1,233
Views
2
CrossRef citations to date
0
Altmetric
Articles

Genetic diversity and structure of Prunus padus populations in South Korea based on AFLP markers

ORCID Icon, , &
Pages 171-179 | Received 22 Apr 2020, Accepted 03 Aug 2020, Published online: 18 Aug 2020

References

  • Ahn JY, Hong KN, Lee JW, Yang BH. 2013. Population genetic variation of Ulmus davidiana var. japonica in South Korea based on ISSR markers. J Korean Forest Soc. 102(4):560–565.
  • Ahn JY, Hong KN, Baek SH, Lee MW, Lim HY, Lee JW. 2016. Genetic diversity and genetic structure of Acer pseudosieboldianum populations in South Korea based on AFLP markers. J Korean For Soc. 105(04):414–421.
  • Ahn JY, Lee JW, Lee MW, Hong KN. 2019. Genetic diversity and structure of Carpinus laxiflora populations in South Korea based on AFLP markers. J Forest Sci Technol. 15(4):192–201.
  • Baliuckas V, Lagerström T, Norell L, Eriksson G. 2015. Genetic variation among and within populations in Swedish species of Sorbus aucuparia L. and Prunus padus L. assessed in Nursery Trial. Silvae Genet. 54(1–6):1–8.
  • Chin S-W, Shaw J, Haberle R, Wen J, Potter D. 2014. Diversification of almonds, peaches, plums and cherries – molecular systematics and biogeographic history of Prunus (Rosaceae). Mol Phylogenet Evol. 76:34–48.
  • Cho KJ, Jeong JM, Kim YY, Kim YM, Hong YP. 2002. Genetic diversity in the natural populations of Korean endermic tree species, Fraxinus chiisanensis Nakai (Oleaceae). Proceedings of Korean Forest Society; p. 99–101.
  • Choi JH, Cha DS, Jeon H. 2012. Anti-inflammatory and anti-nociceptive properties of Prunus padus. J Ethnopharmacol. 144(2):379–386.
  • Cottrell JE, Vaughan SP, Connolly T, Sing L, Moodley DJ, Russell K. 2009. Contemporary pollen flow, characterization of the maternal ecological neighbourhood and mating patterns in wild cherry (Prunus avium L.). Heredity (Edinb). 103(2):118–128.
  • Deiller AF, Walter JMN, Trémolières M. 2003. Regeneration strategies in a temperate hardwood floodplain forest of the Upper Rhine: sexual versus vegetative reproduction of woody species. For Ecol Manage. 180(1–3):215–225.
  • Donno D, Mellano MG, Biaggi MD, Riondato I, Rakotoniaina EN, Beccaro GL. 2018. New findings in Prunus padus L. fruits as a source of natural compounds: characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules. 23(4):718–725.
  • Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour. 4(2):359–361.
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14(8):2611–2620.
  • Felsenstein J. 2013. PHYLIP (Phylogeny Inference Package) v3.695. Seattle, USA: Department of Genome Sciences and Department of Biology University of Washington.
  • Foll M, Beaumont MA, Gaggiotti O. 2008. An Approximate Bayesian Computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genet. 179(2):927–939.
  • García C, Arroy JM, Godoy JA, Jordano P. 2005. Mating patterns, pollen dispersal, and the ecological maternal neighborhood in a Prunus mahaleb L. population. Mol Ecol. (6)14:1821–1840.
  • Han BH, Lee KJ, Choi JW, Yeom JH. 2014. Characteristics of vegetation distribution according to the growth environment of Odaesan (Mt.) National Park. Proc Korean Soc Environ Ecol. 24(1):21–22.
  • Holsinger KE, Lewis PO, Dey DK. 2002. A Bayesian approach to inferring population structure from dominant markers. Mol Ecol. 11(7):1157–1164.
  • Hwang D, Kim H, Shin H, Jeong H, Kim J, Kim D. 2014. Cosmetic effects of Prunus padus bark extract. Korean J Chem Eng. 31(12):2280–2285.
  • Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 23(14):1801–1806.
  • Jang GS, Son DC, Lee DH, Choi K, Oh SH. 2017. Checklist of vascular plants in Korea. Pocheon: Korea National Arboretum; p. 243.
  • Jang JH, Han BH, Choi TY, Lee KJ. 2013. Plant community structure and change of Pinus densiflora S. et Z. forest for twentytwo years (1988∼2010) in Yongmun sa (Temple) vally, Yangpyeong gun, South Korea. Korean J Environ Ecol. 27(3):369–380.
  • Jolivet C, Rogge M, Degen B. 2013. Molecular and quantitative signatures of biparental inbreeding depression in the self-incompatible tree species Prunus avium. Heredity (Edinb). 110(5):439–448.
  • Jordano P, Godoy JA. 2000. RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol Ecol. 9(9):1293–1305.
  • Jung YH, Ko MH, Oh YS, Kim GO, Chung YC, Kim MH, Oh MY. 1997. Phylogenetic relationship among selected Taxa of Prunus in Mt. Halla and cultivated Prunus yedoensis by the RAPD analysis. Korean J Pl Taxon. 27(4):415–428.
  • Kalkman C. 1965. The old world species of Prunus subg. Laurocerasus including those formerly referred to Pygeum. BLUMEA. XIII(I):20.
  • Kato S, Iwata H, Tsumura Y, Mukai Y. 2011. Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses. J Plant Res. 124(1):11–23.
  • Korea Biodiversity Information System. 2020. [accessed 2020 March 10]. http://www.nature.go.kr.
  • Ko SC, Shin YH. 2009. Flora of middle part in Gyeonggi Province. Korean J Plant Res. 22(1):49–70.
  • Kumar A, Misra P, Dube A. 2013. Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites. Parasitol Res. 112(2):457–466.
  • Kucharska AZ, Oszmiański J. 2002. Anthocyanins in fruits of Prunus padus (bird cherry). J Sci Food Agric. (13)82:1483–1486.
  • Lee SH, Kim JY, Oh KC, Yang DY, Ryu EY, Oh KJ. 2006. Late Pleistocene paleoenvironments of the Poonggi-dong area, Asan, inferred from pollen analysis. J Geo Soc Korea. 42(1):57–68.
  • Lee JW, Hong KN, Kang JT. 2014. Genetic diversity and genetic structure of Phellodendron amurense populations in South Korea. J Korean Forest Soc. 103(1):51–58.
  • Li M, Zhao Z, Miao X, Zhou J. 2013. Genetic diversity and population structure of Siberian apricot (Prunus sibirica L.) in China. Int J Mol Sci. 15(1):377–400.
  • Li MM, Cai YL, Qian ZQ, Zhao GF. 2009. Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation. Genet Resour Crop Evol. 56(4):455–464.
  • Li T, Liu J, Xie Y, Wang Q, Meng F. 2014. Analysis of genetic diversity in Prunus mira Koehne ex Sargent populations using AFLP markers. Plant Syst Evol. 300(3):475–482.
  • Liu XL, Wen J, Nie ZL, Johnson G, Liang ZS, Chang ZY. 2013. Polyphyly of the Padus group of Prunus (Rosaceae) and the evolution of biogeographic disjunctions between eastern Asia and eastern North America. J Plant Res. 126(3):351–361.
  • López-Almansa JC. 2004. Review. Reproductive ecology of riparian elms. Sist Recur For. 13(1):17–27.
  • Lynch M, Milligan B. 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol. 3(2):91–99.
  • Magiera A, Marchelak A, Michel P, Owczarek A, Olszewska MA. 2019. Lipophilic extracts from leaves, inflorescences and fruits of Prunus padus L. as potential sources of corosolic, ursolic and oleanolic acids with anti-inflammatory activity. Nat Prod Res. DOI:10.1080/14786419.2019.1666385.
  • Mba C, Tohme J. 2005. Use of AFLP markers in surveys of plant diversity. Meth Enzymol. 395:177–201.
  • Myking T. 2002. Evaluating genetic resources of forest trees by means of life history traits – a Norwegian example. Biodivers Conserv. 11(9):1681–1696.
  • Na DS, Yang MC, Lee KH, Lee KR. 2006. Cerebrosides and phenolic constituents of Prunus padus L. Korean J Pharmacogn. 37(3):125–129.
  • Peakall R, Smouse PE. 2006. GENEALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Mol Ecol Notes. 6(1):288–295.
  • Potter D. 2013. Prunus. wild Crop relatives: genomic and breeding resources. Berlin Heidelberg: Springer-Verlag; p. 129–145.
  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genet. 155:945–959.
  • Rehder A. 1940. A manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical temperate region. 2nd ed. New York: Macmillan; 451–478.
  • Reisch C, Bernhardt-Römermann M. 2014. The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol. 215(12):1493–1511.
  • Rosenberg NA. 2004. Distruct: a program for the graphical display of population structure. Mol Ecol Notes. 4(1):137–138.
  • Simon J, Blanché C. 2016. Karyological knowledge of the Catalan vascular flora inferred from “CromoCat” database; [accessed 2020 July 2]. http://biodiver.bio.ub.es/biocat/index.jsp#pas4.
  • Tournefort JP. 1700. Institutiones rei herbariae. Parisiis: E Typographia Regia; 622–623.
  • Uusitalo M. 2004. European bird cherry (Prunus padus L.) – a biodiverse wild plant for horticulture. Finland: MTT Agrifood Research Finland; p. 82.
  • Vekemans X. 2002. AFLP-SURV 1.0: A program for genetic diversity analysis with AFLP (and RAPD) population data. Laboratoire de Génétique et d’Ecologie Végétales, Université Libre de Bruxelles. [accessed 2019 Dec 23]. http://www.ulb.ac.be/sciences/lagev/aflp-survhtml.
  • Volkova PA, Burlakov YA, Schanzer IA. 2020. Genetic variability of Prunus padus (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm. Plant Syst Evol. (1)306:1–9.
  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X. 2014. High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS One. 9(2):e87381.
  • Yang BH, Han SD, Koo YB, Park YG. 2006. Genetic variation in the natural populations Korean stewartia (Stewartia koreana Nakai) based on I-SSR analysis. Korean J Plant Resour. 19(1):189–195.
  • Zhivotovsky LA. 1999. Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol. 8(6):907–913.