1,388
Views
37
CrossRef citations to date
0
Altmetric
Research Paper

Small-sized granules of biphasic bone substitutes support fast implant bed vascularization

, , , , , , & show all
Article: e1056943 | Received 02 Mar 2015, Accepted 26 May 2015, Published online: 01 Sep 2015

References

  • Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 1991; 2(3):187-208; PMID:10149083; http://dx.doi.org/10.1002/jab.770020307
  • Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J. Med. Res. 2010; 132:15-30
  • Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 2008; 23(3):197-212; PMID:18996965; http://dx.doi.org/10.1177/0885328208096798
  • Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJ. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma 2000; 48(1):179-86; PMID:10647592; http://dx.doi.org/10.1097/00005373-200001000-00037
  • Lobo SE, Livingston Arinzeh T. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 2010; 3(2):815-26; PMID:24710095; http://dx.doi.org/10.3390/ma3020815
  • Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, Sader R, Unger RE, Ziegler G, Kirkpatrick CJ. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater 2012; 7(1):015005; PMID:22287541; http://dx.doi.org/10.1088/1748-6041/7/1/015005
  • Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 1989; 23(8):883-94; PMID:2777831; http://dx.doi.org/10.1002/jbm.820230806
  • Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Tech 2005; 2:184-99; PMID:16378638; http://dx.doi.org/10.1111/j.1744-7402.2005.02020.x
  • Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 2002; 63(4):408-12; PMID:12115748; http://dx.doi.org/10.1002/jbm.10259
  • Kasten P, Beyen I, Niemeyer P, Luginbuhl R, Bohner M, Richter W. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 2008; 4(6):1904-15; PMID:18571999; http://dx.doi.org/10.1016/j.actbio.2008.05.017
  • Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, Dean DD, Schwartz Z, Boskey AL. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 2002; 71(6):519-29; PMID:12232675; http://dx.doi.org/10.1007/s00223-001-1114-y
  • von Doernberg MC, von Rechenberg B, Bohner M, Grünenfelder S, van Lenthe GH, Müller R, Gasser B, Mathys R, Baroud G, Auer J. In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 2006; 27(30):5186-98; PMID:16790273; http://dx.doi.org/10.1016/j.biomaterials.2006.05.051
  • Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20(2):86-100; PMID:18162407; http://dx.doi.org/10.1016/j.smim.2007.11.004
  • Ghanaati S, Barbeck M, Orth C, Willershausen I, Thimm BW, Hoffmann C, Rasic A, Sader RA, Unger RE, Peters F, Kirkpatrick CJ. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater 2010; 6(12):4476-87; PMID:20624495; http://dx.doi.org/10.1016/j.actbio.2010.07.006
  • Sun JS, Liu HC, Chang WH, Li J, Lin FH, Tai HC. Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. J Biomed Mater Res 1998; 39:390-7; PMID:9468047; http://dx.doi.org/10.1002/(SICI)1097-4636(19980305)39:3%3c390::AID-JBM7%3e3.0.CO;2-E
  • Shi Z, Huang X, Cai Y, Tang R, Yang D. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 2009; 5(1):338-45; PMID:18753024; http://dx.doi.org/10.1016/j.actbio.2008.07.023
  • Jung UW, Choi SY, Pang EK, Kim CS, Choi SH, Cho KS. The effect of varying the particle size of beta tricalcium phosphate carrier of recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol 2006; 77(5):765-72; PMID:16671867; http://dx.doi.org/10.1902/jop.2006.050268
  • Carvalho AL, Faria PE, Grisi MF, Souza SL, Taba MJ, Palioto DB, Novaes AB, Fraga AF, Ozyegin LS, Oktar FN, Salata LA. Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: a histologic and histometric study in dogs. J Oral Implantol 2007; 33(5):267-76; PMID:17987858; http://dx.doi.org/10.1563/1548-1336(2007)33%5b267:EOGSOT%5d2.0.CO;2
  • Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C, Daculsi GJ. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 1999; 46:103-11; PMID:10357141; http://dx.doi.org/10.1002/(SICI)1097-4636(199907)46:1%3c103::AID-JBM12%3e3.0.CO;2-Z
  • Cheung HS, Devine TR, Hubbard W. Calcium phosphate particle induction of metalloproteinase and mitogenesis: effect of particle sizes. Osteoarthritis Cartilage 1997; 5:145-51; PMID:9219677; http://dx.doi.org/10.1016/S1063-4584(97)80009-X
  • Gauthier O, Bouler JM, Weiss P, Bosco J, Aguado E, Daculsi G. Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone 1999; 25(2 Suppl):71S-4S.; http://dx.doi.org/10.1016/S8756-3282(99)00137-4
  • Pallesen L, Schou S, Aaboe M, Hjørting-Hansen E, Nattestad A, Melsen F. Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. Int J Oral Maxillofac Implants 2002 Jul-Aug; 17(4):498-506; PMID:12182292
  • Weissenboeck M, Stein E, Undt G, Ewers R, Lauer G, Turhani D. Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 2006; 182(2):79-88; http://dx.doi.org/10.1159/000093062
  • Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 1999; 44(1):31-43; PMID:10397902; http://dx.doi.org/10.1002/(SICI)1097-4636(199901)44:1%3c31::AID-JBM4%3e3.0.CO;2-9
  • Evans EJ. Toxicity of hydroxyapatite in vitro: the effect of particle size. Biomaterials 1991; 12(6):574-6; PMID:1663393; http://dx.doi.org/10.1016/0142-9612(91)90054-E
  • Lange T, Schilling AF, Peters F, Mujas J, Wicklein D, Amling M. Size dependent induction of proinflammatory cytokines and cytotoxicity of particulate beta- tricalciumphosphate in vitro. Biomaterials 2011; 32(17):4067-75; PMID:21421269; http://dx.doi.org/10.1016/j.biomaterials.2011.02.039
  • AlGhamdi AS, Shibly O, Ciancio SG. Osseous grafting part I: autografts and allografts for periodontal regeneration–a literature review. J Int Acad Periodontol 2010; 12(2):34-8
  • Zaner DJ, Yukna RA. Particle size of periodontal bone grafting materials. J Periodontol 1984; 55(7):406-9; PMID:6086869; http://dx.doi.org/10.1902/jop.1984.55.7.406
  • Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J Biomed Mater Res B Appl Biomater 2013; 101(6):902-10; PMID:23362131; http://dx.doi.org/10.1002/jbm.b.32895
  • Bohner M, Baumgart F. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 2004; 25(17):3569-82; PMID:15020131; http://dx.doi.org/10.1016/j.biomaterials.2003.10.032
  • Dietze S, Bayerlein T, Proff P, Hoffmann A, Gedrange T. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone. Folia Morphol (Warsz) 2006; 65(1):63-5; PMID:16783740
  • Ghanaati SM, Thimm BW, Unger RE, Orth C, Kohler T, Barbeck M, Müller R, Kirkpatrick CJ. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth. Biomed Mater 2010; 5(2):25004; PMID:20208127; http://dx.doi.org/10.1088/1748-6041/5/2/025004
  • Ghanaati S, Orth C, Barbeck M, Willershausen I, Thimm BW, Booms P, Stübinger S, Landes C, Sader RA, Kirkpatrick CJ. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats. Biomed Mater 2010; 5(3):035005; PMID:20460687
  • Ghanaati S, Barbeck M, Hilbig U, Hoffmann C, Unger RE, Sader RA, Peters F, Kirkpatrick CJ. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomater 2011; 7(11):4018-28; PMID:21784183; http://dx.doi.org/10.1016/j.actbio.2011.07.003
  • Barbeck M, Udeabor S, Lorenz J, Schlee M, Grosse Holthaus M, Raetscho N, Choukroun J, Sader R, Kirkpatrick CJ, Ghanaati S. High-temperature sintering of xenogeneic bone substitutes leads to increased multinucleated giant cell formation: in vivo and preliminary clinical results. J Oral Implantol 2014; PMID:25105868
  • Barbeck M, Lorenz J, Grosse Holthaus M, Raetscho N, Kubesch A, Booms P, Sader R, Kirkpatrick CJ, Ghanaati S. Porcine dermis and pericardium-based, non cross-linked materials induce multinucleated giant cells after their in vivo implantation: a physiological reaction? J Oral Implantol 2014; PMID:25386662
  • Barbeck M, Udeabor SE, Lorenz J, Kubesch A, Choukroun J, Sader RA, Kirkpatrick CJ, Ghanaati S. Induction of multinucleated giant cells in response to small sized bovine bone substitute (Bio-Oss™) results in an enhanced early implantation bed vascularization. Ann Maxillofac Surg 2014 Jul-Dec; 4(2):150-7; PMID:25593863; http://dx.doi.org/10.4103/2231-0746.147106
  • Kokkinopoulou M, Güler MA, Lieb B, Barbeck M, Ghanaati S, Markl J. 3D-ultrastructure, functions and stress responses of gastropod (Biomphalaria glabrata) rhogocytes. PLoS One 2014; 9(6):e101078; PMID:24971744; http://dx.doi.org/10.1371/journal.pone.0101078
  • Hanaichi T, Sato T, Iwamoto T, Malavasi-Yamashiro J, Hoshino M, Mizuno N. A stable lead by modification of Sato's method. J Electron Microsc 1986; 35:304-6; PMID:2440973
  • Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999; 19:74-86
  • Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res Sympos 1971; 2:161; http://dx.doi.org/10.1002/jbm.820050613
  • Baldini M, DeSanctis M, Ferrari M. Deproteinized bovine bone in periodontal and implant surgery Dent Mater 2011; 27:61-70; PMID:21112618; http://dx.doi.org/10.1016/j.dental.2010.10.017
  • Schlegel AK, Donath K. BIO-OSS–a resorbable bone substitute? J Long Term Eff Med Implants 1998; 8(3–4):201-9; PMID:10186966
  • Cannon GJ, Swanson JA. The macrophage capacity for phagocytosis. J Cell Sci 1992; 101(Pt 4):907-13; PMID:1527185
  • Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 2008; 25(8):1815-21; PMID:18373181; http://dx.doi.org/10.1007/s11095-008-9562-y
  • Tabata Y, Ikada Y. Effect of the size and surface-charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 1988; 9:356-362; PMID:3214660; http://dx.doi.org/10.1016/0142-9612(88)90033-6
  • Anderson JM. Biological responses to materials. Annu Rev Mater Res 2001; 31:81-110; http://dx.doi.org/10.1146/annurev.matsci.31.1.81
  • Jayaraman M, Meyer U, Bühner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials 2004; 25(4):625-31; PMID:14607500; http://dx.doi.org/10.1016/S0142-9612(03)00571-4
  • Marchisio M, Di Carmine M, Pagone R, Piattelli A, Miscia S. Implant surface roughness influences osteoclast proliferation and differentiation. J Biomed Mater Res B Appl Biomater 2005; 75(2):251-6; PMID:16078239; http://dx.doi.org/10.1002/jbm.b.30287
  • Miyanishi K, Trindade MC, Ma T, Goodman SB, Schurman DJ, Smith RL. Periprosthetic osteolysis: induction of vascular endothelial growth factor from human monocyte/macrophages by orthopaedic biomaterial particles. J Bone Miner Res 2003; 18(9):1573-83; PMID:12968666; http://dx.doi.org/10.1359/jbmr.2003.18.9.1573
  • Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012; 33(15):3792-802; PMID:22386919; http://dx.doi.org/10.1016/j.biomaterials.2012.02.034
  • Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie AB. The role of vascular endothelial growth factor in ossification. Int J Oral Sci 2012; 4(2):64-8; PMID:22722639; http://dx.doi.org/10.1038/ijos.2012.33
  • McNally AK, Anderson JM. Multinucleated giant cell formation exhibits features of phagocytosis with participation of the endoplasmic reticulum. Exp Mol Pathol 2005; 79(2):126-35; PMID:16109404; http://dx.doi.org/10.1016/j.yexmp.2005.06.008
  • Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol 2012; 7:61-98; PMID:21910624; http://dx.doi.org/10.1146/annurev-pathol-011811-132445
  • Brodbeck WG, Anderson JM. Giant cell formation and function. Curr Opin Hematol 2009; 16(1):53-7; PMID:19057205; http://dx.doi.org/10.1097/MOH.0b013e32831ac52e
  • Roodman GD. Cell biology of the osteoclast. Exp Hematol 1999; 27(8):1229-41; PMID:10428500; http://dx.doi.org/10.1016/S0301-472X(99)00061-2
  • Blair HC. How the osteoclast degrades bone. Bioessays 1998; 20(10):837-46; PMID:9819571; http://dx.doi.org/10.1002/(SICI)1521-1878(199810)20:10%3c837::AID-BIES9%3e3.0.CO;2-D
  • Stenbeck G. Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 2002; 13(4):285-92; PMID:12243728; http://dx.doi.org/10.1016/S1084952102000587
  • Väänänen HK, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci 1995; 108(Pt 8):2729-32
  • Coxon FP, Taylor A. Vesicular trafficking in osteoclasts. Semin Cell Dev Biol 2008; 19(5):424-33; PMID:18768162; http://dx.doi.org/10.1016/j.semcdb.2008.08.004
  • Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 2000; 15(7):1337-45; PMID:10893682; http://dx.doi.org/10.1359/jbmr.2000.15.7.1337