832
Views
7
CrossRef citations to date
0
Altmetric
Commentary

Transposable elements and small RNAs: Genomic fuel for species diversity

, , &
Pages 63-66 | Received 13 May 2015, Accepted 23 Jun 2015, Published online: 04 Aug 2015

References

  • Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of adaptation. Evolution 2007; 61:995-1016; PMID:17492956; http://dx.doi.org/10.1111/j.1558-5646.2007.00105.x
  • King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975; 188:107-16; PMID:1090005; http://dx.doi.org/10.1126/science.1090005
  • Wolf JBW, Lindell J, Backstrom N. Speciation genetics: current status and evolving approaches. Philos T R Soc B 2010; 365:1717-33; http://dx.doi.org/10.1098/rstb.2010.0023
  • Babushok DV, Ostertag EM, Kazazian HH, Jr. Current topics in genome evolution: molecular mechanisms of new gene formation. Cell Mol Life Sci 2007; 64:542-54; PMID:17192808; http://dx.doi.org/10.1007/s00018-006-6453-4
  • Hasler J, Samuelsson T, Strub K. Useful ‘junk’: Alu RNAs in the human transcriptome. Cell Mol Life Sci 2007; 64:1793-800; http://dx.doi.org/10.1007/s00018-007-7084-0
  • Jurka J. Origin and evolution of Alu repetitive elements. In: Maraia RJ, ed. Impact of short interspersed elements (SINEs) on the host genome. Austin, TX: Landes Company, 1995:25-41
  • Kazazian HH, Jr. Mobile elements: drivers of genome evolution. Science 2004; 303:1626-32; PMID:15016989; http://dx.doi.org/10.1126/science.1089670
  • Matlik K, Redik K, Speek M. L1 antisense promoter drives tissue-specific transcription of human genes. J Biomed Biotechnol 2006; 2006:71753; PMID:16877819; http://dx.doi.org/10.1155/JBB/2006/71753
  • Nigumann P, Redik K, Matlik K, Speek M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 2002; 79:628-34; PMID:11991712; http://dx.doi.org/10.1006/geno.2002.6758
  • Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 2004; 7:597-606; PMID:15469847; http://dx.doi.org/10.1016/j.devcel.2004.09.004
  • Speek M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 2001; 21:1973-85; PMID:11238933; http://dx.doi.org/10.1128/MCB.21.6.1973-1985.2001
  • Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet 2002; 3:370-9; PMID:11988762; http://dx.doi.org/10.1038/nrg798
  • Eichler EE, Sankoff D. Structural dynamics of eukaryotic chromosome evolution. Science 2003; 301:793-7; PMID:12907789; http://dx.doi.org/10.1126/science.1086132
  • Lonnig WE, Saedler H. Chromosome rearrangements and transposable elements. Annu Rev Genet 2002; 36:389-410; PMID:12429698; http://dx.doi.org/10.1146/annurev.genet.36.040202.092802
  • Caceres M, Ranz JM, Barbadilla A, Long M, Ruiz A. Generation of a widespread drosophila inversion by a transposable element. Science 1999; 285:415-8; PMID:10411506; http://dx.doi.org/10.1126/science.285.5426.415
  • Gray YH. It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 2000; 16:461-8; PMID:11050333; http://dx.doi.org/10.1016/S0168-9525(00)02104-1
  • Lim JK, Simmons MJ. Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. Bioessays 1994; 16:269-75; PMID:8031304; http://dx.doi.org/10.1002/bies.950160410
  • Mathiopoulos KD, della Torre A, Predazzi V, Petrarca V, Coluzzi M. Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc Natl Acad Sci U S A 1998; 95:12444-9; PMID:9770505; http://dx.doi.org/10.1073/pnas.95.21.12444
  • Weil CF, Wessler SR. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 1993; 5:515-22; PMID:8390878; http://dx.doi.org/10.1105/tpc.5.5.515
  • Zhang J, Peterson T. Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 2004; 167:1929-37; PMID:15342530; http://dx.doi.org/10.1534/genetics.103.026229
  • Jurka J, Bao W, Kojima KK. Families of transposable elements, population structure and the origin of species. Biol Direct 2011; 6:44; PMID:21929767; http://dx.doi.org/10.1186/1745-6150-6-44
  • Zeh DW, Zeh JA, Ishida Y. Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 2009; PMID:19472370
  • Oliver KR, Greene WK. Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mobile DNA 2011; 2:8; PMID:21627776; http://dx.doi.org/10.1186/1759-8753-2-8
  • Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012; 2:2912-33; PMID:23170223; http://dx.doi.org/10.1002/ece3.400
  • Furano AV, Hayward BE, Chevret P, Catzeflis F, Usdin K. Amplification of the ancient murine Lx family of long interspersed repeated DNA occurred during the murine radiation. J Mol Evol 1994; 38:18-27; PMID:8151711; http://dx.doi.org/10.1007/BF00175491
  • Kazazian HH, Jr., Goodier JL. LINE drive. retrotransposition and genome instability. Cell 2002; 110:277-80; PMID:12176313; http://dx.doi.org/10.1016/S0092-8674(02)00868-1
  • Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008; 9:397-405; PMID:18368054; http://dx.doi.org/10.1038/nrg2337
  • Platt RN, Vandewege MW, Kern C, Schmidt CJ, Hoffmann FG, Ray DA. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol Biol Evol 2014; 31:1536-45; PMID:24692655; http://dx.doi.org/10.1093/molbev/msu112
  • Borchert GM, Holdon NW, Williams JD, Heman WL, Bishop IP, Dembosky JA, Elste JE, Gregoire NS, Kim JA, Koehler WW, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mobile Genet Elements 2011; 1:8-17; PMID:22016841; http://dx.doi.org/10.4161/mge.1.1.15766
  • Roberts JT, Cardin SE, Borchert GM. Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mobile Genet Elements 2014; 4:e29255; PMID:25054081; http://dx.doi.org/10.4161/mge.29255
  • Roberts JT, Cooper EA, Favreau CJ, Howell JS, Lane LG, Mills JE, Newman DC, Perry TJ, Russell ME, Wallace BM, et al. Continuing analysis of microRNA origins: Formation from transposable element insertions and noncoding RNA mutations. Mobile Genet Elements 2013; 3:e27755; PMID:24475369; http://dx.doi.org/10.4161/mge.27755
  • Pritham EJ, Feschotte C. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci U S A 2007; 17:422-32
  • Ray DA, Feschotte C, Pagan HJ, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 2008; 18:717-28; PMID:18340040; http://dx.doi.org/10.1101/gr.071886.107
  • Ray DA, Pagan HJT, Thompson ML, Stevens RD. Bats with hATs: evidence for recent DNA transposon activity in genus myotis. Mol Biol Evol 2007; 24:632-9; PMID:17150974; http://dx.doi.org/10.1093/molbev/msl192
  • Thomas J, Sorourian M, Ray D, Baker RJ, Pritham EJ. The limited distribution of Helitrons to vesper bats supports horizontal transfer. Gene 2011; 474:52-8; PMID:21193022; http://dx.doi.org/10.1016/j.gene.2010.12.007
  • Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610; PMID:25223768; http://dx.doi.org/10.1093/gbe/evu204
  • Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PDN. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Mol Ecol 2009; 18:2532-42; PMID:19457192; http://dx.doi.org/10.1111/j.1365-294X.2009.04184.x
  • Clare EL, Barber BR, Sweeney BW, Hebert PDN, Fenton MB. Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol Ecol 2011; 20:1772-80; PMID:21366747; http://dx.doi.org/10.1111/j.1365-294X.2011.05040.x
  • Blood BR, Clark MK. Myotis vivesi. Mammalian Species 1998; 588:1-5; http://dx.doi.org/10.2307/3504455
  • Dietz C, von Helversen O, Nill D. Bats of Britain, Europe, and Nortwest Africa. London: A&C Black Publishers Ltd., 2009
  • Ma J, Jones G, Zhang SY, Shen JX, Metzner W, Zhang LB, Liang B. Dietary analysis confirms that Rickett's big-footed bat (Myotis ricketti) is a piscivore. J Zool 2003; 261:245-8; http://dx.doi.org/10.1017/S095283690300414X
  • Robson SK. Myotis adversus (Chiroptera: Vespertilionidae): Australia's fish-eating bat. Aust Mammal 1984; 7:51-2
  • Ibanez C, Juste J, Garcia-Mudarra JL, Agirre-Mendi PT. Bat predation on nocturnally migrating birds. Proc Natl Acad Sci U S A 2001; 98:9700-2; PMID:11493689; http://dx.doi.org/10.1073/pnas.171140598
  • Fukui D, Dewa H, Katsuta S, Sato A. Bird predation by the birdlike noctule in Japan. J Mammal 2013; 94:657-61; http://dx.doi.org/10.1644/12-MAMM-A-172.1
  • Thabah A, Li G, Wang YN, Liang B, Hu KL, Zhang SY, Jones G. Diet, echolocation calls, and phylogenetic affinities of the great evening bat (Ia io; Vespertilionidae): another carnivorous bat. J Mammal 2007; 88:728-35; http://dx.doi.org/10.1644/06-MAMM-A-167R1.1
  • Frick WF, Heady PA, Hayes JP. Facultative Nectar-feeding behavior in a gleaning insectivorous bat (Antrozous Pallidus). J Mammal 2009; 90:1157-64; http://dx.doi.org/10.1644/09-MAMM-A-001.1
  • Fullard JH, Dawson JW. The echolocation calls of the spotted bat Euderma maculatum are relatively inaudible to moths. J Exp Biol 1997; 200:129-37; PMID:9317482
  • Goerlitz HR, Ter Hofstede HM, Zeale MRK, Jones G, Holderied MW. An aerial-hawking bat uses stealth echolocation to counter moth hearing. Curr Biol 2010; 20:1588; http://dx.doi.org/10.1016/j.cub.2010.08.057
  • Agosta SJ, Morton D, Kuhn KM. Feeding ecology of the bat Eptesicus fuscus: ‘preferred’ prey abundance as one factor influencing prey selection and diet breadth. J Zool 2003; 260:169-77; http://dx.doi.org/10.1017/S0952836903003601
  • Arlettaz R. Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Anim Behav 1996; 51:1-11; http://dx.doi.org/10.1006/anbe.1996.0001
  • Merzendorfer H. Insect chitin synthases: a review. J Comp Physiol B 2006; 176:1-15; PMID:16075270; http://dx.doi.org/10.1007/s00360-005-0005-3
  • Bell GP. Birds and mammals on an insect diet: a primer on diet composition analysis in relation to ecological energetics. Studies in Avian Biology 1990; 13:416-22
  • Whitaker JO Jr., Dannelly HK, Prentice DA. Chitinase activity in insectivorous bats. J Mammal 2004; 85:15-8; http://dx.doi.org/10.1644/1545-1542(2004)085%3c0015:CIIB%3e2.0.CO;2
  • Strobel S, Roswag A, Becker NI, Trenczek TE, Encarnacao JA. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PloS one 2013; 8:e72770; PMID:24019876
  • Cauchie HM. Chitin production by arthropods in the hydrosphere. Hydrobiologia 2002; 470:63-96; http://dx.doi.org/10.1023/A:1015615819301
  • Finke MD. Estimate of chitin in raw whole insects. Zoo Biol 2007; 26:105-15; PMID:19360565; http://dx.doi.org/10.1002/zoo.20123
  • Alfoldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011; 477:587-91; PMID:21881562; http://dx.doi.org/10.1038/nature10390
  • Novick P, Smith J, Ray D, Boissinot S. Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene 2010; 449:85-94; PMID:19747963; http://dx.doi.org/10.1016/j.gene.2009.08.017
  • Novick PA, Basta H, Floumanhaft M, McClure MA, Boissinot S. The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. Mol Biol Evol 2009; 26:1811-22; PMID:19420048; http://dx.doi.org/10.1093/molbev/msp090
  • Novick PA, Smith JD, Floumanhaft M, Ray DA, Boissinot S. The evolution and diversity of DNA transposons in the genome of the Lizard Anolis carolinensis. Genome Biol Evol 2011; 3:1-14; PMID:21127169; http://dx.doi.org/10.1093/gbe/evq080
  • Campbell T. The Brown Anole (Anolis sagrei Dumeril and Bibron 1837). The Institute for Biological Invasions: The Invader of the Month 2002
  • Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. Rapid evolution of a native species following invasion by a congener. Science 2014; 346:463-6; PMID:25342801; http://dx.doi.org/10.1126/science.1257008
  • Coates BS, Hellmich RL, Grant DM, Abel CA. Mobilizing the genome of lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 helitrons. DNA Res 2012; 19:11-21; PMID:22086996; http://dx.doi.org/10.1093/dnares/dsr038
  • Lavoie CA, Platt RN, Novick PA, Counterman BA, Ray DA. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mobile DNA 2013; 4; PMID:24088337; http://dx.doi.org/10.1186/1759-8753-4-21
  • Supple M, Papa R, Counterman BA, McMillan WO. The genomics of an adaptive radiation – insights across the Heliconius speciation continuum. In: Landry C, Aubin-Horth N, eds. Ecological Genomics. New York: Springer, 2014
  • Chuma S, Nakano T. piRNA and spermatogenesis in mice. Philos T R Soc B 2013; 368:20110338; PMID:23166399
  • Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, Ishihara G, Kawaoka S, Sugano S, Shimada T, et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 2014; 509:633-6; PMID:24828047; http://dx.doi.org/10.1038/nature13315
  • Coyne JA, Orr HA. Two rules of speciation. In: Otte D, Endler JA, eds. Speciation and its consequences. Sunderland, MA: Sinauer, 1989:180-207

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.