635
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Remediation technologies for oil-drilling activities in the Arctic: oil-spill containment and remediation in open water

Pages 49-60 | Received 19 Mar 2014, Accepted 11 Sep 2014, Published online: 16 Oct 2014

References

  • Moran K, Backman J, Brinkhuis H, Clemens SC, Cronin T, Dickens GR, Eynaud F, Gattacceca J, Jakobsson M, Jordan RW. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature. 2006;441:601–605. doi: 10.1038/nature04800
  • Liston GE, Hiemstra CA. The changing cryosphere: Pan-Arctic snow trends (1979–2009). J Clim. 2011;24(21):5691 –5712. doi: 10.1175/JCLI-D-11-00081.1
  • Gloersen P, Campbell WJ, Cavalieri DJ, Comiso JC, Parkinson CL, Zwally HJ. Arctic and antarctic sea ice, 1978–1987: Satellite passive-microwave observations and analysis. Washington (DC): NASA; 1992. 290 pp.
  • Laidre KL, Stirling I, Lowry LF, Wiig Ø, Heide-Jørgensen MP, Ferguson SH. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol Appl. 2008;18(suppl 2):S97–S125. doi: 10.1890/06-0546.1
  • McMahon CR, Hays GC. Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Glob Chang Biol. 2006;12(7):1330–1338. doi: 10.1111/j.1365-2486.2006.01174.x
  • Proshutinsky AY, Johnson MA. Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res. 1997;102(C6):12493–12514. doi: 10.1029/97JC00738
  • Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean. J Geophys Res Oceans (1978–2012). 1998;103(C5):10419–10435.
  • Aagaard K, Carmack E. The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res Oceans (1978–2012). 1989;94(C10):14485–14498.
  • Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science. 2009;326(5956):1098–1100. doi: 10.1126/science.1174190
  • Simmonds I, Rudeva I. The great Arctic cyclone of August 2012. Geophys Res Lett. 2012;39(23):L23709. doi: 10.1029/2012GL054259
  • Snow N. EIA: World economic recovery to restore oil demand growth. Oil Gas J. 2010;108(2):32–33.
  • Bailey L. Following Kulluk blunder, Interior investigates Shell Arctic offshore drilling. Wilderness Soc. 2013 [Apr 20]. Available from: http://wilderness.org/blog/following-kulluk-blunder-interior-investigates-shell-arctic-offshore-drilling.
  • Bjerregaard P, Young TK, Dewailly E, Ebbesson SO. Indigenous health in the Arctic: an overview of the circumpolar Inuit population. Scand J Public Health. 2004;32(5):390–395. doi: 10.1080/14034940410028398
  • Furgal C, Seguin J. Climate change, health, and vulnerability in Canadian northern Aboriginal communities. Environ Health Perspect. 2006;1964–1970.
  • Johansen BE. The Inuit's struggle with dioxins and other organic pollutants. Am Indian Q. 2002;26(3):479–490. doi: 10.1353/aiq.2003.0041
  • Filler D, Van Stempvoort D, Leigh M. Remediation of frozen ground contaminated with petroleum hydrocarbons: Feasibility and limits. In: Margesin R, editor. Permafrost soils. Vol. 16. Berlin: Springer; 2009. p. 279–301.
  • Poland JS, Riddle MJ, Zeeb BA. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec. 2003;39(4):369–383. doi: 10.1017/S0032247403002985
  • Negri A, Burns K, Boyle S, Brinkman D, Webster N. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ Pollut. 2006;143(3):456–467. doi: 10.1016/j.envpol.2005.12.005
  • Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat Toxicol. 2013;142:303–316. doi: 10.1016/j.aquatox.2013.08.011
  • Perrons RK. Assessing the damage caused by Deepwater Horizon: Not just another Exxon Valdez. Mar Pollut Bull. 2013;71(1–2):20–22. doi: 10.1016/j.marpolbul.2013.03.016
  • Sikkema J, De Bont J, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59(2):201–222.
  • Solomon GM, Janssen S. Health effects of the Gulf oil spill. JAMA. 2010;304(10):1118–1119. doi: 10.1001/jama.2010.1254
  • Pritchard PH, Costa CF. EPA's Alaska oil spill bioremediation project. Part 5. Environ Sci Technol. 1991;25(3):372–379. doi: 10.1021/es00015a002
  • Doney SC. The growing human footprint on coastal and open-ocean biogeochemistry. Science. 2010;328(5985):1512–1516. doi: 10.1126/science.1185198
  • Pérez-Cadahía B, Laffon B, Pásaro E, Méndez J. Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled Prestige crude oil. Comp Biochem Physiol C Toxicol Pharmacol. 2004;138(4):453–460. doi: 10.1016/j.cca.2004.08.001
  • Farré Ml, Pérez S, Kantiani L, Barceló D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Analyt Chem. 2008;27(11):991–1007. doi: 10.1016/j.trac.2008.09.010
  • Guengerich FP. Cytochrome P450 enzymes. Am Sci. 1993;81(5):440–447.
  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem. 2004;279(23):23847–23850. doi: 10.1074/jbc.R400004200
  • Snyder MJ. Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. Aquat Toxicol. 2000;48(4):529–547. doi: 10.1016/S0166-445X(00)00085-0
  • Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61(1):47–64.
  • Trindade P, Sobral L, Rizzo A, Leite S, Soriano A. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere. 2005;58(4):515–522. doi: 10.1016/j.chemosphere.2004.09.021
  • Harvey S, Elashvili I, Valdes J, Kamely D, Chakrabarty A. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Nat Biotechnol. 1990;8(3):228–230. doi: 10.1038/nbt0390-228
  • Ron EZ, Rosenberg E. Natural roles of biosurfactants. Env Microbiol. 2001;3(4):229–236. doi: 10.1046/j.1462-2920.2001.00190.x
  • Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol. 2002;13(3):249–252. doi: 10.1016/S0958-1669(02)00316-6
  • Atlas R, Bragg J. Bioremediation of marine oil spills: when and when not–the Exxon Valdez experience. Microb Biotechnol. 2009;2(2):213–221. doi: 10.1111/j.1751-7915.2008.00079.x
  • Fergoug T, Bouhadda Y. Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis. Fuel. 2014;115:521–526.
  • Harayama S, Kishira H, Kasai Y, Shutsubo K. Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol. 1999;1(1):63–70.
  • Gauthier T, Danial-Fortain P, Merdrignac I, Guibard I, Quoineaud A-A. Studies on the evolution of asphaltene structure during hydroconversion of petroleum residues. Catal Today. 2008;130(2–4):429–438. doi: 10.1016/j.cattod.2007.10.005
  • Gallego J, González-Rojas E, Peláez A, Sánchez J, García-Martínez M, Ortiz J, Torres T, Llamas J. Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Org Geochem. 2006;37(12):1869–1884. doi: 10.1016/j.orggeochem.2006.07.022
  • Edwards KR, Lepo JE, Lewis MA. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull. 2003;46(10):1309–1316. doi: 10.1016/S0025-326X(03)00238-8
  • Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133(2):183–198. doi: 10.1016/j.envpol.2004.06.009
  • West CC, Harwell JH. Surfactants and subsurface remediation. Environ Sci Technol. 1992;26(12):2324–2330. doi: 10.1021/es00036a002
  • Bogan BW, Trbovic V, Paterek JR. Inclusion of vegetable oils in Fenton's chemistry for remediation of PAH-contaminated soils. Chemosphere. 2003;50(1):15–21. doi: 10.1016/S0045-6535(02)00490-3
  • Goi A, Kulik N, Trapido M. Combined chemical and biological treatment of oil contaminated soil. Chemosphere. 2006;63(10):1754–1763. doi: 10.1016/j.chemosphere.2005.09.023
  • Lu M, Zhang Z, Qiao W, Wei X, Guan Y, Ma Q, Guan Y. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation. Bioresour Technol. 2010;101(7):2106–2113. doi: 10.1016/j.biortech.2009.11.002
  • Buragohain S, Deka DC, Devi A. Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam–India. Environ Sci Process Impacts. 2013;15(10):1913–1920. doi: 10.1039/c3em00170a
  • Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10(3):159–170. doi: 10.1023/A:1027484117065
  • Graham WM, Condon RH, Carmichael RH, D'Ambra I, Patterson HK, Linn LJ, Hernandez FJ Jr. Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill. Environ Res Lett. 2010;5(4):045301. doi: 10.1088/1748-9326/5/4/045301
  • Thibodeaux LJ, Valsaraj KT, John VT, Papadopoulos KD, Pratt LR, Pesika NS. Marine oil fate: Knowledge gaps, basic research, and development needs; A perspective based on the Deepwater Horizon spill. Environ Eng Sci. 2011;28(2):87–93. doi: 10.1089/ees.2010.0276
  • Fraaije JGEM, Nath SK, van Male J, Becherer P, Klein Wolterink J, Handgraaf JW, Case F, Tanase C, Serral Gracià R. Culgi Manual version 8.0. Available from: https://culgi.com/sites/default/files/pictures/CulgiScientificManual_8.0.pdf
  • Mukerjee P, Mysels KJ. Critical micelle concentrations of aqueous surfactant systems. DTIC Document; 1971.
  • Burgess RM, Ahrens MJ, Hickey CW. Aquatic Environments: Source, Persistence and Distribution. PAHs: An ecotoxicological perspective. In: Douben P, editor. Ecological and Environmental Technology Series. West-Sussex: Taylor & Francis; 2003 p. 35–42.
  • Manzetti S. Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation. Polycycl Aromat Compd. 2013;33(4): 311–330. doi: 10.1080/10406638.2013.781042
  • Nagappa B, Chandrappa G. Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous Mesoporous Mater. 2007;106(1):212–218. doi: 10.1016/j.micromeso.2007.02.052
  • Mishakov IV, Bedilo AF, Richards RM, Chesnokov VV, Volodin AM, Zaikovskii VI, Buyanov RA, Klabunde KJ. Nanocrystalline MgO as a Dehydrohalogenation Catalyst. J Catal. 2002;206(1):40–48. doi: 10.1006/jcat.2001.3474
  • Crocker M, Marchin L. Wettability and adsorption characteristics of crude-oil asphaltene and polar fractions. J Petrol Technol. 1988;40(4):470–474. doi: 10.2118/14885-PA
  • Mishakov IV, Heroux DS, Chesnokov VV, Koscheev SG, Mel'gunov MS, Bedilo AF, Buyanov RA, Klabunde KJ. Reaction of nanocrystalline MgO with 1-iodobutane. J Catal. 2005;229(2):344–351. doi: 10.1016/j.jcat.2004.10.026
  • Gleiter H. Nanostructured materials. Adv Mater. 1992;4(7–8):474–481. doi: 10.1002/adma.19920040704
  • Ouyang X, Guo Y, Qiu X. The feasibility of synthetic surfactant as an air entraining agent for the cement matrix. Constr Build Mater. 2008;22(8):1774–1779. doi: 10.1016/j.conbuildmat.2007.05.002
  • Orbell JD, Godhino L, Bigger SW, Nguyen TM, Ngeh LN. Oil spill remediation using magnetic particles: an experiment in environmental technology. J Chem Educ. 1997;74(12):1446. doi: 10.1021/ed074p1446
  • Parfitt R, Fraser A, Farmer V. Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. J Soil Sci. 1977;28(2):289–296. doi: 10.1111/j.1365-2389.1977.tb02237.x
  • Hatcher PG, Maciel GE, Dennis LW. Aliphatic structure of humic acids; a clue to their origin. Org Geochem. 1981;3(1):43–48. doi: 10.1016/0146-6380(81)90012-7
  • Miikki V, Senesi N, Hänninen K. Characterization of humic material formed by composting of domestic and industrial biowastes: Part 2 spectroscopic evaluation of humic acid structures. Chemosphere. 1997;34(8):1639–1651. doi: 10.1016/S0045-6535(97)00021-0
  • von Wandruszka R. Humic acids: Their detergent qualities and potential uses in pollution remediation. Geochem Trans. 2000;1(1):10–15. doi: 10.1186/1467-4866-1-10
  • Harvey GR, Boran DA, Chesal LA, Tokar JM. The structure of marine fulvic and humic acids. Mar Chem. 1983;12(2–3):119–132. doi: 10.1016/0304-4203(83)90075-0
  • Conte P, Agretto A, Spaccini R, Piccolo A. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut. 2005;135(3):515–522. doi: 10.1016/j.envpol.2004.10.006
  • Fava F, Piccolo A. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnol Bioeng. 2002;77(2):204–211. doi: 10.1002/bit.10140
  • Matsuo AY, Woodin BR, Reddy CM, Val AL, Stegeman JJ. Humic substances and crude oil induce cytochrome P450 1A expression in the Amazonian fish species Colossoma macropomum (Tambaqui). Environ Sci Technol. 2006;40(8):2851–2858. doi: 10.1021/es052437i
  • Atlas RM. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev. 1981;45(1):180.
  • Reisfeld A, Rosenberg E, Gutnick D. Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl Microbiol. 1972;24(3):363–368.
  • Atlas RM. Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bulletin. 1995;31(4):178–182. doi: 10.1016/0025-326X(95)00113-2
  • Simons KL, Sheppard PJ, Adetutu EM, Kadali K, Juhasz AL, Manefield M, Sarma PM, Lal B, Ball AS. Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. Bioresour. Technol. 2013;134:107–116.
  • Wilson MA, Gillam AH, Collin PJ. Analysis of the structure of dissolved marine humic substances and their phytoplanktonic precursors by 1H 13C nuclear magnetic resonance. Chem Geol. 1983;40(3):187–201. doi: 10.1016/0009-2541(83)90029-3
  • Miller JS, Olejnik D. Photolysis of polycyclic aromatic hydrocarbons in water. Water Res. 2001;35(1):233–243. doi: 10.1016/S0043-1354(00)00230-X
  • Sabate J, Bayona J, Solanas A. Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere. 2001;44(2):119–124. doi: 10.1016/S0045-6535(00)00208-3
  • Prahl FG, Carpenter R. Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment. Geochim Cosmochim Acta. 1983;47(6):1013–1023. doi: 10.1016/0016-7037(83)90231-4
  • Margesin R, Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol. 2001;56(5–6):650–663. doi: 10.1007/s002530100701
  • Hutchinson TC, Hellebust J, Tam D, Mackay D, Mascarenhas RA, Shiu WY. The correlation of the toxicity to algae of hydrocarbons and halogenated hydrocarbons with their physical-chemical properties. In: Afghan BK, Mackay D, editors. Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment. New York: Plenum; 1980. p. 577–586.
  • Fetzner S. Bacterial dehalogenation. Appl Microbiol Biotechnol. 1998;50(6):633–657. doi: 10.1007/s002530051346
  • Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 1991;10(6):1297.
  • Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003;67(4):503–549. doi: 10.1128/MMBR.67.4.503-549.2003
  • Tang X, Li D. Evaluation of asphaltene degradation on highly ordered TiO2 nanotubular arrays via variations in wettability. Langmuir. 2010;27(3):1218–1223. doi: 10.1021/la104203f
  • Atlas RM, Bartha R. Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng. 1972;14(3):309–318. doi: 10.1002/bit.260140304
  • Atlas RM, Bartha R. Hydrocarbon biodegradation and oil spill bioremediation. Adv microb ecol. 1992;12:287–338.
  • Swannell R, Lee K, McDonagh M. Field evaluations of marine oil spill bioremediation. Microbiol Rev. 1996;60(2):342–365.
  • Gentili AR, Cubitto MA, Ferrero M, Rodriguéz MS. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeterior Biodegradation. 2006;57(4):222–228. doi: 10.1016/j.ibiod.2006.02.009
  • Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS. A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods. 2012;88(3):348–355. doi: 10.1016/j.mimet.2011.12.006
  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA. New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol. 2004;70(8):4748–4755. doi: 10.1128/AEM.70.8.4748-4755.2004
  • Dastgheib SMM, Amoozegar MA, Khajeh K, Ventosa A. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol. 2011;90(1):305–312. doi: 10.1007/s00253-010-3049-6
  • Engelhardt M, Daly K, Swannell R, Head I. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol. 2001;90(2):237–247. doi: 10.1046/j.1365-2672.2001.01241.x
  • Venosa A, Suidan M, King D, Wrenn B. Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach. J Ind Microbiol Biotechnol. 1997;18(2–3):131–139. doi: 10.1038/sj.jim.2900304
  • Sasaki T, Maki H, Ishihara M, Harayama S. Vanadium as an internal marker to evaluate microbial degradation of crude oil. Environ Sci Technol. 1998;32(22):3618–3621. doi: 10.1021/es980287o
  • Jones E, Anderson L. On the origin of the chemical properties of the Arctic Ocean halocline. J Geophys Res: Oceans (1978–2012). 1986;91(C9):10759–10767. doi: 10.1029/JC091iC09p10759
  • Jiménez N, Viñas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaiges J. The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol. 2006;40(8):2578–2585. doi: 10.1021/es052370z
  • Siron R, Pelletier E, Brochu C. Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol. 1995;28(4):406–416. doi: 10.1007/BF00211621
  • Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW. Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcussp. Appl Environ Microbiol. 1998;64(7):2578–2584.
  • Dittmar T, Kattner G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem. 2003;83(3–4):103–120. doi: 10.1016/S0304-4203(03)00105-1
  • Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect. 2009;117(12):1813.
  • Zhang W. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5:323–332. doi: 10.1023/A:1025520116015
  • O'Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour. 2013;51:104–122. doi: 10.1016/j.advwatres.2012.02.005
  • Berge ND, Ramsburg CA. Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol. 2009;43(13):5060–5066. doi: 10.1021/es900358p
  • Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J Contam Hydrol. 2010;118(3):165–183. doi: 10.1016/j.jconhyd.2010.07.011
  • Hara SO, Krug T, Quinn J, Clausen C, Geiger C. Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Rem J. 2006;16(2):35–56. doi: 10.1002/rem.20080
  • Lahann J. Environmental nanotechnology: Nanomaterials clean up. Nat Nanotechnol. 2008;3(6):320–321. doi: 10.1038/nnano.2008.143
  • Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F. Superwetting nanowire membranes for selective absorption. Nat Nanotechnol. 2008;3(6):332–336 doi: 10.1038/nnano.2008.136
  • Mackay D, Fraser A. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut. 2000;110(3):375–391. doi: 10.1016/S0269-7491(00)00162-7
  • Ariga K, Ishihara S, Abe H, Li M, Hill JP. Materials nanoarchitectonics for environmental remediation and sensing. J Mater Chem. 2012;22(6):2369–2377. doi: 10.1039/c1jm14101e
  • Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation. J Amer Chem Soc. 2004;126(15):4782–4783. doi: 10.1021/ja0396753
  • Yu H, Irie H, Hashimoto K. Conduction Band Energy Level Control of Titanium Dioxide: Toward an Efficient Visible-Light-Sensitive Photocatalyst. J Amer Chem Soc. 2010;132(20):6898–6899. doi: 10.1021/ja101714s
  • Smith CJ, Shaw BJ, Handy RD. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol. 2007;82(2):94–109. doi: 10.1016/j.aquatox.2007.02.003
  • Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC. Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol. 2011;45(4):1298–1306. doi: 10.1021/es103838p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.