1,517
Views
6
CrossRef citations to date
0
Altmetric
Review

Does cell polarity matter during spermatogenesis?

& , Senior Scientist
Article: e1218408 | Received 23 Jun 2016, Accepted 26 Jul 2016, Published online: 29 Jul 2016

References

  • Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polarity complex proteins. Biochim Biophys Acta 2008; 1778:614-30; PMID:18005931
  • Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Rev Mol Cell Biol 2008; 9:846-59; PMID:18946474; http://dx.doi.org/10.1038/nrm2521
  • Wong EWP, Cheng CY. Polarity proteins and cell-cell interactions in the testis. Int Rev Cell Mol Biol 2009; 278:309-53; PMID:19815182; http://dx.doi.org/10.1016/S1937-6448(09)78007-4
  • Yeaman C, Grindstaf K, Nelson W. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 1999; 79:73-98; PMID:9922368
  • Ashraf A, Pervaiz S. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions. Int J Biochem Cell Biol 2015; 69:20-8; PMID:26456518; http://dx.doi.org/10.1016/j.biocel.2015.10.001
  • Copp AJ, Stanier P, Greene NDE. Neural tube defects: recent advances, unsolved questions, and controversies. The Lancet Neurology 2013; 12:799-810; PMID:23790957; http://dx.doi.org/10.1016/S1474-4422(13)70110-8
  • Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37; PMID:26116792; http://dx.doi.org/10.1016/j.jhep.2015.06.015
  • Lin WH, Asmann YW, Anastasiadis PZ. Expression of polarity genes in human cancer. Cancer Informatics 2015; 14(Suppl 3):15-28; PMID:25991909
  • Su WH, Mruk DD, Wong EWP, Lui WY, Cheng CY. Polarity protein complex Scribble/Lgl/Dlg and epithelial cell barriers. Adv Exp Med Biol 2012; 763:149-70
  • Wong EWP, Mruk DD, Lee WM, Cheng CY. Par3/Par6 polarity complex coordinates apical ectoplasmic specialization and blood-testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci USA 2008; 105:9657-62; PMID:18621709; http://dx.doi.org/10.1073/pnas.0801527105
  • Wong EWP, Sun S, Li MWM, Lee WM, Cheng CY. 14-3-3 protein regulates cell adhesion in the seminiferous epithelium of rat testes. Endocrinology 2009; 150:4713-23; PMID:19608648; http://dx.doi.org/10.1210/en.2009-0427
  • Wong EWP, Mruk DD, Lee WM, Cheng CY. Regulation of blood-testis barrier dynamics by TGF-b3 is a Cdc42-dependent protein trafficking event. Proc Natl Acad Sci USA 2010; 107:11399-404; PMID:20534521; http://dx.doi.org/10.1073/pnas.1001077107
  • Su WH, Wong EWP, Mruk DD, Cheng CY. The Scribble/Lgl/Dlg polarity protein complex is a regulator of blood-testis barrier dynamics and spermatid polarity during spermatogenesis. Endocrinology 2012; 153:6041-53; http://dx.doi.org/10.1210/en.2012-1670
  • Gao Y, Lui WY, Lee WM, Cheng CY. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep 2016; 6:28589 (DOI:10.1038/srep28589); PMID:27358069; http://dx.doi.org/10.1038/srep28589
  • Montcouguiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423:173-7; PMID:12724779; http://dx.doi.org/10.1038/nature01618
  • Kallay LM, McNickle A, Brennwald PJ, Hubbard AL, Bralteman LT. Scribble associates with two polarity proteins, Lgl2 and Vangl2, via distinct molecular domains. J Cell Biochem 2006; 99:647-64; PMID:16791850; http://dx.doi.org/10.1002/jcb.20992
  • Goodrich LV, Strutt D. Principles of planara polarity in animal development. Development 2011; 138:1877-92; PMID:21521735; http://dx.doi.org/10.1242/dev.054080
  • Davenport D. The cell biology of planar cell polarity. J Cell Biol 2014; 207:171-9; PMID:25349257; http://dx.doi.org/10.1083/jcb.201408039
  • Tissir F, Goffinet AM. Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Nruosci 2013; 14:525-35; http://dx.doi.org/10.1038/nrn3525
  • Seo JH, Ziber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello EC, V Gros P, Torban E. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 2011; 20:4324-33; PMID:21840926; http://dx.doi.org/10.1093/hmg/ddr359
  • Carroll TJ, Yu J. The kidney and planar cell polaroity. Curr Top Dev Biol 2012; 101:185-212; PMID:23140630; http://dx.doi.org/10.1016/B978-0-12-394592-1.00011-9
  • Ezan J, Montcouquiol M. Revisiting planar cell polarity in the inner ear. Semin Cell Dev Biol 2013; 24:499-506; PMID:23562830; http://dx.doi.org/10.1016/j.semcdb.2013.03.012
  • May-Simera H, Kelley MW. Planar cell polarity in the inner ear. Curr Top Dev Biol 2012; 101:111-40; PMID:23140627; http://dx.doi.org/10.1016/B978-0-12-394592-1.00006-5
  • Tellkamp F, Vorhagen S, Niessen CM. Epidermal polarity genes in health and disease. Cold Spring Harb Perspect Biol 2014; 4:a015255; http://dx.doi.org/10.1101/cshperspect.a015255
  • Vandenberg LN, Chauhoud IJJH, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Cien Saude Colet 2012; 17:407-34; PMID:22267036; http://dx.doi.org/10.1590/S1413-81232012000200015
  • Henderson DJ, Chaudhry B. Getting to the heart of planar cell polarity signaling. Birth Defects Res A Clin Mol Teratol 2011; 91:460-67; PMID:21538810; http://dx.doi.org/10.1002/bdra.20792
  • Eaton S, Martrin-Belmonte F. Cargo sorting in the endocytic pathway: a key regulator of cell polarity and tissue dynamics. Cold Spring Harb Perspect Biol 2014; 6:a016899; PMID:25125399; http://dx.doi.org/10.1101/cshperspect.a016899
  • Luga V, Wrana JL. Tumor-stroma interaction: Revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 2013; 73:6843-7
  • Adler PN. The frizxzled/stan pathway wand planar cell polarity in the Drosophila wing. Curr Top Dev Biol 2012; 101:1-31; PMID:23140623; http://dx.doi.org/10.1016/B978-0-12-394592-1.00001-6
  • Davenport D, Fuchs E. Planar polarization in embryonic epidermis orchestrates global asymmeteric mophogenesis of hair folicles. Nat Cell Biol 2008; 10:1257-68; PMID:18849982; http://dx.doi.org/10.1038/ncb1784
  • De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol 2014; 100:633-41; PMID:24838524; http://dx.doi.org/10.1002/bdra.23255
  • Hatakeyama J, Wald JH, Printsev I, Ho HY, Carraway KL, 3rd. Vangl1 and Vangl2: planar cell polarity components with a developing role in cancer. Endocr Relat Cancer 2014; 21:R345-56; PMID:24981109; http://dx.doi.org/10.1530/ERC-14-0141
  • Luga V, Wrana JL. Tumor-stroma interaction: Revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 2013; 73:6843-7; PMID:24265274; http://dx.doi.org/10.1158/0008-5472.CAN-13-1791
  • Auharek SA, Avelar GF, Lara NLM, Sharpe RM, Franca LR. Sertoli cell numbers and spermatogenic efficency are increased in inducible nitric oxide synthase (iNOS) mutant-mice. Int J Androl 2011; 34:e621-9; PMID:21831234; http://dx.doi.org/10.1111/j.1365-2605.2011.01209.x
  • Johnson L, Petty CS, Neaves WB. A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod 1980; 22:1233-43; PMID:7417656
  • Amann RP, Howards SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol 1980; 124:211-5; PMID:6772801
  • Xiao X, Mruk DD, Wong CKC, Cheng CY. Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology 2014; 29:286-98; PMID:24985332; http://dx.doi.org/10.1152/physiol.00001.2014
  • de Kretser DM, Kerr JB. The cytology of the testis. In The Physiology of Reproduction. Vol. 1, 1988; eds. Knobil E, et al. New York: Raven Press pp 837-932.
  • Berndtson WE, Thompson TL. Changing relationships between testis size, Sertoli cell number and spermatogenesis in Sprague-Dawley rats. J Androl 1990; 11:429-35; PMID:2254176
  • Wing TY, Christensen AK. Morphometric studies on rat seminiferous tubules. Am J Anat 1982; 165:13-25; PMID:7137056; http://dx.doi.org/10.1002/aja.1001650103
  • Wang ZX, Wreford NG, de Kretser DM. Determination of Sertoli cell numbers in the developing rat testis by sterological methods. Int J Androl 1989; 12:58-64; PMID:2714873; http://dx.doi.org/10.1111/j.1365-2605.1989.tb01285.x
  • Johnson L, Zane RS, Petty CS, Neaves WB. Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline. Biol Reprod 1984; 31:785-95; PMID:6509142; http://dx.doi.org/10.1095/biolreprod31.4.785
  • Ahmed EA, Barten-van Rijbroek AD, Kal HB, Sadri-Ardekani H, Mizrak SC, van Pelt AM, de Rooij DG. Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells. Biol Reprod 2009; 80:1084-91; PMID:19164176; http://dx.doi.org/10.1095/biolreprod.108.071662
  • Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh ALT, Mitchell JB, Rabinovich GA, Noble-Haeusslein LJ, John CM. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant 2011; 20:619-35; PMID:21054948; http://dx.doi.org/10.3727/096368910X536563
  • Xiao X, Mruk DD, Tang EI, Wong CKC, Lee WM, John CM, Turek PJ, Silvestrini B, Cheng CY. Environmental toxicants perturb human Serotli cell adhesive function via changes in F-actin organization medicated by actin regulatory proteins. Hum Reprod 2014; 29:1279-91; PMID:24532171; http://dx.doi.org/10.1093/humrep/deu011
  • Weber JE, Russell LD, Wong V, Peterson RN. Three dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli-Sertoli and Sertoli-germ cell relationships. Am J Anat 1983; 167:163-79; PMID:6613902; http://dx.doi.org/10.1002/aja.1001670203
  • Boussouar F, Benahmed M. Lactate and energy metabolism in male germ cells. Trends Endocrinol Metab 2004; 15:345-50; PMID:15350607; http://dx.doi.org/10.1016/j.tem.2004.07.003
  • Pointis G, Gilleron J, Carette D, Segretain D. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1607-20; PMID:20403873; http://dx.doi.org/10.1098/rstb.2009.0114
  • Li MWM, Mruk DD, Cheng CY. Gap junctions and blood-tissue barriers. Adv Exp Med Biol 2012; 763:260-80; PMID:23397629
  • Weber JE, Russell LD. A study of intercellular bridges during spermatogenesis in the rat. Am J Anat 1987; 180:1-24; PMID:3661461; http://dx.doi.org/10.1002/aja.1001800102
  • Tarakanov AO, Goncharova LB. Cell-cell nanotubes: Tunneling through several types of synapses. Commun Integr Biol 2009; 2:359-61; PMID:19721891; http://dx.doi.org/10.4161/cib.2.4.8289
  • Gerdes HH, Bukoreshtliev NV, Barroso JFV. Tunneling nanotubes: A new route for the exchange of components between animal cells. FEBS Letts 2007; 581:2194-201; PMID:17433307; http://dx.doi.org/10.1016/j.febslet.2007.03.071
  • Vogl AW, Vaid KS, Guttman JA. The Sertoli cell cytoskeleton. Adv Exp Med Biol 2008; 636:186-211; PMID:19856169; http://dx.doi.org/10.1007/978-0-387-09597-4_11
  • Wong EWP, Mruk DD, Cheng CY. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochem Biophys Acta 2008; 1778:692-708; PMID:18068662; http://dx.doi.org/10.1016/j.bbamem.2007.11.006
  • Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806; PMID:15466940; http://dx.doi.org/10.1210/er.2003-0022
  • Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nature Rev Endocrinol 2010; 6:380-95; PMID:20571538; http://dx.doi.org/10.1038/nrendo.2010.71
  • O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG. Spermiation: the process of sperm release. Spermatogenesis 2011; 1:14-35; PMID:21866274; http://dx.doi.org/10.4161/spmg.1.1.14525
  • Cheng CY, Mruk DD. Biochemistry of Sertoli cell/germ cell junctions, germ cell transport, and spermiation in the seminiferous epithelium. In Sertoli Cell Biology, 2nd Edition. 2015; Ed. Griswold MD; Amsterdam: Elsevier pp. 333-83; DOI: http://dx.doi.org/10.1016/B978-0-12-417047-6.00012.0.
  • Clermont Y, Morales C, Hermo L. Endocytic activities of Sertoli cells in the rat. Ann NY Acad Sci 1987; 513:1-15; PMID:3328532; http://dx.doi.org/10.1111/j.1749-6632.1987.tb24994.x
  • Russell LD, Peterson RN. Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol 1985; 94:177-211; PMID:3894273; http://dx.doi.org/10.1016/S0074-7696(08)60397-6
  • Cheng CY, Mruk DD. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 2002; 82:825-74; PMID:12270945; http://dx.doi.org/10.1152/physrev.00009.2002
  • Cheng CY, Mruk DD. The blood-testis barrier and its implication in male contraception. Pharmacol Rev 2012; 64:16-64; PMID:22039149; http://dx.doi.org/10.1124/pr.110.002790
  • Siu MKY, Cheng CY. Dynamic cross-talk between cells and the extracellular matrix in the testis. BioEssays 2004; 26:978-92; PMID:15351968; http://dx.doi.org/10.1002/bies.20082
  • Tang EI, Mruk DD, Cheng CY. MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J Endocrinol 2013; 217:R13-R23; PMID:23449618; http://dx.doi.org/10.1530/JOE-12-0586
  • Tang EI, Mruk DD, Lee WM, Cheng CY. Cell-cell interactions, cell polarity, and the blood-testis barrier. In Cell Polarity 1. 2015; Ed. Ebnet K.; Geneva: Springer International Publishing pp. 303-26; DOI: 10.1007/978-3-319-14463-4_13.
  • O'Donnell L, O'Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol 2014; 30:45-54; PMID:24440897; http://dx.doi.org/10.1016/j.semcdb.2014.01.003
  • O'Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 2014; 4:e979623; PMID:26413397; http://dx.doi.org/10.4161/21565562.2014.979623
  • Qian X, Mruk DD, Cheng YH, Tang EI, Han D, Lee WM, Wong EW, Cheng CY. Actin binding proteins, spermatid transport and spermiation. Semin Cell Dev Biol 2014; 30:75-85; PMID:24735648; http://dx.doi.org/10.1016/j.semcdb.2014.04.018
  • Lee NPY, Cheng CY. Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development. Human Reprod Update 2004; 10:349-69; PMID:15192055; http://dx.doi.org/10.1093/humupd/dmh026
  • Lie PPY, Chan AYN, Mruk DD, Lee WM, Cheng CY. Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc Natl Acad Sci USA 2010; 107:11411-6; PMID:20534520; http://dx.doi.org/10.1073/pnas.1001823107
  • Lie PPY, Mruk DD, Lee WM, Cheng CY. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J 2009; 23:2555-67; PMID:19293393; http://dx.doi.org/10.1096/fj.06-070573
  • Parvinen M. Regulation of the seminiferous epithelium. Endocr Rev 1982; 3:404-17; PMID:6295753; http://dx.doi.org/10.1210/edrv-3-4-404
  • Siu MKY, Mruk DD, Lee WM, Cheng CY. Adhering junction dynamics in the testis are regulated by an interplay of b1-integrin and focal adhesion complex (FAC)-associated proteins. Endocrinology 2003; 144:2141-63; PMID:12697723; http://dx.doi.org/10.1210/en.2002-221035
  • Lie PPY, Mruk DD, Mok KW, Su L, Lee WM, Cheng CY. Focal adhesion kinase-Tyr407 and -Tyr397 exhibit antagonistic effects on blood-testis barrier dynamics in the rat. Proc Natl Acad Sci USA 2012; 109:12562-7; PMID:22797892; http://dx.doi.org/10.1073/pnas.1207606109
  • Wan HT, Mruk DD, Li SYT, Mok KW, Lee WM, Wong CKC, Cheng CY. p-FAK-Tyr397 regulates spermatid adhesion in the rat testis via its effects on F-actin organization at the ectoplasmic specialization. Am J Physiol Endocrinol Metab 2013; 305:E687-99; PMID:23880313; http://dx.doi.org/10.1152/ajpendo.00254.2013
  • Mok KW, Mruk DD, Silvestrini B, Cheng CY. rpS6 regulates blood-testis barrier dynamics by affecting F-actin organization and protein recruitment. Endocrinology 2012; 153:5036-48; PMID:22948214; http://dx.doi.org/10.1210/en.2012-1665
  • Mok KW, Mruk DD, Cheng CY. rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci 2014; 127:4870-82; PMID:25217631; http://dx.doi.org/10.1242/jcs.152231
  • Mok KW, Mruk DD, Lee WM, Cheng CY. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network. FASEB J 2013; 27:1137-52; PMID:23288930; http://dx.doi.org/10.1096/fj.12-212977

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.