. Photochem Photobiol. 81:609–613. doi: 10.1562/2004-08-23-RN-284.1
  • Palanisamy S, Cheemalapati S, Chen SM. 2012. Enzymatic glucose biosensor based on multiwalled carbon nanotubes-zinc oxide composite. Int J Electrochem Sci. 7:8394–8407.
  • Park KS, Tae J, Choi B, Kim YS, Moon C, Kim SH, Lee HS, Kim J, Kim J, Park J, et al. 2010. Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood–derived mesenchymal stem cells. Nanomed: Nanotechnol Biol Med. 6:263–276.
  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. 2008. Application of gold nanoparticles for targeted therapy in cancer. J Biomed Nanotechnol. 4:1–34.
  • Prinzen L, Miserus RJHM, Dirksen A, Hackeng TM, Deckers N, Bitsch NJ, Remco TA, Douma K, Heemskerk JW, Eline Kooi M, et al. 2007. Optical and magnetic resonance imaging of cell death and platelet activation using Annexin A5-functionalized quantum dots. Nano Lett. 7:93–100. doi: 10.1021/nl062226r
  • Rad AS, Mirabi A, Binaian E, Tayebi H. 2011. Review on glucose and hydrogen peroxide biosensor based on modified electrode included silver nanoparticles. Int J Electrochem Sci. 6:3671–3683.
  • Robertson CA, Evans DH, Abrahamse H. 2009. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol, B. 96:1–8. doi: 10.1016/j.jphotobiol.2009.04.001
  • Sage L. 2004. Finding cancer cells with quantum dots. Anal Chem. 76:453A. doi: 10.1021/ac0347718
  • Santra S, Liesenfeld B, Bertolino C, Dutta D, Cao Z, Tan W, Moudgil BM, Mericle RA. 2006. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: an optical approach to evaluate nanoparticle photostability. J Lumin. 117: 75–82. doi: 10.1016/j.jlumin.2005.04.008
  • Schins RP, Duffin R, Höhr D, Knaapen AM, Shi T, Weishaupt C, Stone V, Donaldson K, Borm PJ. 2002. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol. 9:1166–1173. doi: 10.1021/tx025558u
  • Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y. 2008. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 41:1587–1595. doi: 10.1021/ar800018v
  • Spadavecchia J, Barras A, Lyskawa J, Woisel P, Laure W, Pradier CM, Boukherroub R, Szunerits S. 2013. Approach for plasmonic based DNA sensing: amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures. Anal. Chem. 85: 3288–3296. doi: 10.1021/ac3036316
  • Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. 2008. Biological applications of gold nanoparticles. Chem Soc Rev. 37:1896–1908. doi: 10.1039/b712170a
  • Sun YG, Xia YN. 2002. Shape-controlled synthesis of gold and silver nanoparticles. Science. 298:2176–2179. doi: 10.1126/science.1077229
  • Swanson SD, Kukowska - Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR. 2008. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine. 3: 201–210.
  • Takahashi M, Nagao T, Imazeki Y, Matsuzaki K, Minamitani H. 2002. Roles of reactive oxygen species in monocyte activation induced by photochemical reactions during photodynamic therapy. Front Med Biol Eng. 11: 279–294. doi: 10.1163/156855701321138932
  • Tan Q, Tang H, Hu J, Hu Y, Zhou X, Tao Y, Wu Z. 2011. Controlled release of chitosan/heparin nanoparticledelivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine. 6:929–942. doi: 10.2147/IJN.S18753
  • Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S. 2013. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale. 5:10729–10752. doi: 10.1039/c3nr04131j
  • Vlerken LE, Amiji MM. 2006. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv. 3:205–216. doi: 10.1517/17425247.3.2.205
  • Win KY, Feng SS. 2006. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials. 27: 2285–2291. doi: 10.1016/j.biomaterials.2005.11.008
  • Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. 2003. “Plugging into Enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science. 299:1877–1881. doi: 10.1126/science.1080664
  • Xing Y, Smith AM, Agrawal A, Ruan G, Nie S. 2006. Molecular profiling of single cancer cells and clinical tissue specimens with semiconductor quantum dots. Int J Nanomedicine. 1:473–481. doi: 10.2147/nano.2006.1.4.473
  • Yamashita D, Machigashira M, Miyamoto M, Takeuchi H, Noguchi K, Izumi Y, Ban S. 2009. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J. 28:461–470. doi: 10.4012/dmj.28.461
  • Yanxia X, Chengguo H, Shengshui H. 2008. Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb–Ag sol films. Sensor Actuat B-Chem. 130:816–822. doi: 10.1016/j.snb.2007.10.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.