1,302
Views
1
CrossRef citations to date
0
Altmetric
Articles

Nutrient recovery by struvite precipitation, ion exchange and adsorption from source-separated human urine – a review

&
Pages 106-138 | Received 10 Apr 2018, Accepted 01 May 2018, Published online: 28 May 2018

References

  • Larsen TA, Udert KM, Lienert J, editors. Source separation and decentralization for wastewater management. London (UK): IWA Publishing; 2013.
  • O’Neal JA, Boyer TH. Phosphate recovery using hybrid anion exchange: applications to source-separated urine and combined wastewater streams. Water Res. 2013;47:5003–5017.
  • Udert KM, Buckley CA, Wächter M, et al. Technologies for the treatment of source-separated urine in the eThekwini municipality. Water SA. 2015;41(2):212–212.
  • Qajar A, Peer M, Andalibi MR, et al. Enhanced ammonia adsorption on functionalized nanoporous carbons. Micropor Mesopor Mater. 2015;218:15–23.
  • Nagarajan V, Bhattacharyya R, Chandiramouli R. Adsorption of ammonia molecules and humidity on germanane nanosheet-A density functional study. J Mol Graph Model. 2018;79:149–156.
  • Yan T, Li TX, Wang RZ, et al. Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes. Appl Therm Eng. 2015;77:20–29.
  • Lefebvre O, Hu J, Ong SL, et al. Optimization of resource and water recovery from urine. J Water Reuse Des. 2016;6:229–234.
  • Tice RC, Kim Y. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems. Water Res. 2014;64:61–72.
  • Guo X, Zeng L, Li X, et al. Ammonium and potassium removal for anaerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. J Hazard Mater. 2008;151:125–133.
  • Sancho I, Licon E, Valderrama C, et al. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors. Sci Total Environ. 2017;584–585:244–251.
  • Lei X, Li M, Zhang Z, et al. Electrochemical regeneration of zeolites and the removal of ammonia. J Hazard Mater. 2009;169:746–750.
  • Grismer ME, Collison RS. The zeolite-anammox treatment process for nitrogen removal from wastewater—A review. Water. 2017;9:901.
  • Battistoni P, De Angelis A, Prisciandaro M, et al. P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling. Water Res. 2002;36:1927–1938.
  • Nelson NO, Mikkelsen RL, Hesterberg DL. Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technol. 2003;89:229–236.
  • Kabdaşlı I, Gürel M, Tünay O. Characterization and treatment of textile printing wastewaters. Environ Technol. 2000a;21:1147–1155.
  • Kabdaşlı I, Tünay O, Çetin MŞ, et al. Assessment of magnesium ammonium phosphate precipitation for the treatment of leather tanning industry wastewaters. Water Sci Technol. 2002;46:231–239.
  • Kabdaşlı I, Ölmez T, Tünay O. Nitrogen removal from tannery wastewater by protein recovery. Wat Sci Technol. 2003;48:215–223.
  • Kabdaşlı I, Tünay O, Özcan P. Application of struvite precipitation coupled with biological treatment to slaughterhouse wastewaters. Environ Technol. 2009;30:1095–1101.
  • Tünay O, Kabdaşlı I, Orhon D, et al. Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters. Water Sci Technol. 1997;36:225–228.
  • Willams S. Struvite precipitation in the sludge stream at Slough wastewater treatment plant and opportunity for phosphorus recovery. Environ Technol. 1999;20:743–747.
  • Zdybiewka MW, Kula B. Removal of ammonia nitrogen by the precipitation method on the example of some selected wastewaters. Water Sci Technol. 1991;24:229–234.
  • Zengin G, Ölmez T, Doğruel S, et al. Assessment of source-based nitrogen removal alternatives in leather tanning industry wastewater. Water Sci Technol. 2001;45:205–215.
  • Kabdaşlı I, Şafak A, Tünay O. Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate. Waste Manage. 2008;28:2386–2392.
  • Booker NA, Priestley AJ, Fraser IH. Struvite formation in wastewater treatment plants: opportunity for nutrient recovery. Environ Technol. 1999;20:777–782.
  • Durrant AE, Scrimshaw MD, Stratful T, et al. Review of the feasibility of recovering phosphate from wastewater for use as ammonia raw material by the phosphate industry. Environ Technol. 1999;20:749–758.
  • Kim D, Kim J, Ryu HD, et al. Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater. Bioresource Technol. 2009;100:74–78.
  • Li XZ, Zhao QL, Hao XD. Ammonium removal from landfill leachate by chemical precipitation. Waste Manage 1999;19:409–415.
  • Kim D, Ryu HD, Kim MS, et al. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J Hazard Mater. 2007;146:81–85.
  • Kabdaşlı I, Tünay O, İşlek Ç, et al. Nitrogen recovery by urea hydrolysis and struvite precipitation from anthropogenic urine. Water Sci Technol. 2006;53:305–312.
  • Kabdaşlı I, Tünay O, Tatlı MB. Nitrogen recovery by struvite precipitation from anthropogenic nutrient solution. Fresenius Environ Bull. 2006;15:1146–1149.
  • Tünay O, Kabdaşlı I, Tatlı MB. Nitrogen removal and recovery from human urine by struvite precipitation. In J Environ Waste Man. 2009;3(3/4):382–392.
  • Maurer M, Pronk W, Larsen TA. Treatment processes for source-separated urine. Water Res. 2006;40:3151–3166.
  • Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics in source–separated urine. Water Res 2007;41:977–984.
  • Ronteltap M, Maurer M, Hausherr R, et al. Struvite precipitation from urine – influencing factors on particle size. Water Res. 2010;44:2038–2046.
  • Ganrot Z, Dave G, Nilsson E. Recovery of N and P from human urine by freezing, struvite precipitation and adsorption to zeolite and active carbon. Biores Technol. 2007;98:3112–3121.
  • Tilley E, Atwater J, Mavinic D. Recovery of struvite from stored human urine. Environ Technol. 2008;29:797–806.
  • Lui ZG, Zhao QL, Wang K, et al. Comparison between complete and partial recovery of N and P from stale human urine with MAP crystallization. J Environ Eng Sci. 2008;7:223–228.
  • da Paixão Filho JL, Tonetti AL, Tavanielli Guimarães M, et al. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay. Water Sci Technol. 2017;75(8):1952–1960.
  • Lahr RH, Goetsch HE, Haig SJ, et al. Urine bacterial community convergence through fertilizer production: storage, pasteurization, and struvite precipitation. Environ Sci Technol. 2016;50:11619–11626.
  • Wang YS, Tong ZH, Wang LF, et al. Effective flocculation of Microcystis aeruginosa with simultaneous nutrient precipitation from hydrolyzed human urine. Chemosphere. 2018;193:472–478.
  • Zamora P, Georgieva T, Salcedo I, et al. Long-term operation of a pilot-scale reactor for phosphorus recovery as struvite from source-separated urine. J Chem Technol Biotechnol. 2017;92:1035–1045.
  • Kemacheevakul P, Chuangchote S, Otani T, et al. Phosphorus recovery: minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine. Environ Technol. 2014;35(23):3011–3019.
  • Abbona F, Lundager MHE, Boistelle R. Crystallization of two magnesium phosphates: struvite and newberyite: effects of pH and concentration. J Cryst Growth. 1982;57:6–14.
  • Crutchik D, Garrido JM. Kinetics of the reversible reaction of struvite crystallisation. Chemosphere. 2016;154:567–572.
  • Doyle JD, Parsons A. Struvite formation, control and recovery. Wat Res. 2002;36:3925–3940.
  • Bouropoulos NCH, Koutsoukos PG. Spontaneous precipitation of struvite from aqueous solutions. J Crystal Growth. 2000;213:381–388.
  • Kofina AN, Koutsoukos PG. Nucleation and crystal growth of struvite in aqueous media. New prospectives in phosphorus recovery. In: Bulutçu N, Ulrich J, Gürbüz H, editors. Proceedings of the workshop on advance in sensoring in industrial crystallization. İstanbul: Chemical Engineering Department, İstanbul Technical University and Verfahrenstechnik/VST Martin-Luther-University Halle-Wittenberg; 2003. p. 74–81.
  • Kabdaşlı I, Parsons SA, Tünay O. Effect of major ions on induction time of struvite precipitation. Croat Chem Acta. 2006;79:243–251.
  • Stratful I, Scrimshaw MD, Lester JN. Conditions influencing the precipitation magnesium ammonium phosphate. Wat Res. 2001;35:4191–4199.
  • Darwish M, Aris A, Puteh MH, et al. Ammonium-nitrogen recovery from wastewater by struvite crystallization technology. Sep Purif Rev. 2016;45(4):261–274.
  • Babić-Ivančić V, Kontrec J, Kralj D, et al. Precipitation diagrams of struvite and dissolution kinetics of different struvite morphologies. Croatia Chemica Acta. 2002;75:89–106.
  • Tansel B, Lunn G, Moje O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammoniaphosphate interactions. Chemosphere. 2018;194:504–514.
  • Lee JE, Rahman MM, Ra CS. Dose effects of Mg and PO4 sources on the composting of swine manure. J Hazard Mater. 2009;169:801–807.
  • Sarkar AK. Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J Materials Sci. 1991;26:2514–2518.
  • Jacobs D, Heimbach D, Hesse A. Chemolysis of struvite stones by acidification of artificial urine–an in vitro study. Scand J Urol Nephrol. 200;35(5):345–349.
  • Borgerding J. Phosphate deposits in digestion systems. J Water Pollut Control Fed. 1972;44:813–819.
  • Buchanan JR, Mote CR, Robinson RB. Thermodynamics of struvite formation. Trans ASAE. 1994;37(2):617–621.
  • Bube K. Uber magnesium ammonium phosphate. Z Anal Chem. 1910;49:525–596.
  • Loewenthal RE, Kornmüller URC, van Heerden EP. Modelling struvite precipitation in anaerobic treatment systems. Wat Sci Technol. 1994;30(12):107–116.
  • Aage HK, Anderson BL, Blom A, et al. The solubility of struvite. J Radioanal Nucl Chem. 1997;223(1–2):213–215.
  • Mamais D, Pitt PA, Cheng YW, et al. Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environ Res. 1994;66(7):912–918.
  • Burns JR, Finlayson B. Solubility product of magnesium ammonium phosphate hexahydrate at temperatures. J Urol 1982;128:426–428.
  • Taylor AW, Frazier AW, Gurney EL. Solubility products of magnesium ammonium and magnesium potassium phosphates. Trans Faraday Soc. 1963;59:1580–1584.
  • Roncal-Herreroa T, Oelkers EH. Experimental determination of struvite dissolution and precipitation rates as a function of pH. Appl Geochem. 2011;26(5):921–928.
  • Ohlinger KN, Young TM, Schroeder ED. Predicting struvite formation in digestion. Wat Res. 1998;32:3607–3614.
  • Babić-Ivančić V, Kontrec J, Brečević L, et al. Kinetics of struvite to newberyite transformation in the precipitation system MgCl2–NH4H2PO4–NaOH–H2O. Wat Res. 2006;40:3447–3455.
  • Bhuiyan MIH, Mavinic DS, Beckie RD. A solubility and thermodynamic study of struvite. Environ Technol. 2007;28(9):1015–1026. DOI:10.1080/09593332808618857.
  • Ronteltap M, Bilbow M, Maurer M, et al. Thermodynamic of struvite precipitation in source–separated urine. Proceedings of the 2nd International Symposium on Ecological Sanitation; 2003 April 7–11; Lubeck, Germany. p. 463–470.
  • Webb KM, Ho GE. Struvite (MgNH4PO4×6H2O) solubility and its application to piggery effluent problem. Wat Sci Tech. 1992;26:2229–2232.
  • Booram CV, Smith RJ, Hazen TE. Crystalline phosphate precipitation for anaerobic animal waste treatment lagoon liquors. Trans Am Soc Agri Eng. 1975;18(2):0340–0343.
  • Horenstein BK, Hernandez GL, Rasberry G, et al. Successful dewatering experience at hyperion wastewater treatment plant. Wat Sci Technol. 1990;22(12):183–191.
  • Kabdaşlı I, Parsons SA, Tünay O. Effect of major ions on induction time of struvite precipitation. Croat Chem Acta. 2006c;79(2):243–251.
  • Ali MDI, Schneider PA. A fed-batch design approach of struvite system in controlled supersaturation. Chem Eng Sci. 2006;61 :3951–3961.
  • Ali MDI, Schneider PA. An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description. Chem Eng Sci. 2008;63:3514–3525.
  • Kabdaşlı I., Tünay O., Hüskalar S., et al. Urea hydrolysis in anthropogenic nutrient solution. Fresenius Environmental Bulletin. 2006;15(8a):715–719.
  • Xu K, Wang C, Lui H, et al. Simultaneous removal of phosphorus and potassium from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate. Chemosphere. 2011;84:207–212.
  • Xu K, Wang C, Wang X, et al. Laboratory experiments on simultaneous removal of K and P from synthetic and real urine for nutrient recycle by crystallization of magnesium–potassium–phosphate–hexahydrate in a draft tube and baffle reactor. Chemosphere. 2012;88:219–223.
  • Xu K, Li J, Zheng M, et al. The precipitation of magnesium potassium phosphate hexahydrate for P and K recovery from synthetic urine. Wat Res. 2015;80:71–79.
  • Zhang C, Xu K, Li J, et al. Recovery of phosphorus and potassium from source-separated urine using a fluidized bed reactor: optimization operation and mechanism modeling. Ind Eng Chem Res. 2017;56:3033–3039.
  • Lui YH, Kumar S, Kwag JH, et al. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. J Chem Technol Biotechnol. 2013;88:181–189.
  • Kumar R, Pal P. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environ Sci Pollut Res. 2015;22:17453–17464.
  • de-Bashan LE, Bashan Y. Recent advances in removing phosphorous from wastewater and its use as fertilizer (1997–2003). Water Res. 2004;38:4222–4246.
  • Brand E. Prospects and challenges for sustainable sanitation in developed nations: a critical review. Environ Rev. 2014;22:346–363.
  • Snoeyink VL, Jenkins D. Water chemistry. New York (NY): John Wiley & Sons Inc; 1980.
  • Stumm W, Morgan JJ. Aquatic chemistry. 3rd edNew York (NY): John Wiley & Sons Inc; 1996.
  • Kolçak S. Nitrogen removal from wastewaters by chemical precipitation: a case study-leather tanning industry [master’s thesis]. İstanbul: İstanbul Technical University; 1999 (in Turkish).
  • Warmadewanthi JCL. Recovery of phosphate and ammonium as struvite from semiconductor wastewater. J Sep Pur. 2009;64:368–373.
  • Tatlı MB. Determination of conditions influencing in nitrogen recycling from human urine by struvite precipitation [master’s thesis]. İstanbul: İstanbul Technical University; 2006 (in Turkish).
  • Le Corre KS, Valsami-Jones E, Hobbs P, et al. Impact of calcium on struvite size, shape and purity. J Crystal Growth. 2005;283(3–4):514–522.
  • Corre KSL, Valsami-Jones E, Hobbs P, et al. Agglomeration of struvite crystals. Water Res. 2007;41(2):419–425.
  • Başakçılardan-Kabakcı S, İpekoğlu N, Talınlı İ. Precipitation of urinary phosphate. Environ Eng Sci. 2007;24(10):1399–11408.
  • Liu X, Wen G, Wang H. Fate of phosphorus in diluted urine with tap water. Chemosphere. 2014;113:146–150.
  • Liu X, Hu Z, Zhu C, et al. Effect of contact to the atmosphere and dilution on phosphorus recovery from human urine through struvite formation. Environ Technol. 2014;35(3):271–277.
  • Barbosa SG, Peixoto L, Meulman B, et al. A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chem Eng J. 2016;298:146–153.
  • Sertaç B. Recovery of nitrogen and phosphorus removal from source-separated urine by chemical precipitation [master’s thesis]. İstanbul: İstanbul Technical University; 2012 (in Turkish).
  • Udert KM, Larsen TA, Gujer W. Estimating the precipitation potential in urine–collection system. Water Res. 2003;37:2667–2677.
  • Etter B, Tilley E, Khadka R, et al. Low-cost struvite production using source-separated urine in Nepal. Wat Res. 2011;45:852–862.
  • Saetta D, Boyer T. Mimicking and inhibiting urea in nonwater urinals. Environ Sci Technol. 2017;51:13850–13858.
  • Ray H, Saetta D, Boyer T. Characterization of urea hydrolysis in fresh human urine and inhibition by chemical addition. Environ Sci Water Res Technol. 2018;4:87–98.
  • Kabdaşlı I, Tünay O, Udert KM. Transfer into the solid phase. In: Larsen TA, Udert KM, Lienert J, editors. Source separation and decentralization for wastewater management. London: IWA Publishing; 2013. p. 351–362.
  • Dockhorn T. About the economy of phosphorous recovery. In: Ashley K, Mavinic D, Koch B, editors. International conference on nutrient recovery from wastewater streams, Vancuver, Canada. London: IWA Publishing; 2009. p. 145–158.
  • Liu X, Hu Z, Mu J, et al. Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor. Environ Technol. 2014;35(22):2781–2787.
  • Liu B, Giannis A, Zhang J, et al. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere. 2013;93:2738–2747.
  • Sakthivel SRT, Uder KM. Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Sci Total Environ. 2012;419:68–75.
  • Krähenbühl M, Etter B, Udert KM. Pretreated magnesite as a source of low cost magnesium for producing struvite from urine in Nepal. Sci Total Environ. 2016;542:1155–1161.
  • Kataki S, West H, Clarke M, et al. Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. J Res Con Rec. 2016;107:142–156.
  • Kabdaşlı I, Demirbilek A, Ölmez T, et al. Magnesium ammonium phosphate precipitation using seawater. Fresenius Environ Bull. 2004;13(10):951–955.
  • Demirbilek A. Magnesium Ammonium Phosphate Precipitation Using Seawater. Master's Thesis. İstanbul,İstanbul Technical University; 2002. (in Turkish)
  • Huang HM, Xiao XM, Yang LP, et al. Removal of ammonium as struvite using magnesite as a source of magnesium ions. Water Pract Technol. 2010;5:1–9.
  • Günay A, Kardağ D, Tosun İ, et al. Use of magnesit as a magnesium source for ammonium removal from leachate. J Hazard Mater. 2008;156(3):619–623.
  • Huang HM, Xiao XM, Yang LP, et al. Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation. Water Sci Technol. 2011;63:468–474.
  • Siciliano A, De Rosa S. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents. Environ Technol. 2014;35:841–850.
  • Huang H, Xiao D, Zhang Q, et al. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. J Environ Manage. 2014;145:191–198.
  • Kabdaşlı I, Atalay Z, Tünay O. Effect of solution composition on struvite crystallization. J Chem Technol Biotechnol. 2017;92(12):2921–2928.
  • Li B, Boiarkina I, Young B, et al. Quantification and mitigation of the negative impact of calcium on struvite purity. Adv Powder Technol. 2016;27:2354–2362.
  • Lee SH, Kumar R, Jeon BH. Struvite precipitation under changing ionic conditions in synthetic wastewater: experiment and modelling. L J Colloid Interface Sci. 2016;474:93–102.
  • Kofina AN, Demadis KD, Koutsoukos PG. The effect of citrate and phosphocitrate on struvite precipitation. Crys Growth Des. 2007;7(12):2705–2712.
  • Winker M, Tettenborn F, Faika D, et al. Comparison of analytical and theoretical pharmaceutical concentrations in human urine in Germany. Wat Res. 2008;42:3633–3640.
  • Bischel HN, Özel Duygan BD, Strande L, et al. Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa. Wat Res. 2015;85:57–65.
  • Lamichhane K, Babcock R. An economic appraisal of using source separation of human urine to contain and treat endocrine disrupters in the USA. J Environ Monit. 2012;14(10):2557–2565.
  • Ronteltap M, Maurer M, Gujer W. The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Res. 2007;41:1859–1868.
  • Escher BI, Pronk W, Suter M, et al. Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays. Environ Sci Technol. 2006;40:5095–5101.
  • Pronk W, Palmquist H, Biebowa M, et al. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res. 2006;40:1405–1412.
  • Dodd MC, Zuleeg S, Von Gunten U, et al. Ozonation of source-separated urine for resource recovery and waste minimization: process modeling, reaction chemistry, and operational considerations. Environ Sci Technol. 2008;42:9329–9337.
  • Huang H, Xu C, Zhang W. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology. Biores Technol. 2011;102:2523–2528.
  • Latifian M, Hoist O, Liu J. Nitrogen and phosphorus removal from urine by sequential struvite formation and recycling process. Clean-Soil Air Water. 2014;42(8):1157–1161.
  • Türker M, Çelen I. Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate. Biores Technol. 2007;98:1529–1534.
  • Liu Y, Kumar S, Kwag J, et al. Recycle of electrolytically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wastewater. J Hazard Mater. 2011;195:175–181.
  • Wilsenach JA, van Loosdrecht MCM. Impact of separate urine collection on wastewater treatment systems. Water Sci Technol. 2003;48(1):103–110.
  • Wilsenach JA, van Loosdrecht MCM. Effects of separate urine collection on advanced nutrient removal processes. Environ Sci Technol. 2004;38:1208–1215.
  • Wilsenach JA, van Loosdrecht MCM. Integration of processes to treat wastewater and source-separated urine. J Environ Eng. 2006;132(3):331–341.
  • Ueno Y, Fujii M. Three years experience of operating and selling recovered struvite from full-scale plant. Environ Technol. 2001;22(11):1373–1381.
  • Rahman MM, Liu YH, Kwag JH, et al. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J Hazard Mater. 2011;186:2026–2030.
  • Marañón E, Ulmanu M, Fernández Y, et al. Removal of ammonium from aqueous solutions with volcanic tuff. J Hazard Mater. 2006;137(3):1402–1409.
  • Das P, Prasad B, Singh KKK. Applicability of zeolite based systems for ammonia removal and recovery from wastewater. Water Environ Res. 2017;89(9):840–845.
  • Sugawara T, Matsuura Y, Anzai T. Removal of ammonia nitrogen from water by magnetic zeolite and high-gradient magnetic separation. IEEE Trans Appl Supercond. 2016;26:1–4. doi:10.1109/TASC.2016.2523432.
  • Yusof AM, Keat LK, İbrahim Z, et al. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. J Hazard Mater. 2010;174:380–385.
  • Shaban M, AbuKhadra M, Nasief FM, et al. Removal of ammonia from aqueous solutions, ground water, and wastewater using mechanically activated clinoptilolite and synthetic zeolite-a: kinetic and equilibrium studies. Water Air Soil Pollut. 2017;228:450.
  • Park J, Seo Y, Ryu SH. Ammonia adsorption capacity of zeolite X with different cations. Appl Chem Eng. 2017;28:315–363.
  • Halim AA, Aziz HA, Johari MAM, et al. Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: fixed bed column adsorption performance. J Hazard Mater. 2010;175:960–964.
  • Girotto F, Matsufuji Y, Tanaka A. Removal of ammonia using Ca-P (calcium polymer) from wastewaters produced in the recycling of disposable diapers. J Mat Cycles Waste Man. 2017;19:570–576.
  • Chen Q, Zhou K, Chen Y, et al. Removal of ammonia from aqueous solutions by ligand exchange onto a Cu(II)-loaded chelating resin: kinetics, equilibrium and thermodynamics. RSC Adv. 2017;7:12812–12823.
  • Zonatto F, Muniz EC, Tambourgi EB, et al. Adsorption and controlled release of potassium, phosphate and ammonia from modified Arabic gum-based hydrogel. Int J Bio Macromol. 2017;105:363–369.
  • Vignoli CN, Bahe JMCF, Marques M. Evaluation of ion exchange resins for removal and recuperation of ammonium-nitrogen generated by the evaporation of landfill leachate. Polymer Bull. 2015;72:3119–3134.
  • Ding Y, Sartaj M. Optimization of ammonia removal by ion-exchange resin using response surface methodology. Int J Environ Sci Technol. 2016;13:985–994.
  • Bernardi F, Zadinelo IV, Alves HJ, et al. Chitins and chitosans for the removal of total ammonia of aquaculture effluents. Aquaculture. 2018;483:203–212.
  • Chen YQ, Tang J, Li WI, et al. Thermal decomposition of magnesium ammonium phosphate and adsorption properties of its pyrolysis products toward ammonia nitrogen. T Nonferr Metal Soc. 2015;25:497–503.
  • Saltalı K, Sarı A, Aydın M. Removal of ammonium from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J Hazard Mater. 2007;141:258–263.
  • Cincotti A, Lai N, Orrù R, et al. Sardinian natural clinoptilolites for heavy metals and ammonium removal: experimental and modelling. Chem Eng J. 2001;84:275–282.
  • Wang Y, Lin F. Synthesis of high capacity cation exchanger from a low-grade Chinese natural zeolite. J Hazard Mater. 2009;166:1014–1019.
  • Townsend RP, Coker EN. Ion exchange in zeolite. Surf Sci Catal. 2001;137:467–524.
  • Tehrani RMA, Salari AA. The study of dehumidifying of carbon monoxide and ammonia adsorption by Iranian natural clinoptilolite zeolite. Appl Surf Sci. 2005;252:866–870.
  • Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J. 2010;156:11–24.
  • Yang Y, Chen Z, Wang X, et al. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresour Technol. 2017;241:473–481.
  • Liao Z-L, Chen H, Zhu B-R, et al. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water. Chemosphere. 2015;134:127–132.
  • Malovanyy A, Sakalova H, Yatchyshyn Y, et al. Concentration of ammonium from municipal wastewater using ion exchange process. Desalination. 2013;329:93–102.
  • Delkash M, Bakhshayesh BE, Kazemian H. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Micropor Mesopor Mater. 2005;234:224–241.
  • Misaelides P. Application of natural zeolites in environmental remediation: A short review. Micropor Mesopor Mater. 2011;144:15–18.
  • Putra H, Yasuhara H, Kinoshit H. Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique. Geosci MDPI. 2017;7:61.
  • Xue R, Donovan A, Zhang H, et al. Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon. J Environ Sci. 2018;64:82–91.
  • Apreutesei RE, Catrinescu C, Ungureanu A, et al. Removal of 4-chlorophenol by surfactant modified zeolites and surfactant modified alkali-treated natural zeolites. Environ Eng Manag J. 2009;8:1053–1060.
  • Kang S-J, Egashira K, Yoshida A. Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide. Appl Clay Sci. 1998;13:117–135.
  • Liang Z, Ni J. Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. J Hazard Mater. 2009;166:52–60.
  • Zhao D, Cleare K, Oliver C, et al. Characteristics of the synthetic heulandites-clinoptilolite family of zeolites. Micropor Mesopor Mater. 1998;21:371–379.
  • Couto RSP, Oliveira AF, Guarino AWS, et al. Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate. Environ Technol. 2017;38(7):816–826.
  • Liu J, Cheng X, Zhan Y, et al. Zeolite modification for adsorptive removal of nitrite from aqueous solutions. Micropor Mesopor Mater. 2017;252:179–187.
  • Liberti L, Boari G, Petruzzelli D, et al. Nutrient removal and recovery from wastewater by ion exchange. Water Res. 1981;15:337–342.
  • Sakadevan K, Bavor HJ. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res. 1998;32:393–399.
  • Brooks AS, Rozenwald MN, Geohring LD, et al. Phosphorus removal by wollastonite: A constructed wetland substrate. Ecol Eng. 2000;15:121–132.
  • Hedström A. Wollastonite as reactive filter medium for sorption of wastewater ammonium and phosphorus. Environ Technol. 2006;27(7):801–809.
  • Karapınar N. Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. J Hazard Mater. 2009;170:1186–1191.
  • Lin L, Wan C, Lee D-J, et al. Ammonium assists orthophosphate removal from high-strength wastewaters by natural zeolite. Sep Purif Technol. 2014;133:351–356.
  • Wan C, Ding S, Zhan C, et al. Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: mechanism and application. Sep Purif Technol. 2017;180:1–12.
  • Guaya D, Valderrama C, Farran A, et al. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminium oxide modified natural zeolite. Chem Eng J. 2015;271:204–213.
  • He Y, Lin H, Dong Y, et al. Simultaneous removal of ammonium and phosphate by alkaline activated and lanthanum-impregnated zeolite. Chemosphere. 2016;164:387–395.
  • Inglezakis VJ, Loizidou MM, Grigoropoulou HP. Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. J Colloid Interf Sci. 2004;176(275):570–576.
  • Curkovic L, Stefanovic SC, Filipan T. Metal ion exchange by natural and modified zeolites. Water Res. 1997;31:1379–1382.
  • Malliou E, Loizidou M, Spyrellis N. Uptake of lead and cadmium by clinoptilolite. Sci Total Environ. 1994;149(3):139–144.
  • Booker NA, Cooney EL, Priestley AJ. Ammonia removal from sewage using natural Australian zeolite. Water Sci Technol. 1996;34:17–24.
  • Hedström A. Ion exchange of ammonium in zeolites: A literature review. J Environ Eng-ASCE. 2001;127(8):673–681.
  • Jorgensen TC, Weatherley LR. Ammonia removal from wastewater by ion exchange in the presence organic contaminants. Water Res. 2003;37:1723–1728.
  • Englert AH, Rubio J. Characterization and environmental application of a Chilean natural zeolite. Int J Miner Process. 2005;75:21–29.
  • Sprynskyy M, Lebedynets M, Zbytniewski R, et al. Ammonium removal from aqueous solution by natural zeolite, Transcarpathian mordenite, kinetics, equilibrium and column tests. Sep Purif Technol. 2005;46:155–160.
  • Wen D, Ho Y-S, Tang X. Comparative sorption kinetic studies of ammonium onto zeolite. J Hazard Mater. 2006;133:252–256.
  • Cintoli R, Di Sabatino B, Galeotti L, et al. Ammonium uptake by zeolite and treatment in UASB reactor of piggery wastewater. Water Sci Technol. 1995;32:73–81.
  • Lahav O, Green M. Ammonium removal using ion exchange and biological regeneration. Water Res. 1998;32:2019–2028.
  • Liberti L, Petruzzelli D, Florio L. REM NUT ion exchange plus Struvite precipitation process. Environ Technol. 2001;22(11):1313–1324.
  • Sismanoglu T, Pura S. Adsorption of aqueous nitrophenols on clinoptilolite. Colloid Surface A. 2011;180:1–6.
  • Bolan NS, Mowatt C, Adriano DC, et al. Removal of ammonium ions from fellmongery effluent by zeolite. Commun Soil Sci Plan. 2003;34(13–14):1861–1872.
  • Hedström A, Amofah LR. Adsorption and desorption of ammonium by clinoptilite adsorbent in municipal wastewater treatment systems. J Enviro Eng Sci. 2008;7:53–61.
  • Noroozifar M, Khorasani-Motlagh M, Fard PA. Cyanide uptake from wastewater by modified natrolite zeolite-iron oxyhydroxide system: application of isotherm and kinetic models. J Hazard Mater. 2009;166:1060–1066.
  • Rahmani AR, Samadi MT, Ehsani HR. Investigation of clinoptilolite natural zeolite regeneration by air stripping followed by ion exchange for removal of ammonium from aqueous solutions. Iran J Environ Health Sci Eng. 2009;6:167–172.
  • Widiastuti N, Wu H, Ang HM, et al. Removal of ammonium from greywater using natural zeolite. Desalination. 2011;277:15–23.
  • Karadağ D, Koç Y, Turan M, et al. Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J Hazard Mater. 2006;136(3):604–609.
  • Ji ZY, Yuan JS, Li XG. Removal of ammonium from wastewater using calcium form clinoptilolite. J Hazard Mater. 2007;141:483–488.
  • Kithome M, Paul JW, Lavkulich LM, et al. Thermodynamics of ammonium exchange by clinoptilolite. Commun Soil Sci Plan. 1999;30(7):895–907.
  • Moussavi G, Talebi S, Farrokhi M, et al. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem Eng J. 2011;171:1159–1169.
  • Lin L, Lei Z, Wang L, et al. Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Sep Purif Technol. 2013;103:15–20.
  • Malekian R, Abedi-Koupai J, Eslamian SS, et al. Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Appl Clay Sci. 2011;51:323–329.
  • Lei L, Li X, Zhang X. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Sep Purif Technol. 2008;58:359–366.
  • Du Q, Liu S, Cao Z, et al. Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep Purif Rev. 2005;44:229–234.
  • Huang H, Xiao W, Yan B, et al. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J Hazard Mater. 2010;175:247–252.
  • Kocatürk-Schumacher NP, Bruun S, Zwart K, et al. Nutrient recovery from the liquid faction of digestate by clinoptilolite. Clean Soil Air Water. 2017;45(6): (1–7)1500153.
  • Dimova G, Mihaliov G, Tzankov TZ. Combined filter for ammonia removal-part I: minimal zeolite contact time and requirements for desorption. Water Sci Technol. 1999;39(8):123–129.
  • Huang H, Yang L, Xue Q, et al. Removal of ammonium for swine wastewater by zeolite combined with chlorination for regeneration. J Environ Man. 2015;160:333–341.
  • Kithome M, Paul JW, Lavkulich LM, et al. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci Am J. 1998;62:622–629.
  • Leyva-Ramos R, Aguilar-Armenta G, Gonzalez-Gutierrez LV, et al. Ammonia exchange on clinoptilolite from mineral deposites located in Mexico. J Chem Technol Biotechnol. 2004;79(6):651–657.
  • Kithome M, Paul JW, Lavkulich LM, et al. Effect of pH on ammonium adsorption by natural zeolite clinoptilolite. Commun Soil Sci Plan. 1999;30(9):1417–1430.
  • Jorgensen SE, Barkacs K. Ammonia removal by use of clinoptilolite. Water Res. 1976;10:213–224.
  • Thornton A, Pearce P, Parsons SA. Ammonium removal from digested sludge liquors using ion exchange. Water Res. 2007;41:433–439.
  • Koon JH, Kaufmann VJ. Ammonia removal from municipal wastewaters from ionexchange. J WPCF. 1975;47(3):448–464.
  • AmesJrLL. The cation sieve properties of clinoptilolite. Mineralogist. 1960;45.
  • Rožić M, Cerjan-Stefanović S, Kurajica S, et al. Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Res. 2000;34:3675–3681.
  • Cyrus JS, Reddy GB. Sorption and desorption of ammonium by zeolite: batch and column studies. J Environ Sci Health Part A. 2011;46(4):408–414.
  • Ødegaard H. Rensing av avøpsvann, Tapir forlag, Trondheim, Norway (in Norwegian); 1992.
  • Wu Z, An Y, Wang Z, et al. Study on zeolite enhanced contacted adsorption regeneration destabilization process for nitrogen removal. J Hazard Mater. 2008;156:317–326.
  • Jung J-Y, Chung Y-C, Shin H-S, et al. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Res. 2004;38:347–354.
  • Li W, Ding X, Liu M, et al. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation. Front Environ Sci Eng. 2012;6:892–900.
  • Lahav O, Schwartz Y, Nativ P, et al. Sustainable removal of ammonia from anaerobic-lagoon swine waste effluents using an electrochemically-regenerated ion exchange process. Chem Eng J. 2012;218:214–222.
  • Gendel Y, Lahav O. A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration. Aquacultural Eng. 2013;52:27–38.
  • Zhang W, Zhou Z, An Y, et al. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant. Chemosphere. 2017;178:565–572.
  • Modisha P, Bessarabov D. Electrocatalytic process for ammonia electrolysis: a remediation technique with hydrogen co-generation. Int J Electrochem Sci. 2016;11:6627–6635.
  • Bán ZS, Dave G. Laboratory studies on recovery of N and P from human urine through struvite crystallisation and zeolite adsorption. Environ Technol. 2004;25:111–121.
  • Lind B-B, Bán Z, Byden S. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technol. 2000;73:169–174.
  • Beler-Baykal B, Bayram S, Akkaymak E, et al. Removal of ammonium from human urine through ion exchange with clinoptilolite and its recovery for further reuse. Water Sci Technol. 2004;50:149–156.
  • Beler-Baykal B, Kocatürk NP, Allar AD, et al. The effect of initial loading on the removal of ammonium and potassium from source-separated human urine via clinoptilolite. Water Sci Technol. 2009;60:2515–2520.
  • Rahman A, Sakthivel SR, Chariar V. Techno-economic assessment of Ecosan inspired technologies for recovery of nutrients from human urine for ecological sanitation. Int J Environ Sci. 2014;3(4):205–220.
  • Landry KA, Boyer TH. Life cycle assessment and costing of urine source separation: focus on nonsteroidal anti-inflammatory drug removal. Water Res. 2016;105:487–495.
  • Kavvada O, Tarpeh WA, Horvath A, et al. Life-cycle cost and environmental assessment of decentralized nitrogen recovery using Ion exchange from source-separated urine through spatial modeling. Environ Sci Technol. 2017;51(21):12061–12071.
  • Kocatürk PN, Beler Baykal B. Recovery of plant nutrients from dilute solutions of human urine and preliminary investigations on pot trials. Clean – Soil, Air, Water. 2012;40(5):538–544.
  • Putra HP, Mursanto HP, Pandu B, et al. Utilization of human urine as fertilizer with magnesium oxide (MgO), zeolite and activated carbon as absorbent. Int J Adv Sci Eng Info Technol. 2014;4(3):49–52.
  • Xu S, Luo L, He H, et al. Nitrogen and phosphate recovery from source-separated human urine by dosing magnesite and zeolite. Pol J Environ Sud. 2014;24(5):2269–2275.
  • Allar-Emek AD, Beler-Baykal B. Continuous versus batch contacting for nutrient recovery from human urine upon processing with clinoptilolite I: surface capacities and operation times. Desalin Water Treat. 2017;93:361–367.
  • Sendrowski A, Boyer TH. Phosphate removal from urine using hybrid anion exchange resin. Desalination. 2013;322:104–112.
  • Tarpeh W, Udert KM, Nelson KL. Comparing ion exchange adsorbents for nitrogen recovery from source-separated urine. Environ Sci Technol. 2017;51(4):2373–2381.
  • Xia P, Wang X, Wang X, et al. Synthesis and characterization of MgO modified diatomite for phosphorous recovery in eutrophic. Water J Chem Eng Data. 2017;62:226–235.
  • Kini B, Hari S. Removal of phosphorus from human urine by adsorption method using GGBS. Int J Civ Eng Technol. 2017;8(3):1061–1069.
  • Becker K, Schulz C, Kaus S. German environmental survey 1998 (GerES III): environmental pollutants in the urine of German population. Int J Hyg Environ Health. 2003;206:15–24.
  • Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the US population from the national health and nutrition examination survey (NHANES) 1999–2000. Environ Health Perspect. 2004;112(3):331–338.
  • Auriol M, Filali-Meknassi Y, Tyagi RD, et al. Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem. 2006;41:525–539.
  • Jönsson H, Stenström T-A, Swensson J, et al. Source separated urine-nutrient and heavy metal content, water saving and faecal contamination. Water Sci Technol. 1997;35(9):145–152.
  • Reháková M, Cuvanová S, Dzivák M, et al. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr Opin Solid ST M. 2004;8:397–404.
  • Chlopecka A, Adriano DC. Influence of zeolite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ. 1997;207:195–206.
  • Zaman M, Nguyen ML, Matheson F, et al. Can soil amendments (zeolite or lime) shift the balance between nitrous oxide and dinitrogen emissions from pasture and wetland soils receiving urine or urea-N? Aust J Soil Res. 2007;45:543–553.
  • Zaman M, Nguyen ML. Effect of lime or zeolite on N2O and N2 emissions from a pastoral soil treated with urine or nitrate-N fertilizer under field conditions. Agr Ecosyst Environ. 2010;136:254–261.
  • Zaman M, Nguyen ML, Saggar S. N2o and N2 emissions from pasture and wetland soils with and without amendments of nitrate, lime and zeolite under laboratory condition. Aust J Soil Res. 2008;46:526–534.
  • Zhao Y-l, Yang W-J, Zhou J-H, et al. Experimental study on ammonia adsorption by coal ashes. J Fuel Chem Technol. 2015;43:266–272.
  • Seredych M, Ania C, Bandosz TJ. Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins. J Hazard Mater. 2016;305:96–104.
  • Furtade AMB, Wang Y, LeVan MD. Carbon silica composites for sulfur dioxide and ammonia adsorption. Micropor Mesopor Mater. 2013;165:48–54.
  • Okoniewska E, Lach J, Kacprzak M. The removal manganese, iron, and ammonium nitrogen on impregnated activated carbon. Desalination. 2007;206:251–258.
  • Aziz HA, Adlan N, Zahari MSM, et al. Removal of ammoniacal nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and limestone. Waste Manag Res. 2004;22:371–375.
  • Hussain S, Aziz HA, Isa MH, et al. Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies. Bioresource Technol. 2006;98:874–880.
  • Kithome M, Paul JW, Kannangara T. Adsorption isotherms of ammonium on coir. Commun Soil Sci Plan. 1999;30(1):83–95.
  • Zheng Y, Zhang J, Wang A. Fast removal ammonium nitrogene from aqueous solution chitosan-g-poly(acrylic acid)/attapulgite composite. Chem Eng J. 2009;155:215–222.
  • Liu H, Dong Y, Liu Y, et al. Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. J Hazard Mater. 2010;178:1132–1136.
  • Jiang S, Whang X, Yang S, et al. Characteristics of simultaneous ammonium and phosphate adsorption from hydrolysis urine onto natural loess. Environ Sci Pollut Res. 2016;23:2628–2639.
  • Kusawa K, Jung Y-J, Kiso Y, et al. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere. 2006;62:45–52.
  • Karaca S, Gürses A, Ejder M. Kinetic modelling of liquid-phase adsorption of phosphate on dolomite. J Colloid Interf Sci. 2004;277:257–263.
  • Özacar M. Phosphate adsorption characteristics of alumite to be used as a cement additive. Cement Concrete Res. 2003;33:1583–1587.
  • Ramasahayam SK, Guzman L, Gunawan G, et al. A comprehensive review of phosphorus removal technologies and processes. J Macromol Sci. 2014;51:538–545.
  • Xiong JB, Mahmood Q. Adsorptive removal of phosphate from aqueous media by peat. Desalination. 2010;259:59–64.
  • Krishnan KA, Haridas A. Removal of phosphate from aqueous solution and sewage using natural and surface modified coir pith. J Hazard Mater. 2008;152:527–535.
  • Kostura B, Kulveitová H, Leśko J. Blast furnace slags as sorbents of phosphate from water solution. Water Res. 2005;39:1795–1802.
  • Yao S, Li J, Shi Z. Phosphate ion removal from aqueous solution using an iron oxide-coated fly ash adsorbent. Adsorpt Sci Technol. 2009;27(6):603–614.
  • Chouyyok W, Wiacek RJ, Pattamakomsan K, et al. Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ Sci Technol. 2010;44:3073–3078.
  • Zhao D, Sengupta AK. Selective removal recovery of phosphate in a novel fixed-bed process. Water Sci Technol. 1996;33(10–11):139–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.