268
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Fertilizers Application on Leaf Litter Decomposition and Nutrient Cycling in White Poplar (Populus alba L.) Forest Ecosystem

, , , , &
Received 15 Mar 2024, Accepted 27 Apr 2024, Published online: 20 May 2024

References

  • Aerts, R., van Bodegom, P.M., Cornelissen, J.H.C., 2012. Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytol. 196, 181–188. doi: 10.1111/j.1469-8137.2012.04256.x.
  • Akoto, D.S., Partey, S.T., Abugre, S., Akoto, S., Denich, M., Borgemeister, C., Schmitt, C.B., 2022. Comparative analysis of leaf litter decomposition and nutrient release patterns of bamboo and traditional species in agroforestry system in Ghana. Clean. Mater. 4. doi: 10.1016/j.clema.2022.100068.
  • Allen, J., Maunoury-Danger, F., Felten, V., Danger, M., Legout, A., Guérold, F., 2020. Liming of acidified forests changes leaf litter traits but does not improve leaf litter decomposability in forest streams. For. Ecol. Manage. 475. doi: 10.1016/j.foreco.2020.118431.
  • Brilli, F., Gioli, B., Zona, D., Pallozzi, E., Zenone, T., Fratini, G., Calfapietra, C., Loreto, F., Janssens, I.A., Ceulemans, R., 2014. Simultaneous leaf- and ecosystem-level fluxes of volatile organic compounds from a poplar-based SRC plantation. Agric. For. Meteorol. 187, 22–35. doi: 10.1016/j.agrformet.2013.11.006.
  • Cai, A., Liang, G., Yang, W., Zhu, J., Han, T., Zhang, W., Xu, M., 2021. Patterns and driving factors of litter decomposition across Chinese terrestrial ecosystems. J. Clean. Prod. 278. doi: 10.1016/j.jclepro.2020.123964.
  • Carreiro, M.M., Sinsabaugh, R.L., Repert, D.A., Parkhurst, D.F., 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81, 2359–2365. doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2.
  • Chen, F. sheng, Fahey, T.J., Yu, M. yuan, Gan, L., 2010. Key nitrogen cycling processes in pine plantations along a short urban-rural gradient in Nanchang, China. For. Ecol. Manage. 259, 477–486. doi: 10.1016/j.foreco.2009.11.003.
  • Chen, F.S., Niklas, K.J., Liu, Y., Fang, X.M., Wan, S.Z., Wang, H., 2015. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiol. 35, 1106–1117. doi: 10.1093/treephys/tpv076.
  • Chen, H., Dong, S., Liu, L., Ma, C., Zhang, T., Zhu, X., Mo, J., 2013. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS One 8. doi: 10.1371/journal.pone.0084101.
  • Chen, J., Xiao, W., Zheng, C., Zhu, B., 2020. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biol. Biochem. 142. doi: 10.1016/j.soilbio.2020.107708.
  • Chen, Y., Sayer, E.J., Li, Z., Mo, Q., Li, Y., Ding, Y., Wang, J., Lu, X., Tang, J., Wang, F., 2016. Nutrient limitation of woody debris decomposition in a tropical forest: Contrasting effects of N and P addition. Funct. Ecol. 30, 295–304. doi: 10.1111/1365-2435.12471.
  • Cheng, X., Xing, W., Xiang, W., 2022. Depth-dependent patterns in the C:N:P stoichiometry of different soil components with reclamation time in coastal poplar plantations. Soil Tillage Res. 223. doi: 10.1016/j.still.2022.105494.
  • Cissé, M., Traoré, S., Bationo, B.A., 2021. Decomposition and nutrient release from the mixed leaf litter of three agroforestry species in the Sudanian zone of West Africa. SN Appl. Sci. 3. doi: 10.1007/s42452-021-04242-y.
  • Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H.M., Santiago, L.S., Wardle, D.A., Wright, I.J., Aerts, R., Allison, S.D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V., Westoby, M., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x.
  • Das, D.K., Chaturvedi, O.P., 2005. Structure and function of Populus deltoides agroforestry systems in eastern India: 2. Nutrient dynamics. Agrofor. Syst. 65, 223–230. doi: 10.1007/s10457-005-1267-1.
  • Dong, C., Qiao, Y., Cao, Y., Chen, Y., Wu, X., Xue, W., 2021. Seasonal variations in carbon, nitrogen and phosphorus stoichiometry of a Robinia pseudoacacia plantation on the Loess Hilly Region, China. Forests 12, 1–14. doi: 10.3390/f12020214.
  • Dong, L., Berg, B., Sun, T., Wang, Z., Han, X., 2020. Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biol. Biochem. 147. doi: 10.1016/j.soilbio.2020.107845.
  • Du, M., Feng, H., Zhang, L., Pei, S., Wu, D., Gao, X., Kong, Q., Xu, Y., Xin, X., Tang, X., 2020. Variations in carbon, nitrogen and phosphorus stoichiometry during a growth season within a platycladus orientalis plantation. Polish J. Environ. Stud. 29, 3549–3560. doi: 10.15244/pjoes/117759.
  • Ellison, A.M., 2006. Nutrient limitation and stoichiometry of carnivorous plants, in: Plant Biology. pp. 740–747. doi: 10.1055/s-2006-923956.
  • Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x.
  • Elser, J.J., Sterner, R.W., Gorokhova, E., Fagan, W.F., Markow, T.A., Cotner, J.B., Harrison, J.F., Hobbie, S.E., Odell, G.M., Weider, L.W., 2000. Biological stoichiometry from genes to ecosystems. Ecol. Lett. doi: 10.1046/j.1461-0248.2000.00185.x.
  • Fang, X.M., Zhang, X.L., Zong, Y.Y., Li, W.Q., Li, J.J., Guo, L.P., Wang, H., Chen, F.S., 2021. Responses of leaf litter decomposability to nitrogen and phosphorus additions are associated with cell wall carbohydrate composition in a subtropical plantation. Plant Soil 467, 359–372. doi: 10.1007/s11104-021-05099-1.
  • Fanin, N., Alavoine, G., Bertrand, I., 2020. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma 377. doi: 10.1016/j.geoderma.2020.114576.
  • Ge, J., Xie, Z., 2017. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species. Plant Ecol. 218, 1063–1076. doi: 10.1007/s11258-017-0752-8.
  • González, I., Sixto, H., Rodríguez-Soalleiro, R., Oliveira, N., 2020. Nutrient contribution of litterfall in a short rotation plantation of pure or mixed plots of populus alba l. And robinia pseudoacacia l. Forests 11, 1–19. doi: 10.3390/f11111133.
  • Griu, T., Lunguleasa, A., 2016. The use of the white poplar (Populus alba L.) biomass as fuel. J. For. Res. 27, 719–725. doi: 10.1007/s11676-015-0178-x.
  • Gruhn, P., Goletti, F., Yudelman, M., 2000. Integrated nutrient management, soil fertility, and sustainable agriculture: Current issues and future challenges. Food, Agric. Environ. Discuss. Pap. 31.
  • Gurung, R., Harada, K., Dahal, N.K., Adhikari, S., Katel, O., 2023. The Transition of Sokshing (Leaf Litter Forest) Property Rights and Management: A Case Study of Punakha and Wangdue District, Bhutan. SSRN Electron. J. doi: 10.2139/ssrn.4341820.
  • Güsewell, S., Verhoeven, J.T.A., 2006. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 287, 131–143. doi: 10.1007/s11104-006-9050-2.
  • Hu, D., Wang, M., Zheng, Y., Lv, M., Zhu, G., Zhong, Q., Cheng, D., 2021. Leaf litter phosphorus regulates the soil meso- and micro-faunal contribution to home-field advantage effects on litter decomposition along elevation gradients. Catena 207. doi: 10.1016/j.catena.2021.105673.
  • Hu, X.F., Chen, F.S., Nagle, G., Fang, Y.T., Yu, M.Q., 2011. Soil phosphorus fractions and tree phosphorus resorption in pine forests along an urban-to-rural gradient in Nanchang, China. Plant Soil 346, 97–106. doi: 10.1007/s11104-011-0799-6.
  • Huang, L., Hu, H., Bao, W., Hu, B., Liu, J., Li, F., 2023. Shifting soil nutrient stoichiometry with soil of variable rock fragment contents and different vegetation types. Catena 220. doi: 10.1016/j.catena.2022.106717.
  • Keuskamp, J.A., Hefting, M.M., Dingemans, B.J.J., Verhoeven, J.T.A., Feller, I.C., 2015. Effects of nutrient enrichment on mangrove leaf litter decomposition. Sci. Total Environ. 508, 402–410. doi: 10.1016/j.scitotenv.2014.11.092.
  • Khalsa, S.D.S., Smart, D.R., Muhammad, S., Armstrong, C.M., Sanden, B.L., Houlton, B.Z., Brown, P.H., 2020. Intensive fertilizer use increases orchard N cycling and lowers net global warming potential. Sci. Total Environ. 722. doi: 10.1016/j.scitotenv.2020.137889.
  • Knorr, M., Frey, S.D., Curtis, P.S., 2005. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 86, 3252–3257. doi: 10.1890/05-0150.
  • Li, R., Guo, X., Han, J., Yang, Q., Zhang, W., Yu, X., Han, X., Chen, L., Guan, X., Zeng, Z., Yang, H., Wang, S., 2023. Global pattern and drivers of stable residue size from decomposing leaf litter. Catena 232. doi: 10.1016/j.catena.2023.107390.
  • Liu, P., Huang, J., Sun, O.J., Han, X., 2010. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162, 771–780. doi: 10.1007/s00442-009-1506-7.
  • Liu, R., Wang, D., 2021. C:N:P stoichiometric characteristics and seasonal dynamics of leaf-root-litter-soil in plantations on the loess plateau. Ecol. Indic. 127. doi: 10.1016/j.ecolind.2021.107772.
  • Liu, X., Chen, S., Li, X., Yang, Z., Xiong, D., Xu, C., Wanek, W., Yang, Y., 2022. Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days. Geoderma 427. doi: 10.1016/j.geoderma.2022.116139.
  • Liu, X.-Z., Zhou, G.-Y., Zhang, D.-Q., Liu, S.-Z., Chu, G.-W., Yan, J.-H., 2010. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese J. Plant Ecol. 34, 64–71.
  • Liu, Y., Wang, K., Dong, L., Li, J., Wang, X., Shangguan, Z., Qu, B., Deng, L., 2023. Dynamics of litter decomposition rate and soil organic carbon sequestration following vegetation succession on the Loess Plateau, China. Catena 229. doi: 10.1016/j.catena.2023.107225.
  • Meiresonne, L., De Schrijver, A., De Vos, B., 2007. Nutrient cycling in a poplar plantation (Populus trichocarpa x Populus deltoides “Beaupré”) on former agricultural land in northern Belgium. Can. J. For. Res. 37, 141–155. doi: 10.1139/x06-205.
  • Micks, P., Downs, M.R., Magill, A.H., Nadelhoffer, K.J., Aber, J.D., 2004. Decomposing litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation. For. Ecol. Manage. 196, 71–87. doi: 10.1016/j.foreco.2004.03.013.
  • Nakatsuka, H., Karasawa, T., Ohkura, T., Wagai, R., 2020. Soil faunal effect on plant litter decomposition in mineral soil examined by two in-situ approaches: Sequential density-size fractionation and micromorphology. Geoderma 357. doi: 10.1016/j.geoderma.2019.113910.
  • Niu, S., Ren, L., Song, L., Duan, Y., Huang, T., Han, X., Hao, W., 2017. Plant stoichiometry characteristics and relationships with soil nutrients in Robinia pseudoacacia communities of different planting ages. Acta Ecol. Sin. 37, 355–362. doi: 10.1016/j.chnaes.2017.10.003.
  • Ouyang, W., Wu, Z., Wang, P., Lin, C., Zhu, W., 2022. Forest Leaf Litter Nutrient Discharge Patterns in Snowmelt Surface Runoff and Watershed Scale Remote Sensed Simulation. SSRN Electron. J. doi: 10.2139/ssrn.4086333.
  • Pang, Y., Tian, J., Lv, X., Wang, R., Wang, D., Zhang, F., 2022. Contrasting dynamics and factor controls in leaf compared with different-diameter fine root litter decomposition in secondary forests in the Qinling Mountains after 5 years of whole-tree harvesting. Sci. Total Environ. 838. doi: 10.1016/j.scitotenv.2022.156194.
  • Proe, M.F., Millard, P., 1995. Effect of P supply upon seasonal growth and internal cycling of P in Sitka spruce (Picea sitchensis(Bong.)Carr.) seedlings. Plant Soil 168-169, 313–317. doi: 10.1007/BF00029343.
  • Ren, H., Qin, J., Yan, B., Alata, Baoyinhexige, Han, G., 2018. Mass loss and nutrient dynamics during litter decomposition in response to warming and nitrogen addition in a desert steppe. Front. Agric. Sci. Eng. 5, 64–70. doi: 10.15302/J-FASE-2017194.
  • Salehi, A., Ghorbanzadeh, N., Salehi, M., 2013. Soil nutrient status, nutrient return and retranslocation in poplar species and clones in northern Iran. IForest 6, 336–341. doi: 10.3832/ifor0976-006.
  • Sardans, J., Peñuelas, J., 2015. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. doi: 10.1111/geb.12259.
  • Shao, S., Wurzburger, N., Sulman, B., Hicks Pries, C., 2023. Ectomycorrhizal effects on decomposition are highly dependent on fungal traits, climate, and litter properties: A model-based assessment. Soil Biol. Biochem. 184. doi: 10.1016/j.soilbio.2023.109073.
  • Shen, F., Liu, N., Shan, C., Ji, L., Wang, M., Wang, Y., Yang, L., 2023. Soil extracellular enzyme stoichiometry reveals the increased P limitation of microbial metabolism after the mixed cultivation of Korean pine and Manchurian walnut in Northeast China. Eur. J. Soil Biol. 118. doi: 10.1016/j.ejsobi.2023.103539.
  • Sinsabaugh, R.L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.10.014.
  • Song, X., Wang, Z., Tang, X., Xu, D., Liu, B., Mei, J., Huang, S., Huang, G., 2020. The contributions of soil mesofauna to leaf and root litter decomposition of dominant plant species in grassland. Appl. Soil Ecol. 155. doi: 10.1016/j.apsoil.2020.103651.
  • Song, Y.J., Tian, W. Bin, Liu, X.Y., Yin, F., Cheng, J.Y., Zhu, D.N., Ali, A., Yan, E.R., 2016. Associations between litterfall dynamics and micro-climate in forests of Putuoshan Island, Zhejiang, China. Chinese J. Plant Ecol. 40, 1154–1163. doi: 10.17521/cjpe.2016.0157.
  • Stark, H., Nothdurft, A., Block, J., Bauhus, J., 2015. Forest restoration with Betula ssp. and Populus ssp. nurse crops increases productivity and soil fertility. For. Ecol. Manage. 339, 57–70. doi: 10.1016/j.foreco.2014.12.003.
  • Su, J., Zhao, Y., Bai, Y., 2023. Asymmetric responses of leaf litter decomposition to precipitation changes in global terrestrial ecosystem. J. Clean. Prod. 387. doi: 10.1016/j.jclepro.2023.135898.
  • Su, Y., Ma, X., Gong, Y., Li, K., Han, W., Liu, X., 2021. Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China. J. Arid Land 13, 717–729. doi: 10.1007/s40333-021-0076-3.
  • Swart, R.C., Samways, M.J., Roets, F., 2022. Interspecific green leaf-litter selection by ground detritivore arthropods indicates generalist over specialist detritivore communities. Appl. Soil Ecol. 174. doi: 10.1016/j.apsoil.2022.104439.
  • Teague, R., Dowhower, S., 2022. Links of microbial and vegetation communities with soil physical and chemical factors for a broad range of management of tallgrass prairie. Ecol. Indic. 142. doi: 10.1016/j.ecolind.2022.109280.
  • Wachendorf, C., Piepho, H.P., Beuschel, R., 2020. Determination of litter derived C and N in litterbags and soil using stable isotopes prevents overestimation of litter decomposition in alley cropping systems. Pedobiologia (Jena). 81–82. doi: 10.1016/j.pedobi.2020.150651.
  • Wang, M., Moore, T.R., 2014. Carbon, Nitrogen, Phosphorus, and Potassium Stoichiometry in an Ombrotrophic Peatland Reflects Plant Functional Type. Ecosystems 17, 673–684. doi: 10.1007/s10021-014-9752-x.
  • Wu, P., Zhou, H., Cui, Y.C., Zhao, W.J., Hou, Y.J., Zhu, J., Ding, F.J., 2023. Stoichiometric Characteristics of Leaf Nutrients in Karst Plant Species During Natural Restoration in Maolan National Nature Reserve, Guizhou, China. J. Sustain. For. 42, 95–119. doi: 10.1080/10549811.2021.1948868.
  • Wu, P.P., Zhang, Z., Li, R., Ji, J.H., Mao, R., 2023. Impact of nitrogen addition on single and mixed tree leaf litter decomposition depends on N forms in subtropical China. Appl. Soil Ecol. 190. doi: 10.1016/j.apsoil.2023.104970.
  • Wu, T.G., Yu, M.K., Geoff Wang, G., Dong, Y., Cheng, X.R., 2012. Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China. Biochem. Syst. Ecol. doi: 10.1016/j.bse.2012.06.002.
  • Xie, J., Chang, S.L., Zhang, Y.T., Wang, H.J., Song, C.C., He, P., Sun, X.J., 2016. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains. Shengtai Xuebao 36, 4363–4372. doi: 10.5846/stxb201506301387.
  • Xu, X., Timmer, V.R., 1999. Growth and nitrogen nutrition of Chinese fir seedlings exposed to nutrient loading and fertilization. Plant Soil 216, 83–91. doi: 10.1023/a:1004733714217.
  • Yang, J., Zhang, X., Ma, L., Chen, Y., Dang, T., An, S., 杨佳佳, 张向茹, 马露莎, 陈亚南, 党廷辉, 安韶山, 2014. Ecological stoichiometric relationships between components of robinia pseudoacacia forest in loess plateau. Acta Pedol. Sin. 51, 133–142.
  • Yu, Y.F., Peng, W.X., Song, T.Q., Zeng, F.P., Wang, K.L., Wen, L., Fan, F.J., 2014. Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between karst hills, southwest China. Chinese J. Appl. Ecol. 25, 947–954.
  • Yu, Z., Huang, Z., Wang, M., Liu, R., Zheng, L., Wan, X., Hu, Z., Davis, M.R., Lin, T.C., 2015. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol. Biochem. 90, 188–196. doi: 10.1016/j.soilbio.2015.07.026.
  • Zhang, J., Li, H., Zhang, H., Zhang, H., Tang, Z., 2021. Responses of Litter Decomposition and Nutrient Dynamics to Nitrogen Addition in Temperate Shrublands of North China. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.618675.
  • Zhang, J., Li, J., Fan, Y., Mo, Q., Li, Y., Li, Y., Li, Z., Wang, F., 2020. Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest. Plant Soil 454, 139–153. doi: 10.1007/s11104-020-04643-9.
  • Zhang, W., Chao, L., Yang, Q., Wang, Q., Fang, Y., Wang, S., 2016. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97, 2834–2843. doi: 10.1002/ecy.1515.
  • Zhang, W., Wang, Q., Wu, Q., Zhang, S., Zhu, P., Peng, C., Huang, S., Wang, B., Zhang, H., 2020. The response of soil Olsen-P to the P budgets of three typical cropland soil types under long-term fertilization. PLoS One 15. doi: 10.1371/journal.pone.0230178.
  • Zhou, S. xing, Huang, C. de, Han, B. han, Xiao, Y. xiang, Tang, J. dong, Xiang, Y. bin, Luo, C., 2017. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Plant Soil 420, 135–145. doi: 10.1007/s11104-017-3383-x.
  • Zhu, X., Chen, H., Zhang, W., Huang, J., Fu, S., Liu, Z., Mo, J., 2016. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant Soil 399, 61–74. doi: 10.1007/s11104-015-2676-1.