9,417
Views
143
CrossRef citations to date
0
Altmetric
Reviews

Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment

, , , , &
Pages 133-148 | Received 08 Sep 2015, Accepted 03 Oct 2015, Published online: 03 Nov 2015

References

  • Oswald WJ, Gotaas HB. Photosynthesis in sewage treatment. Trans Am Soc Civ Eng. 1957;122:73–105.
  • Bogan R, Albertson O, Pluntze J. Use of algae in removing phosphorus from sewage. J Sanit Eng Div ASCE. 1960;86(5):1–20.
  • Gates W, Borchardt J. Nitrogen and phosphorus extraction from domestic wastewater treatment plant effluents by controlled algal culture. J Water Pollut Control Fed. 1964;36:443–462.
  • Doran MD, Boyle WC. Phosphorus removal by activated algae. Water Res. 1979;13(8):805–812. doi: 10.1016/0043-1354(79)90246-X
  • Hashimoto S, Furukawa K. Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng. 1989;67(1):62–69. doi: 10.1016/0922-338X(89)90088-3
  • Davis LS, Hoffmann JP, Cook PW. Production and nutrient accumulation by periphyton in a wastewater treatment facility. J Phycol. 1990;26(4):617–623. doi: 10.1111/j.0022-3646.1990.00617.x
  • Jiménez-Pérez MV, Sánchez-Castillo P, Romera O, Fernández-Moreno D, Pérez-Martínez C. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb Technol. 2004;34(5):392–398. doi: 10.1016/j.enzmictec.2003.07.010
  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res. 2011;45(18):5925–5933. doi: 10.1016/j.watres.2011.08.044
  • Abinandan S, Shanthakumar S. Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew Sust Energ Rev. 2015;52:123–132. doi: 10.1016/j.rser.2015.07.086
  • Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol. 2007;19(5):417–423. doi: 10.1007/s10811-006-9148-1
  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702. doi: 10.1016/j.biotechadv.2011.05.015
  • Oswald WJ, Golueke CG. Biological transformation of solar energy. Adv Appl Microbiol Adv Appl Microbiol. 1960;2:223–262. doi: 10.1016/S0065-2164(08)70127-8
  • Silva NFP, Gonçalves AL, Moreira FC, et al. Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: a kinetic study. Algal Res. 2015;11:350–358. doi: 10.1016/j.algal.2015.07.014
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96. doi: 10.1263/jbb.101.87
  • Ometto F, Pozza C, Whitton R, et al. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture. Water Res. 2014;53:168–179. doi: 10.1016/j.watres.2014.01.012
  • Davis LS, Hoffmann JP, Cook PW. Seasonal succession of algal periphyton from a wastewater treatment facility. J Phycol. 1990b;26(4):611–617. doi: 10.1111/j.0022-3646.1990.00611.x
  • Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101(14):5494–5500. doi: 10.1016/j.biortech.2010.02.016
  • Judd S, van den Broeke LJ, Shurair M, Kuti Y, Znad H. Algal remediation of CO2 and nutrient discharges: a review. Water Res. 2015;87:356–366. doi: 10.1016/j.watres.2015.08.021
  • Sukačová K, Trtílek M, Rataj T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res. 2015;71:55–63. doi: 10.1016/j.watres.2014.12.049
  • Gómez-Serrano C, Morales-Amaral M, Acién F, Escudero R, Fernández-Sevilla J, Molina-Grima E. Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl Microbiol Biotechnol. 2015;99(16):6931–6944. doi: 10.1007/s00253-015-6694-y
  • Selvaratnam T, Pegallapati A, Montelya F, et al. Feasibility of algal systems for sustainable wastewater treatment. Renew Energ. 2015;82:71–76. doi: 10.1016/j.renene.2014.07.061
  • Butterworth E, Dotro G, Jones M, et al. Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecol Eng. 2013;54:236–244. doi: 10.1016/j.ecoleng.2013.01.034
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–369. doi: 10.1016/j.rser.2012.11.030
  • Germain-Cripps E. Low energy, low maintenance phosphorus removal using constructed wetlands. 4th Conference on low energy wastewater treatment systems; 2015 Sep 24; Cranfield; 2015.
  • Vale P. Assessing technologies to meet very low phosphorus limits. 4th Conference on low energy wastewater treatment systems; 2015 Sep 24; Cranfield; 2015.
  • Jefferson B. Making algae reactors feasible for wastewater treatment in the UK. 4th Conference on low energy wastewater treatment systems; 2015 Sep 24; Cranfield; 2015.
  • Gupta PL, Lee S, Choi H. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31(9):1409–1417. doi: 10.1007/s11274-015-1892-4
  • Zeng X, Guo X, Su G, et al. Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renew Sust Energ Rev. 2015;42:1385–1392. doi: 10.1016/j.rser.2014.11.033
  • Powell N, Shilton AN, Pratt S, Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol. 2008;42(16):5958–5962. doi: 10.1021/es703118s
  • Ruiz-Martínez A, Serralta J, Romero I, Seco A, Ferrer J. Effect of intracellular P content on phosphate removal in Scenedesmus sp. Experimental study and kinetic expression. Bioresour Technol. 2015;175:325–332. doi: 10.1016/j.biortech.2014.10.081
  • Lau PS, Tam NFY, Wong YS. Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut. 1995;89(1):59–66. doi: 10.1016/0269-7491(94)00044-E
  • Maestrini SY, Robert J, Leftley JW, Collos Y. Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae. J Exp Mar Biol Ecol. 1986;102(1):75–98. doi: 10.1016/0022-0981(86)90127-9
  • Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015;77:98–106. doi: 10.1016/j.watres.2015.03.018
  • Eixler S, Karsten U, Selig U. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia. 2006;45(1):53–60. doi: 10.2216/04-79.1
  • Sawayama S, Minowa T, Dote Y, Yokoyama S. Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol. 1992; l. 38(1):135–138.
  • Kim J, Lingaraju BP, Rheaume R, Lee J, Siddiqui KF. Removal of ammonia from wastewater effluent by Chlorella Vulgaris. Tsinghua Sci Technol. 2010;5(4):391–396. doi: 10.1016/S1007-0214(10)70078-X
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol. 2010;101(1):58–64. doi: 10.1016/j.biortech.2009.02.076
  • González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol. 1997;60(3):259–262. doi: 10.1016/S0960-8524(97)00029-1
  • Martínez ME, Sánchez S, Jiménez JM, El Yousfi F, Muñoz L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol. 2000;73(3):263–272. doi: 10.1016/S0960-8524(99)00121-2
  • Laliberté G, Lessard P, de la Noüe J, Sylvestre S. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresour Technol. 1997;59(2–3):227–233. doi: 10.1016/S0960-8524(96)00144-7
  • Thimijan RW, Heins RD. Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience. 1983;18(6):818–822.
  • Nurdogan Y, Oswald WJ. Enhanced nutrient removal in high-rate ponds. Water Sci Technol. 1995;31(12):33–43. doi: 10.1016/0273-1223(95)00490-E
  • Hecky RE, Campbell P, Hendzel LL. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr. 1993;38(4):709–724. doi: 10.4319/lo.1993.38.4.0709
  • Choi HJ, Lee SM. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Eng. 2015;38(4):761–766.
  • Rhee G. Phosphate uptake under nitrate limitation by Scenedesmus sp. and its ecological implications. J Phycol. 1974;10(4):470–475.
  • Oh-Hama T, Miyachi S. Chlorella. In: Borowitzka MA, Borowitzka LJ, editor. Microalgal biotechnology. Cambridge: Cambridge University Press; 1988. p. 3–26.
  • Portielje R, Lijklema L. Kinetics of luxury uptake of phosphate by algae-dominated benthic communities. Hydrobiologia. 1994;275(1):349–358. doi: 10.1007/BF00026725
  • Hessen DO, Færøvig PJ, Andersen T. Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology. 2002;83(7):1886–1898. doi: 10.1890/0012-9658(2002)083[1886:LNAPCR]2.0.CO;2
  • Wu H, Gau S, Li M, Chen Y, Sun C. Effects of Chlorella sp. on nutrient treatment in cultures with different carbon to nitrogen ratios. Wat Sci Tech. 2015;71(11):1597–1603. doi: 10.2166/wst.2015.123
  • Chevalier P, De la Noue J. Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters. Biotechnol Lett. 1985;7(6):395–400. doi: 10.1007/BF01166210
  • Tang EPY, Vincent WF, Proulx D, Lessard P, De la Noüe J. Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. J Appl Phycol. 1997;9(4):371–381. doi: 10.1023/A:1007987127526
  • Roberts DA, de Nys R, Paul NA. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications. PLoS ONE. 2013;8(11):e81631. doi:10.1371/journal.pone.0081631.
  • Wang H, Gao L, Chen L, Guo F, Liu T. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Bioresour Technol. 2013;142:39–44. doi: 10.1016/j.biortech.2013.05.058
  • Liu J, Vyverman W. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresour Technol. 2015;179:234–242. doi: 10.1016/j.biortech.2014.12.028
  • Schumacher G, Blume T, Sekoulov I. Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm. Water Sci Technol. 2003;47:195–202.
  • Congestri R, Di Pippo F, De Philippis R, Buttino I, Paradossi G, Albertano P. Seasonal succession of phototrophic biofilms in an Italian wastewater treatment plant: biovolume, spatial structure and exopolysaccharides. Aquat Microb Ecol. 2006;45(3):301–312. doi: 10.3354/ame045301
  • Cromar NJ, Fallowfield HJ. Effect of nutrient loading and retention time on performance of high rate algal ponds. J Appl Phycol. 1997;9(4):301–309. doi: 10.1023/A:1007917610508
  • Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol. 1999;70(1–3):313–321. doi: 10.1016/S0168-1656(99)00083-8
  • Park JBK, Craggs RJ. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol. 2010;61:633–639. doi: 10.2166/wst.2010.951
  • Adey W, Luckett C, Jensen K. Phosphorus removal from natural waters using controlled algal production. Restor Ecol. 1993;1(1):29–39. doi: 10.1111/j.1526-100X.1993.tb00006.x
  • Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011;102(1):35–42. doi: 10.1016/j.biortech.2010.06.158
  • Larsdotter K, La Cour Jansen J, Dalhammar G. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol. 2007;28(9):953–960. doi: 10.1080/09593332808618855
  • Ullrich WR. Uptake and reduction of nitrate: algae and fungi. In: Läuchli A, Bieleski RL, editor. Inorganic plant nutrition. 15th ed. Berlin: Springer Verlag; 1983; p. 376–397.
  • Talbot P, de la Noüe J. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Res. 1993;27(1):153–159. doi: 10.1016/0043-1354(93)90206-W
  • Montastruc L, Azzaro-Pantel C, Biscans B, Cabassud M, Domenech S. A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chem Eng J. 2003;94(1):41–50. doi: 10.1016/S1385-8947(03)00044-5
  • Kim T, Lee Y, Han S, Hwang S. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol. 2013;130:75–80. doi: 10.1016/j.biortech.2012.11.134
  • Lee CS, Lee S, Ko S, Oh H, Ahn C. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015;68:680–691. doi: 10.1016/j.watres.2014.10.029
  • Meseck SL, Alix JH, Wikfors GH. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture. 2005;246(1):393–404. doi: 10.1016/j.aquaculture.2005.02.034
  • Martinez M, Jimenez J, El Yousfi F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol. 1999;67(3):233–240. doi: 10.1016/S0960-8524(98)00120-5
  • Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability. Water Res. 2015;83:42–51. doi: 10.1016/j.watres.2015.06.007
  • Larsdotter K. Wastewater treatment with microalgae-a literature review. Vatten. 2006;62(1):31–38.
  • García J, Mujeriego R, Hernández-Mariné M. High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol. 2000;12(3–5):331–339. doi: 10.1023/A:1008146421368
  • Picot B, Bahlaoui A, Moersidik S, Baleux B, Bontoux J. Comparison of the purifying efficiency of high rate algal pond with stabilization pond. Water Sci Technol. 1992;25(12):197–206.
  • Di Termini I, Prassone A, Cattaneo C, Rovatti M. On the nitrogen and phosphorus removal in algal photobioreactors. Ecol Eng. 2011;37(6):976–980. doi: 10.1016/j.ecoleng.2011.01.006
  • Ruiz J, Álvarez-Díaz PD, Arbib Z, Garrido-Pérez C, Barragán J, Perales JA. Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Bioresour Technol. 2013;127(0):456–463. doi: 10.1016/j.biortech.2012.09.103
  • Craggs RJ, Adey WH, Jenson KR, St. John MS, Green FB, Oswald WJ. Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol. 1996;33:191–198. doi: 10.1016/0273-1223(96)00354-X
  • Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M. Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front Environ Sci Eng. 2008;2(4):446–451. doi: 10.1007/s11783-008-0064-2
  • Christenson LB, Sims RC. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng. 2012;109(7):1674–1684. doi: 10.1002/bit.24451
  • Travieso L, Benitez F, Weiland P, Sánchez E, Dupeyrón R, Dominguez AR. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol. 1996;55(3):181–186. doi: 10.1016/0960-8524(95)00196-4
  • Filippino KC, Mulholland MR, Bott CB. Phycoremediation strategies for rapid tertiary nutrient removal in a waste stream. Algal Res. 2015;11:125–133. doi: 10.1016/j.algal.2015.06.011
  • Van Wagenen J, Pape ML, Angelidaki I. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique. Water Res. 2015;75:301–311. doi: 10.1016/j.watres.2015.02.022
  • Laliberté G, Proulx D, De Pauw N, De La Noüe J. Algal technology in wastewater treatment. Adv Limnol. 1994;42:283–302.
  • Henderson RK, Parsons SA, Jefferson B. Successful removal of algae through the control of zeta potential. Sep Sci Technol. 2008a;43(7):1653–1666. doi: 10.1080/01496390801973771
  • Henderson R, Parsons SA, Jefferson B. The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res. 2008b;42(8–9):1827–1845. doi: 10.1016/j.watres.2007.11.039
  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae. Biotechnol Prog. 2008;24(4):815–820.
  • Jarvis P, Buckingham P, Holden B, Jefferson B. Low energy ballasted flotation. Water Res. 2009;43(14):3427–3434. doi: 10.1016/j.watres.2009.05.003
  • Ledwoch K, Gu S, Singh OA. Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renew Sustain Energ Rev. 2015;42:1418–1427. doi: 10.1016/j.rser.2014.11.029
  • Gross M, Jarboe D, Wen Z. Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol. 2015;99(14):5781–5789. doi: 10.1007/s00253-015-6736-5
  • Moreno-Garrido I. Microalgae immobilization: current techniques and uses. Bioresour Technol. 2008;99(10):3949–3964. doi: 10.1016/j.biortech.2007.05.040
  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99(10):4021–4028. doi: 10.1016/j.biortech.2007.01.046
  • Grima EM, Fernández FA, Camacho FG, Chisti Y. Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol. 1999;70(1):231–247. doi: 10.1016/S0168-1656(99)00078-4
  • Hoffmann JP. Wastewater treatment with suspended and nonsuspended algae. J Phycol. 1998;34(5):757–763. doi: 10.1046/j.1529-8817.1998.340757.x
  • Craggs R, Sutherland D, Campbell H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol. 2012;24(3):329–337. doi: 10.1007/s10811-012-9810-8
  • Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ. Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond. J Appl Phycol. 2014;26(3):1317–1329. doi: 10.1007/s10811-013-0142-0
  • Molina E, Fernández J, Acién FG, Chisti Y. Tubular photobioreactor design for algal cultures. J Biotechnol. 2001;92(2):113–131. doi: 10.1016/S0168-1656(01)00353-4
  • Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J. 2008;138(1–3):136–147. doi: 10.1016/j.cej.2007.06.004
  • Cantrell KB, Ducey T, Ro KS, Hunt PG. Livestock waste-to-bioenergy generation opportunities. Bioresour Technol. 2008;99(17):7941–7953. doi: 10.1016/j.biortech.2008.02.061
  • Craggs RJ, Adey WH, Jessup BK, Oswald WJ. A controlled stream mesocosm for tertiary treatment of sewage. Ecol Eng. 1996b;6(1–3):149–169. doi: 10.1016/0925-8574(95)00056-9
  • Johnson MB, Wen Z. Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol. 2010;85(3):525–534. doi: 10.1007/s00253-009-2133-2
  • Rectenwald LL, Drenner RW. Nutrient removal from wastewater effluent using an ecological water treatment system. Environ Sci Technol. 2000;34(3):522–526. doi: 10.1021/es9908422
  • Kesaano M, Sims RC. Algal biofilm based technology for wastewater treatment. Algal Res. 2014:5:231–240. doi: 10.1016/j.algal.2014.02.003
  • Cohen Y. Biofiltration – the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour Technol. 2001;77(3):257–274. doi: 10.1016/S0960-8524(00)00074-2
  • Craggs RJ. Wastewater treatment by algal turf scrubbing. Water Sci Technol. 2001;44:427–433.
  • Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals. 2002;15(4):377–390. doi: 10.1023/A:1020238520948
  • de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol. 2010;101(6):1611–1627. doi: 10.1016/j.biortech.2009.09.043
  • Tam NFY, Wong YS. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut. 2000;107(1):145–151. doi: 10.1016/S0269-7491(99)00118-9
  • Covarrubias SA, De-Bashan LE, Moreno M, Bashan Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol. 2012;93(6):2669–2680. doi: 10.1007/s00253-011-3585-8
  • European Commission. Directive 91/271/EEC of the Council of 21 May 1991 concerning urban waste water treatment. OJ Eur Commun. 1991;135:40–52.
  • Karapinar Kapdan I, Aslan S. Application of the Stover-Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J Chem Technol Biotechnol. 2008;83(7):998–1005. doi: 10.1002/jctb.1905
  • Roeselers G, Loosdrecht MCMV, Muyzer G. Phototrophic biofilms and their potential applications. J Appl Phycol. 2008;20(3)227–235. doi: 10.1007/s10811-007-9223-2
  • Mesplé F, Casellas C, Troussellier M, Bontoux J. Modelling orthophosphate evolution in a high rate algal pond. Ecol Model. 1996;89(1–3):13–21. doi: 10.1016/0304-3800(95)00115-8
  • Janssen M, Tramper J, Mur LR, Wijffels RH. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng. 2003;81(2):193–210. doi: 10.1002/bit.10468
  • Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E. Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol. 2014;172;5:2377–2389. doi: 10.1007/s12010-013-0679-z
  • Liu J, Yuan C, Hu G, Li F. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl Biochem Biotechnol. 2012;166(8):2127–2137. doi: 10.1007/s12010-012-9639-2
  • Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA. Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng. 2013;52:143–153. doi: 10.1016/j.ecoleng.2012.12.089
  • Gordon JM, Polle JE. Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol. 2007;76(5):969–975. doi: 10.1007/s00253-007-1102-x
  • Ogbonna JC, Tanaka H. Light requirement and photosynthetic cell cultivation – development of processes for efficient light utilization in photobioreactors. J Appl Phycol. 2000;12(3–5):207–218. doi: 10.1023/A:1008194627239
  • Kumar K, Mishra SK, Shrivastav A, Park MS, Yang J. Recent trends in the mass cultivation of algae in raceway ponds. Renew Sustain Energ Rev. 2015;51:875–885. doi: 10.1016/j.rser.2015.06.033
  • Lee C. Calculation of light penetration depth in photobioreactors. Biotechnol Bioproc Eng. 1999;4(1):78–81. doi: 10.1007/BF02931920
  • Walker DA. Biofuels, facts, fantasy, and feasibility. J Appl Phycol. 2009;21(5):509–517. doi: 10.1007/s10811-009-9446-5
  • Norsker N, Barbosa MJ, Vermuë MH, Wijffels RH. Microalgal production – a close look at the economics. Biotechnol Adv. 2011;29(1):24–27. doi: 10.1016/j.biotechadv.2010.08.005
  • Figueroa FL, Aguilera J, Niell FX. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur J Phycol. 1995;30(1):11–18. doi: 10.1080/09670269500650761
  • Wang C, Fu C, Liu Y. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J. 2007;37(1):21–25. doi: 10.1016/j.bej.2007.03.004
  • Yeh N, Chung J. High-brightness LEDs – energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energ Rev. 2009;13(8):2175–2180.
  • Park K, Lee C. Optimization of algal photobiorectors isong flashing lights. Biotechnol Bioproc Eng. 2000;5(3):186–190. doi: 10.1007/BF02936592
  • Ibrahim MA, MacAdam J, Autin O, Jefferson B. Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection. Environ Technol. 2014;35(4):400–406. doi: 10.1080/09593330.2013.829858
  • Singh SP, Singh P. Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energ Rev. 2015;50:431–444. doi: 10.1016/j.rser.2015.05.024
  • Min M, Wang L, Li Y, et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol. 2011;165(1):123–137. doi: 10.1007/s12010-011-9238-7
  • Guzzon A, Bohn A, Diociaiuti M, Albertano P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res. 2008;42(16):4357–4367. doi: 10.1016/j.watres.2008.07.029
  • Travieso L, Benitez F, Dupeiron R. Sewage treatment using immobilized microalgae. Bioresour Technol. 1992;40(2):183–187. doi: 10.1016/0960-8524(92)90207-E
  • Mallick N, Rai LC. Removal of inorganic ions from wastewaters by immobilized microalgae. World J Microbiol Biotechnol. 1994;10(4):439–443. doi: 10.1007/BF00144469