1,010
Views
1
CrossRef citations to date
0
Altmetric
Commentary

LINE retrotransposition and host DNA repair machinery

, &
Pages 92-97 | Received 30 Jul 2015, Accepted 15 Sep 2015, Published online: 20 Nov 2015

References

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921; PMID:11237011; http://dx.doi.org/10.1038/35057062
  • Kazazian HH. Mobile Elements: Drivers of Genome Evolution. Science 2004; 303:1626-32; PMID:15016989; http://dx.doi.org/10.1126/science.1089670
  • Goodier JL, Kazazian Jr HH. Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites. Cell 2008; 135:23-35; PMID:18854152; http://dx.doi.org/10.1016/j.cell.2008.09.022
  • Martin SL, Branciforte D, Keller D, Bain DL. Trimeric structure for an essential protein in L1 retrotransposition. Proc Natl Acad Sci 2003; 100:13815-20; PMID:14615577; http://dx.doi.org/10.1073/pnas.2336221100
  • Khazina E, Weichenrieder O. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci 2009; 106:731-6; PMID:19139409; http://dx.doi.org/10.1073/pnas.0809964106
  • Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 2010; 7:706-11; http://dx.doi.org/10.4161/rna.7.6.13766
  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD. Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition. Cell 1996; 87:905-16; PMID:8945517; http://dx.doi.org/10.1016/S0092-8674(00)81997-2
  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr. High Frequency Retrotransposition in Cultured Mammalian Cells. Cell 1996; 87:917-27; PMID:8945518; http://dx.doi.org/10.1016/S0092-8674(00)81998-4
  • Xiong Y, Eickbush TH. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 1988; 55:235-46; PMID:2844414; http://dx.doi.org/10.1016/0092-8674(88)90046-3
  • Cost GJ, Boeke JD. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry (Mosc) 1998; 37:18081-93; http://dx.doi.org/10.1021/bi981858s
  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 1993; 72:595-605; PMID:7679954; http://dx.doi.org/10.1016/0092-8674(93)90078-5
  • Cost GJ, Feng Q, Jacquier A, Boeke JD. Human L1 element target‐primed reverse transcription in vitro. EMBO J 2002; 21:5899-910; PMID:12411507; http://dx.doi.org/10.1093/emboj/cdf592
  • Martin SL, Cruceanu M, Branciforte D, Wai-lun Li P, Kwok SC, Hodges RS, Williams MC. LINE-1 Retrotransposition Requires the Nucleic Acid Chaperone Activity of the ORF1 Protein. J Mol Biol 2005; 348:549-61; PMID:15826653; http://dx.doi.org/10.1016/j.jmb.2005.03.003
  • Martin SL, Bushman D, Wang F, Li PW-L, Walker A, Cummiskey J, Branciforte D, Williams MC. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Res 2008; 36:5845-54; PMID:18790804; http://dx.doi.org/10.1093/nar/gkn554
  • Gasior SL, Wakeman TP, Xu B, Deininger PL. The Human LINE-1 Retrotransposon Creates DNA Double-strand Breaks. J Mol Biol 2006; 357:1383-93; PMID:16490214; http://dx.doi.org/10.1016/j.jmb.2006.01.089
  • Gasior SL, Roy-Engel AM, Deininger PL. ERCC1/XPF limits L1 retrotransposition. DNA Repair 2008; 7:983-9; PMID:18396111; http://dx.doi.org/10.1016/j.dnarep.2008.02.006
  • Suzuki J, Yamaguchi K, Kajikawa M, Ichiyanagi K, Adachi N, Koyama H, Takeda S, Okada N. Genetic Evidence That the Non-Homologous End-Joining Repair Pathway Is Involved in LINE Retrotransposition. PLoS Genet 2009; 5:e1000461; PMID:19390601; http://dx.doi.org/10.1371/journal.pgen.1000461
  • Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MCN, Muotri AR, Mu Y, Carson CT, Macia A, Moran JV, Gage FH. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci 2011; 108:20382-7; PMID:22159035; http://dx.doi.org/10.1073/pnas.1100273108
  • Lieber MR. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu Rev Biochem 2010; 79:181-211; PMID:20192759; http://dx.doi.org/10.1146/annurev.biochem.052308.093131
  • Bennardo N, Cheng A, Huang N, Stark JM. Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair. PLoS Genet 2008; 4:e1000110; PMID:18584027; http://dx.doi.org/10.1371/journal.pgen.1000110
  • Deriano L, Roth DB. Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage. Annu Rev Genet 2013; 47:433-55; PMID:24050180; http://dx.doi.org/10.1146/annurev-genet-110711-155540
  • McVey M, Lee SE. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 2008; 24:529-38; PMID:18809224; http://dx.doi.org/10.1016/j.tig.2008.08.007
  • Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G. DNA Ligase III as a Candidate Component of Backup Pathways of Nonhomologous End Joining. Cancer Res 2005; 65:4020-30; PMID:15899791; http://dx.doi.org/10.1158/0008-5472.CAN-04-3055
  • Audebert M, Salles B, Weinfeld M, Calsou P. Involvement of Polynucleotide Kinase in a Poly(ADP-ribose) Polymerase-1-dependent DNA Double-strand Breaks Rejoining Pathway. J Mol Biol 2006; 356:257-65; PMID:16364363; http://dx.doi.org/10.1016/j.jmb.2005.11.028
  • Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 2015; 518:254-7; PMID:25642960; http://dx.doi.org/10.1038/nature14157
  • Wallace NA, Gasior SL, Faber ZJ, Howie HL, Deininger PL, Galloway DA. HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition. Virology 2013; 443:69-79; PMID:23706308; http://dx.doi.org/10.1016/j.virol.2013.04.022
  • Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210; http://dx.doi.org/10.1038/nrm3546
  • Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, et al. Chromosomal Translocations in Human Cells Are Generated by Canonical Nonhomologous End-Joining. Mol Cell 2014; 55:829-42; PMID:25201414; http://dx.doi.org/10.1016/j.molcel.2014.08.002
  • Jones RE, Oh S, Grimstead JW, Zimbric J, Roger L, Heppel NH, Ashelford KE, Liddiard K, Hendrickson EA, Baird DM. Escape from Telomere-Driven Crisis Is DNA Ligase III Dependent. Cell Rep 2014; 8:1063-76; PMID:25127141; http://dx.doi.org/10.1016/j.celrep.2014.07.007
  • Kajikawa M, Yamaguchi K, Okada N. A new mechanism to ensure integration during LINE retrotransposition: A suggestion from analyses of the 5′ extra nucleotides. Gene 2012; 505:345-51; PMID:22405943; http://dx.doi.org/10.1016/j.gene.2012.02.047
  • Yamaguchi K, Kajikawa M, Okada N. Integrated mechanism for the generation of the 5′ junctions of LINE inserts. Nucleic Acids Res 2014; 42:13269-79; PMID:25378331; http://dx.doi.org/10.1093/nar/gku1067
  • Malik HS, Burke WD, Eickbush TH. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 1999; 16:793-805; PMID:10368957; http://dx.doi.org/10.1093/oxfordjournals.molbev.a026164
  • Feng Q, Schumann G, Boeke JD. Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc Natl Acad Sci 1998; 95:2083-8; PMID:9482842; http://dx.doi.org/10.1073/pnas.95.5.2083
  • Gilbert N, Lutz-Prigge S, Moran JV. Genomic Deletions Created upon LINE-1 Retrotransposition. Cell 2002; 110:315-25; PMID:12176319; http://dx.doi.org/10.1016/S0092-8674(02)00828-0
  • Ichiyanagi K, Okada N. Mobility Pathways for Vertebrate L1, L2, CR1, and RTE Clade Retrotransposons. Mol Biol Evol 2008; 25:1148-57; PMID:18343891; http://dx.doi.org/10.1093/molbev/msn061
  • Martin SL, Li WLP, Furano AV, Boissinot S. The structures of mouse and human L1 elements reflect their insertion mechanism. Cytogenet Genome Res 2005; 110:223-8; PMID:16093676; http://dx.doi.org/10.1159/000084956
  • Zingler N, Willhoeft U, Brose HP, Schoder V, Jahns T, Hanschmann KMO, Morrish TA, Löwer J, Schumann GG. Analysis of 5′ junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5′-end attachment requiring microhomology-mediated end-joining. Genome Res 2005; 15:780-9; PMID:15930490; http://dx.doi.org/10.1101/gr.3421505
  • Kojima KK. Different integration site structures between L1 protein-mediated retrotransposition in cis and retrotransposition in trans. Mob DNA 2010; 1:17; PMID:20615209; http://dx.doi.org/10.1186/1759-8753-1-17
  • Roth DB, Porter TN, Wilson JH. Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 1985; 5:2599-607; PMID:3016509