870
Views
0
CrossRef citations to date
0
Altmetric
Articles

Adaptation and growth performance of different bamboo species in Dryland areas of Northern Ethiopia

, , &
Pages 136-141 | Received 30 Oct 2023, Accepted 14 Feb 2024, Published online: 21 Feb 2024

Reference

  • Anjulo, A., Mulatu, Y., Kidane, B., Reza, S., Getahun, A., Mulat, S., Abere, M., & Teshome, U. (2022). Oxytenanthera abyssinica A. Rich. Munro species-site suitability matching in Ethiopia. Advances in Bamboo Science, 1, 100001. doi: 10.1016/j.bamboo.2022.100001.
  • Bekele-tesemma, A. (2007). Useful trees and shrubs of Ethiopia : Identification, Propagation and Management for 17 Agroclimatic Zones. Nairobi: RELMA in ICRAF Project.
  • Canavan, S., Richardson, D.M., Visser V., Roux J.J., Vorontsova M.S., & Wilson, J. R. (2017). The global distribution of bamboos: assessing correlates of introduction and invasion. AoB Plants, 9. doi: 10.1093/aobpla/plw078.
  • Chen, M., Guo, L., Ramakrishnan, M., Fei, Z., Vinod, K. K., Ding, Y., Jiao, C., Gao, Z., Zha, R., & Wang, C. (2022). Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. The Plant Cell, 34(10), 3577–3610. doi: 10.1093/plcell/koac193.
  • Diriba, A., Dekeba, S., & Gizaw, W. (2021). Evaluation of Lowland Bamboo Propagation Techniques in West Hararghe Zone, Oromia Region, Ethiopia. Journal of Energy and Natural Resources, 10(3), 65. doi: 10.11648/j.jenr.20211003.12.
  • Elbasheer, Y. H. A., & Raddad, E. A. Y. (2013). Vegetative propagation of (Oxytenanthera abyssinica) by culm cuttings. Journal of Natural Resources and Environmental Studies, 1(3), 1–5.
  • Getachew, G., Wudu, D., Alamire, G., Kasahun, H., Ayalew, A., Redae, T., & Wudu, M. (2021). Adaptability and growth performance of introduced bamboo species in North East Ethiopia. Abyssinia Journal of Science and Technology, 6(1), 1–5.
  • Goyal, A. K., Middha, S. K., & Sen, A. (2013). Bambusa vulgaris Schrad. ex JC Wendl. var. vittata Riviere & C. Riviere leaves attenuate oxidative stress-An in vitro biochemical assay.
  • Gulabrao, Y. A., Kaushal, R., Tewari, S. K., Tomar, J. M. S., & Chaturvedi, O. P. (2012). Seasonal effect on rooting behaviour of important bamboo species by culm cuttings. Journal of Forestry Research, 23(3), 441–445. doi: 10.1007/s11676-012-0282-0.
  • Hong, C., Fang, J., Jin, A., Cai, J., Guo, H., Ren, J., Shao, Q., & Zheng, B. (2011). Comparative growth, biomass production and fuel properties among different perennial plants, bamboo and miscanthus. The Botanical Review, 77, 197–207. doi: 10.1007/s12229-011-9076-x.
  • Huang, C.-Y., Jien, S.-H., Chen, T.-H., Tian, G., & Chiu, C.-Y. (2014). Soluble organic C and N and their relationships with soil organic C and N and microbial characteristics in moso bamboo (Phyllostachys edulis) plantations along an elevation gradient in Central Taiwan. Journal of Soils and Sediments, 14, 1061–1070. doi: 10.1007/s11368-014-0870-z.
  • Lewis, D., & Miles, C. A. (2007). Farming bamboo. Lulu. com.
  • Lobovikov, M., Ball, L., & Guardia, M. (2007). World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005 (Issue 18). Food & Agriculture Org.
  • Lombardo, E. (2022). An overview of bamboo cultivation in Southern Italy. Advances in Bamboo Science, 1(August), 100002. doi: 10.1016/j.bamboo.2022.100002.
  • McDowell, E. T., & Gang, D. R. (2012). A dynamic model for phytohormone control of rhizome growth and development. In Phytochemicals, plant growth, and the environment (pp. 143–165). Springer.
  • Mengesha Mulatu, Y. (2012). Growth, morphology and biomass of Arundinaria alpina (Highland Bamboo)(Poaceae) as affected by landrace, environment and silvicultural management in the Choke Mountain, Northwestern Ethiopia. Addis Ababa University.
  • Mentari, M., Mulyaningsih, T., & Aryanti, E. (2018). Identifikasi bambu di sub daerah aliran sungai Kedome Lombok Timur dan alternatif manfaat untuk konservasi sempadan sungai. Jurnal Penelitian Pengelolaan Daerah Aliran Sungai, 2(2), 111–122. doi: 10.20886/jppdas.2018.2.2.111-122.
  • Mulatu, Y., Alemayehu, A., & Tadesse, Z. (2016). Biology and management of indigenous bamboo species of Ethiopia. Addis Ababa, Ethiopia.
  • Murtodo, A., & Setyati, D. (2015). Inventarisasi Bambu di Kelurahan Antirogo Kecamatan Sumbersari Kabupaten Jember.
  • Nath, A. J., Das, G., & Das, A. K. (2009). Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33(9), 1188–1196. doi: 10.1016/j.biombioe.2009.05.020.
  • Nations, F. and A. O. of the U. (2020). Global forest resources assessment 2020: Main report. Food & Agriculture Organization of the UN.
  • Ohrnberger, D. (1999). The bamboos of the world: annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier.
  • Ojo, A. R., & Sadiku, N. A. (2023). Slenderness coefficient and growth characteristics of Africa giant bamboo: Bambusa vulgaris Schrad. ex JC Wendl. Advances in Bamboo Science, 2, 100017. doi: 10.1016/j.bamboo.2023.100017.
  • Oumer, O. A., Dagne, K., Feyissa, T., Tesfaye, K., Durai, J., & Hyder, M. Z. (2020). Genetic diversity, population structure, and gene flow analysis of lowland bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] in Ethiopia. Ecology and Evolution, 10(20), 11217–11236. doi: 10.1002/ece3.6762.
  • Owolabi, M. S., & Lajide, L. (2015). Preliminary phytochemical screening and antimicrobial activity of crude extracts of Bambusa vulgaris Schrad. Ex JC Wendl.(Poaceae) from southwestern Nigeria. American Journal of Essential Oils and Natural Products, 3(1), 42–45.
  • Raju, R. I., & Roy, S. K. (2016). Mass propagation of Bambusa bambos (L.) Voss through in vitro culture. Jahangirnagar University Journal of Biological Sciences, 5(2), 15–26. doi: 10.3329/jujbs.v5i2.32514.
  • Sarojam, N., & Kumar, M. S. M. (2001). Bambusa bambos (L.) Voss, kfri consultancy report 1 (part 1). Kerala Forest Research Institute, Kerala.
  • Sawarkar, A. D., Shrimankar, D. D., Kumar, A., Kumar, A., Singh, E., Singh, L., Kumar, S., & Kumar, R. (2020). Commercial clustering of sustainable bamboo species in India. Ind. Crops Prod., 154. doi: 10.1016/j.indcrop.2020.112693.
  • Shi, L., Fan, S., Jiang, Z., Qi, L., & Liu, G. (2015). Mixed leaf litter decomposition and N, P release with a focus on Phyllostachys edulis (Carrière) J. Houz. forest in subtropical southeastern China. Acta Societatis Botanicorum Poloniae, 84(2). doi: 10.5586/asbp.2015.019.
  • Shirin, F., Mishra, J. P., Bhadrawale, D., Saudagar, I. A., Gupta, T., & Berry, N. (2021). Seasonal and hormonal variation during adventitious rhizogenesis in five commercially important bamboo species for production of quality planting material. Journal of Forest Research, 26(5), 377–385. doi: 10.1080/13416979.2021.1935548.
  • Sun, H., Hu, W., Dai, Y., Ai, L., Wu, M., Hu, J., Zuo, Z., Li, M., Yang, H., & Ma, J. (2023). Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau) invasion affects soil microbial communities in adjacent planted forests in the Lijiang River basin, China. Frontiers in Microbiology, 14, 1111498. doi: 10.3389/fmicb.2023.1111498.
  • Terefe, R., Samuel, D., Sanbato, M., & Daba, M. (2016). Adaptation and growth performance of different lowland bamboo species in Bako, West Shoa, Ethiopia. Journal of Natural Sciences Research, 6(9), 61–65.
  • Wijewickrama, M. P. T., Karunaratne, W., Wijesundara, D. S. A., & Madawala, H. (2020). Bambusa bambos (L.) Voss. alters Structure and composition of native forests: A study from moist evergreen forests in Sri Lanka. Ceylon Journal of Science, 49(2), 173–184. doi: 10.4038/cjs.v49i2.7738.
  • Yen, T.-M., Ji, Y.-J., & Lee, J.-S. (2010). Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management, 260(3), 339–344. doi: 10.1016/j.foreco.2010.04.021.
  • Yen, T.-M., & Lee, J.-S. (2011). Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management, 261(6), 995–1002. doi: 10.1016/j.foreco.2010.12.015.