1,914
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in membrane domains transport and homeostasis

, , , , , , , , , & show all
Article: e1025182 | Received 15 Jan 2015, Accepted 26 Feb 2015, Published online: 29 Apr 2015

References

  • Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell 2004; 116:153-66; PMID:14744428; http://dx.doi.org/10.1016/S0092-8674(03)01079-1
  • Martinez-Arca S, Alberts P, Zahraoui A, Louvard D, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 2000; 149:889-900; PMID:10811829; http://dx.doi.org/10.1083/jcb.149.4.889
  • Chaineau M, Danglot L, Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 2009; 583:3817-26; PMID:19837067; http://dx.doi.org/10.1016/j.febslet.2009.10.026
  • Pocard T, Le Bivic A, Galli T, Zurzolo C. Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J Cell Sci 2007; 120:3309-20; PMID:17878240; http://dx.doi.org/10.1242/jcs.007948
  • Martinez-Arca S, Coco S, Mainguy G, Schenk U, Alberts P, Bouille P, Mezzina M, Prochiantz A, Matteoli M, Louvard D, et al. A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 2001; 21:3830-8; PMID:11356871
  • Muzerelle A, Alberts P, Martinez-Arca S, Jeannequin O, Lafaye P, Mazie JC, Galli T, Gaspar P. Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience 2003; 122:59-75; PMID:14596849; http://dx.doi.org/10.1016/S0306-4522(03)00567-0
  • Advani RJ, Yang B, Prekeris R, Lee KC, Klumperman J, Scheller RH. VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 1999; 146:765-76; PMID:10459012; http://dx.doi.org/10.1083/jcb.146.4.765
  • Luzio JP, Pryor PR, Gray SR, Gratian MJ, Piper RC, Bright NA. Membrane traffic to and from lysosomes. Biochem Soc Symp 2005:77-86; PMID:15649132
  • Pols MS, van Meel E, Oorschot V, ten Brink C, Fukuda M, Swetha MG, Mayor S, Klumperman J. hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nat Commun 2013; 4:1361; PMID:23322049; http://dx.doi.org/10.1038/ncomms2360
  • Proux-Gillardeaux V, Raposo G, Irinopoulou T, Galli T. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol Cell 2007; 99:261-71; PMID:17288539; http://dx.doi.org/10.1042/BC20060097
  • Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L, et al. TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 2012; 104:213-28; PMID:22188132; http://dx.doi.org/10.1111/boc.201100070
  • Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. Cell 2011; 146:303-17; PMID:21784250; http://dx.doi.org/10.1016/j.cell.2011.06.023
  • Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta 2009; 1793:1901-16; PMID:19781582; http://dx.doi.org/10.1016/j.bbamcr.2009.09.011
  • Galli T, Zahraoui A, Vaidyanathan VV, Raposo G, Tian JM, Karin M, Niemann H, Louvard D. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell 1998; 9:1437-48; PMID:9614185; http://dx.doi.org/10.1091/mbc.9.6.1437
  • Lafont F, Verkade P, Galli T, Wimmer C, Louvard D, Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci U S A 1999; 96:3734-8; PMID:10097106
  • Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T. Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 2010; 123:723-35; PMID:20144992; http://dx.doi.org/10.1242/jcs.062497
  • Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 2003; 304:107-12; PMID:12705892; http://dx.doi.org/10.1016/S0006-291X(03)00545-X
  • Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 2006; 400:315-25; PMID:16859490; http://dx.doi.org/10.1042/BJ20060259
  • Hesketh GG, Perez-Dorado I, Jackson LP, Wartosch L, Schafer IB, Gray SR, McCoy AJ, Zeldin OB, Garman EF, Harbour ME, et al. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev Cell 2014; 29:591-606; PMID:24856514; http://dx.doi.org/10.1016/j.devcel.2014.04.010
  • Larghi P, Williamson DJ, Carpier JM, Dogniaux S, Chemin K, Bohineust A, Danglot L, Gaus K, Galli T, Hivroz C. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 2013; 14:723-31; PMID:23666293; http://dx.doi.org/10.1038/ni.2609
  • De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev 2008; 9:273-84; PMID:18354421; http://dx.doi.org/10.1038/nrm2378
  • Korlach J, Schwille P, Webb WW, Feigenson GW. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 1999; 96:8461-6; PMID:10411897; http://dx.doi.org/10.1073/pnas.96.15.8461
  • Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003; 425:821-4; PMID:14574408; http://dx.doi.org/10.1038/nature02013
  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 2009; 457:1159-62; PMID:19098897; http://dx.doi.org/10.1038/nature07596
  • Marquer C, Leveque-Fort S, Potier MC. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS). J Vis Exp 2012:e3513; PMID:22508446
  • D'Angelo G, Uemura T, Chuang CC, Polishchuk E, Santoro M, Ohvo-Rekila H, Sato T, Di Tullio G, Varriale A, D'Auria S, et al. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 2013; 501:116-20; PMID:23913272; http://dx.doi.org/10.1038/nature12423
  • Bankaitis VA, Garcia-Mata R, Mousley CJ. Golgi membrane dynamics and lipid metabolism. Curr Biol 2012; 22:R414-24; PMID:22625862; http://dx.doi.org/10.1016/j.cub.2012.03.004
  • Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature 2014; 510:48-57; PMID:24899304; http://dx.doi.org/10.1038/nature13474
  • Boncompain G, Divoux S, Gareil N, de Forges H, Lescure A, Latreche L, Mercanti V, Jollivet F, Raposo G, Perez F. Synchronization of secretory protein traffic in populations of cells. Nat Methods 2012; 9:493-8; PMID:22406856; http://dx.doi.org/10.1038/nmeth.1928
  • Keller P, Toomre D, Diaz E, White J, Simons K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 2001; 3:140-9; PMID:11175746; http://dx.doi.org/10.1038/35055042
  • Burgo A, Proux-Gillardeaux V, Sotirakis E, Bun P, Casano A, Verraes A, Liem RK, Formstecher E, Coppey-Moisan M, Galli T. A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery. Dev Cell 2012; 23:166-80; PMID:22705394; http://dx.doi.org/10.1016/j.devcel.2012.04.019
  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J. ER-to-Golgi transport visualized in living cells. Nature 1997; 389:81-5; PMID:9288971; http://dx.doi.org/10.1038/38891
  • Boncompain G, Perez F. Fluorescence-based analysis of trafficking in mammalian cells. Methods Cell Biol 2013; 118:179-94; PMID:24295307
  • Puig B, Altmeppen H, Glatzel M. The GPI-anchoring of PrP: Implications in sorting and pathogenesis. Prion 2014; 8:11-8; PMID:24509692
  • Griffiths G, Fuller SD, Back R, Hollinshead M, Pfeiffer S, Simons K. The dynamic nature of the Golgi complex. J Cell Biol 1989; 108:277-97; PMID:2537312; http://dx.doi.org/10.1083/jcb.108.2.277
  • Chia J, Goh G, Racine V, Ng S, Kumar P, Bard F. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol 2012; 8:629; PMID:23212246; http://dx.doi.org/10.1038/msb.2012.59
  • Lin CC, Love HD, Gushue JN, Bergeron JJ, Ostermann J. ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro. J Cell Biol 1999; 147:1457-72; PMID:10613904; http://dx.doi.org/10.1083/jcb.147.7.1457
  • Loizides-Mangold U, David FP, Nesatyy VJ, Kinoshita T, Riezman H. Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels. J Lipid Res; 53:1522-34; PMID:22628614
  • Burgo A, Sotirakis E, Simmler MC, Verraes A, Chamot C, Simpson JC, Lanzetti L, Proux-Gillardeaux V, Galli T. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth. EMBO Rep 2009; 10:1117-24; PMID:19745841; http://dx.doi.org/10.1038/embor.2009.186
  • Randhawa VK, Thong FS, Lim DY, Li D, Garg RR, Rudge R, Galli T, Rudich A, Klip A. Insulin and hypertonicity recruit GLUT4 to the plasma membrane of muscle cells by using N-ethylmaleimide-sensitive factor-dependent SNARE mechanisms but different v-SNAREs: role of TI-VAMP. Mol Biol Cell 2004; 15:5565-73; PMID:15469990; http://dx.doi.org/10.1091/mbc.E04-03-0266
  • Sakyo T, Kitagawa T. Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains. Biochim Biophys Acta 2002; 1567:165-75; PMID:12488050; http://dx.doi.org/10.1016/S0005-2736(02)00613-2
  • Inoue M, Chiang SH, Chang L, Chen XW, Saltiel AR. Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 2006; 17:2303-11; PMID:16525015; http://dx.doi.org/10.1091/mbc.E06-01-0030
  • Ammar MR, Humeau Y, Hanauer A, Nieswandt B, Bader MF, Vitale N. The Coffin-Lowry Syndrome-Associated Protein RSK2 Regulates Neurite Outgrowth through Phosphorylation of Phospholipase D1 (PLD1) and Synthesis of Phosphatidic Acid. J Neurosci 2013; 33:19470-9; PMID:24336713; http://dx.doi.org/10.1523/JNEUROSCI.2283-13.2013
  • Kuribara H, Tago K, Yokozeki T, Sasaki T, Takai Y, Morii N, Narumiya S, Katada T, Kanaho Y. Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem 1995; 270:25667-71; PMID:7592744; http://dx.doi.org/10.1074/jbc.270.43.25667
  • Zhang GF, Patton WA, Lee FJ, Liyanage M, Han JS, Rhee SG, Moss J, Vaughan M. Different ARF domains are required for the activation of cholera toxin and phospholipase D. J Biol Chem 1995; 270:21-4; PMID:7814376; http://dx.doi.org/10.1074/jbc.270.1.21
  • Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 2003; 19:397-422; PMID:14570575
  • Kawakami Y, Kawakami K, Steelant WF, Ono M, Baek RC, Handa K, Withers DA, Hakomori S. Tetraspanin CD9 is a "proteolipid," and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem 2002; 277:34349-58; PMID:12068006
  • Odintsova E, Voortman J, Gilbert E, Berditchevski F. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 2003; 116:4557-66; PMID:14576349; http://dx.doi.org/10.1242/jcs.00793
  • Sandvig K, Olsnes S. Effect of temperature on the uptake, excretion and degradation of abrin and ricin by HeLa cells. Exp Cell Res 1979; 121:15-25; PMID:446525; http://dx.doi.org/10.1016/0014-4827(79)90439-7
  • Matlin KS, Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 1983; 34:233-43; PMID:6883510; http://dx.doi.org/10.1016/0092-8674(83)90154-X
  • Dunn WA, Hubbard AL, Aronson NN, Jr. Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver. J Biol Chem 1980; 255:5971–8; PMID:6155379
  • Sengupta D, Linstedt AD. Control of organelle size: the Golgi complex. Annu Rev Cell Dev Biol 2011; 27:57-77; PMID:21639798
  • Polishchuk R, Di Pentima A, Lippincott-Schwartz J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol 2004; 6:297-307; PMID:15048124; http://dx.doi.org/10.1038/ncb1109
  • D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 2007; 449:62-7; PMID:17687330; http://dx.doi.org/10.1038/nature06097
  • Sato M, Yoshimura S, Hirai R, Goto A, Kunii M, Atik N, Sato T, Sato K, Harada R, Shimada J, et al. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo. Traffic (Copenhagen, Denmark) 2011; 12:1383-93; PMID:21740490; http://dx.doi.org/10.1111/j.1600-0854.2011.01247.x
  • Danglot L, Zylbersztejn K, Petkovic M, Gauberti M, Meziane H, Combe R, Champy MF, Birling MC, Pavlovic G, Bizot JC, et al. Absence of TI-VAMP/Vamp7 leads to increased anxiety in mice. J Neurosci 2012; 32:1962-8; PMID:22323709; http://dx.doi.org/10.1523/JNEUROSCI.4436-11.2012
  • Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbaur EL, Koval M, McCaffery JM, et al. tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 2005; 118:2279-93; PMID:15870108; http://dx.doi.org/10.1242/jcs.02358
  • de Chaumont F, Dallongeville S, Chenouard N, Herve N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 2012; 9:690-6; PMID:22743774; http://dx.doi.org/10.1038/nmeth.2075
  • Lam SM, Tong L, Duan X, Petznick A, Wenk MR, Shui G. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res 2014; 55:289-98; PMID:24287120; http://dx.doi.org/10.1194/jlr.M044826