319
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Phycoremediation in aquaculture; a win-win paradigm

ORCID Icon, , &
Pages 67-84 | Received 23 Sep 2019, Accepted 23 Sep 2020, Published online: 13 Oct 2020

References

  • White C. Technavio report: Global aquaculture market’s growth accelerating through 2022. In: Global Aquaculture Market 2018–2022; 2018. p. 1–179.
  • Cao L, Wang W, Yang Y, et al. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ Sci Pollut Res Int. 2007;14(7):452–462.
  • Ayyappan S, Mishra S. Bioamelioration in aquaculture with a special reference to nitrifying bacteria. In: Singh ISB, Pai SS, Philip R, Mohandas A, editors. Aquaculture medicine. Kochi: CFDDM, CUSAT; 2003. p. 89–107.
  • Nasir NM, Bakar NSA, Lananan F, et al. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour Technol. 2015;190:492–498.
  • Lawton RJ, Mata L, de Nys R, et al. Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One. 2013;8(10):e77344.
  • Mook W, Chakrabarti M, Aroua M, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination. 2012;285:1–13.
  • Molinuevo-Salces B, Riaño B, Hernández D, et al. Microalgae and wastewater treatment: advantages and disadvantages. In: Alam M, Wang Z, editors. Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore: Springer; 2019. p. 505–533.
  • Abdel-Raouf N, Al-Homaidan A, Ibraheem I. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257–275.
  • Kuo C-M, Jian J-F, Lin T-H, et al. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresour Technol. 2016;221:241–250.
  • Collotta M, Champagne P, Mabee W, et al. Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res. 2018;29:12–21.
  • Santhanam N. Oilgae guide to algae-based wastewater treatment. Tamilnadu: Home of Algal Energy; 2009.
  • Suganya T, Varman M, Masjuki H, et al. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev. 2016;55:909–941.
  • Perez-Garcia, O., Bashan, Y. Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In: Prokop A, Bajpai R, Zappi M, editors. Algal biorefineries. Cham: Springer; 2015. p. 61–131.
  • Guldhe A, Ansari FA, Singh P, et al. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng. 2017;99:47–53.
  • Pahazri NF, Mohamed R, Al-Gheethi A, et al. Production and harvesting of microalgae biomass from wastewater: a critical review. Environ Technol Rev. 2016;5(1):39–56.
  • Bogan R, Albertson O, Pluntze J. Use of algae in removing phosphorus from sewage. J Sanit Eng Div. 1960;86(5):1–20.
  • Bosman J, Hendricks F. The development of an algal pond system for the removal of nitrogen from an inorganic industrial; effluent. In: Proc. Int. Symp. On Aquaculture in Wastewater NIWP, CSIR, Pretoria; 1980. p. 26–35.
  • Oswald WJ. Large-scale algal culture systems (engineering aspects). Micro-algal Biotechnol. 1988: 357–394.
  • Gonçalves AL, Pires JC, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017;24:403–415.
  • Renuka N, Sood A, Prasanna R, et al. Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol. 2015;12(4):1443–1460.
  • Turcios A, Papenbrock J. Sustainable treatment of aquaculture effluents – what can we learn from the past for the future? Sustainability. 2014;6(2):836–856.
  • Whitton R, Ometto F, Pidou M, et al. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ Technol Rev. 2015;4(1):133–148.
  • Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015;77:98–106.
  • Rawat I, Kumar RR, Mutanda T, et al. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88(10):3411–3424.
  • Wu Y-H, Yu Y, Li X, et al. Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresour Technol. 2012;112:193–198.
  • Elena-Suzana B-D, Tofana M, Mihaiescu T, et al. Applications of microalgae in wastewater treatments: a review. ProEnvironment. 2016;9(28):459–463.
  • Drapcho CM, Brune DE. The partitioned aquaculture system: impact of design and environmental parameters on algal productivity and photosynthetic oxygen production. Aquacult Eng. 2000;21(3):151–168.
  • Ahmad J, Fathurrahman L, Hajar AS. Batch phytoremediation of aquaculture wastewater of silver barramundi (Lates calcarifer) utilizing green microalgae; Chlorella sp. J Fish Aquat Sci. 2013;8(4):516.
  • Velichkova K, Sirakov I, Stoyanova S. Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Sci Bull Series Biotechnol. 2014;18:83–88.
  • Guiza-Franco L, Orozco-Rojas L, Sanchez-Galvis M, et al. Production of Chlorella vulgaris biomass on UV-treated wastewater as an alternative for environmental sustainability on high-mountain fisheries. Chem Eng Trans. 2018;64:517–522.
  • Septory R, Triyatmo B. The utilization of aquacultures wastewater as nutrient sources in Nannochloropsis oculata cultivation to prevent waters contamination in coastal area. In: AIP Conference Proceedings. AIP Publishing; 2016.
  • Wuang SC, Khin MC, Chua PQD, et al. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016;15:59–64.
  • Ansari FA, Singh P, Guldhe A, et al. Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Res. 2017;21:169–177.
  • Liu Y, Lv J, Feng J, et al. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. J Chem Technol Biotechnol. 2019;94(3):900–910.
  • Nogueira SMS, Souza Junior J, Maia HD, et al. Use of Spirulina platensis in treatment of fish farming wastewater. Revis Ciên Agronôm. 2018;49(4):599–606.
  • Sirakov I, Velichkova K. Bioremediation of wastewater originate from aquaculture and biomass production from microalgae species-Nannochloropsis oculata and Tetraselmis chuii. Bulg J Agric Sci. 2014;20(1):66–72.
  • Gao F, Li C, Yang Z-H, et al. Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng. 2016;92:55–61.
  • Abedi S, Astaraei FR, Ghobadian B, et al. Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. Sci Rep. 2019;9(1):1–10.
  • Van Den Hende S, Beelen V, Bore G, et al. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresour Technol. 2014;159:342–354.
  • Van Den Hende S, Laurent C, Bégué M. Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery. Bioresour Technol. 2015;196:184–193.
  • Khatoon H, Banerjee S, Syakir Syahiran M, et al. Re-use of aquaculture wastewater in cultivating microalgae as live feed for aquaculture organisms. Desalin Water Treat. 2016;57(60):29295–29302.
  • Khudyia O, Marchenkob M, Chebanc L, et al. Recirculating aquaculture systems waste water as a medium for increase of phytoplankton and zooplankton biomass. Int Lett Nat Sci. 2016;54:1–7.
  • Blanco-Carvajal E, Sánchez-Galvis E, González-Delgado ÁD, et al. Cultivation of Chlorella vulgaris in aquaculture wastewater for protein production. Contemp Eng Sci. 2018;11:93–100.
  • Ma H, Li X, Hu H, et al. Growth, removal of nitrogen and phosphorus, and lipid accumulation property of Scenedesmus sp. LX1 in aquaculture wastewater. Huan Jing Ke Xue=Huanjing Kexue. 2012;33(6):1891–1896.
  • Guo Z, Liu Y, Guo H, et al. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. J Environ Sci. 2013;25:S85–S88.
  • Andreotti V, Chindris A, Brundu G, et al. Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Chem Ecol. 2017;33(8):750–761.
  • Abreu MH, Pereira R, Yarish C, et al. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture. 2011;312(1-4):77–87.
  • Haglund K, Pedersén M. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J Appl Phycol. 1993;5(3):271–284.
  • Marinho-Soriano E, Azevedo C, Trigueiro T, et al. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int Biodeterior Biodegrad. 2011;65(1):253–257.
  • Skriptsova AV, Miroshnikova NV. Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bioresour Technol. 2011;102(3):3149–3154.
  • Samocha T, Fricker J, Ali A, et al. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture. 2015;446:263–271.
  • Wu H, Huo Y, Han F, et al. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Mar Pollut Bull. 2015a;91(1):272–279.
  • Largo DB, Diola AG, Marababol MS. Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquacult Rep. 2016;3:67–76.
  • Wei Z, You J, Wu H, et al. Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Mar Pollut Bull. 2017;121(1-2):313–319.
  • Wu H, Huo Y, Hu M, et al. Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China. Mar Pollut Bull. 2015b;95(1):342–349.
  • Mata L, Schuenhoff A, Santos R. A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J Appl Phycol. 2010;22(5):639–644.
  • Msuya FE, Kyewalyanga MS, Salum D. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar, Tanzania. Aquaculture. 2006;254(1-4):284–292.
  • Neori A, Msuya FE, Shauli L, et al. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J Appl Phycol. 2003;15(6):543–553.
  • Rabiei R, Phang S, Yeong H, et al. Bioremediation efficiency and biochemical composition of Ulva reticulata Forsskål (Chlorophyta) cultivated in shrimp (Penaeus monodon) hatchery effluent. Iranian Journal of Fisheries Sciences. 2014;13(3):621–639.
  • Msuya FE, Neori A. Ulva reticulata and Gracilaria crassa: macroalgae that can biofilter effluent from tidal fishponds in Tanzania. Western Indian Ocean Journal of Maine Sciences. 2002;1(2):117–126.
  • de Paula Silva PH, McBride S, de Nys R, et al. Integrating filamentous ‘green tide’algae into tropical pond-based aquaculture. Aquaculture. 2008;284(1-4):74–80.
  • Martínez-Aragón J, Hernández I, Pérez-Lloréns J, et al. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. phosphate. J Appl Phycol. 2002;14(5):365–374.
  • Kang KH, Sui Z. Removal of eutrophication factors and heavy metal from a closed cultivation system using the macroalgae, Gracilaria sp.(rhodophyta). Chin J Oceanol. 2010;28(6):1127–1130.
  • Liu J, Wang Z, Lin W. De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa. Chin J Oceanol. 2010;28(2):201–208.
  • Wu H, Kim JK, Huo Y, et al. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks. Aquat Bot. 2017;137:72–79.
  • Lananan F, Hamid SHA, Din WNS, et al. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp. Int. Biodeterior. Biodegradation. 2014;95:127–134.
  • Halfhide TC. Algae: Opportunities for biomass feedstock production, wastewater treatment and educational outreach; 2014.
  • Avnimelech Y. Bio-filters: the need for an new comprehensive approach. Aquacult Eng. 2006;34(3):172–178.
  • Kuhn DD, Lawrence AL, Boardman GD, et al. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2010;303(1-4):28–33.
  • Sfez S, Van Den Hende S, Taelman SE, et al. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: from up-scaling to system integration. Bioresour Technol. 2015;190:321–331.
  • Buschmann AH. An introduction to integrated farming and the use of seaweeds as biofilters. In: Fifteenth International Seaweed Symposium. Springer; 1996. p. 59–60.
  • Buschmann AH, Mora OA, Gómez P, et al. Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult Eng. 1994;13(4):283–300.
  • Neori A, Ragg NL, Shpigel M. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquacult Eng. 1998;17(4):215–239.
  • Schuenhoff A, Shpigel M, Lupatsch I, et al. A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture. 2003;221(1-4):167–181.
  • Troell M, Halling C, Nilsson A, et al. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture. 1997;156(1-2):45–61.
  • Al-Hafedh YS, Alam A, Buschmann AH, et al. Experiments on an integrated aquaculture system (seaweeds and marine fish) on the Red Sea coast of Saudi Arabia: efficiency comparison of two local seaweed species for nutrient biofiltration and production. Rev Aquacult. 2012;4(1):21–31.
  • Huo Y, Wu H, Chai Z, et al. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture. 2012;326:99–105.
  • de Paula Silva PH, De Nys R, Paul NA. Seasonal growth dynamics and resilience of the green tide alga Cladophora coelothrix in high-nutrient tropical aquaculture. Aquacult Environ Interact. 2012;2(3):253–266.
  • Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7(12):1225–1241.
  • Velichkova K. Effect of different nitrogen sources on the growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater. Agric Sci Technol. 2014;6(3):337–340.
  • Arkronrat W, Deemark P, Oniam V. Growth performance and proximate composition of mixed cultures of marine microalgae (Nannochloropsis sp. & Tetraselmis sp.) with monocultures. J Sci Technol. 2016;38(1):1–5.
  • Sirakov I, Velichkova K, Beev G, et al. The influence of organic carbon on bioremediation process of wastewater originate from aquaculture with use of microalgae from genera Botryococcus and Scenedesmus. Agric Sci Technol. 2013;5(4):1313–8820.
  • Li X-L, Marella TK, Tao L, et al. A novel growth method for diatom algae in aquaculture waste water for natural food development and nutrient removal. Water Sci Technol. 2017;75(12):2777–2783.
  • Cohen I, Neori A. Ulva lactuca biofilters for marine fishpond effluents. I. Ammonia uptake kinetics and nitrogen content. Bot Mar. 1991;34(6):475–482.
  • He Q, Yuanzi H, Jianheng Z, et al. Gracilariopsis longissima as biofilter for an integrated Multi-Trophic Aquaculture (IMTA) system with Sciaenops ocellatus: bioremediation efficiency and production in a recirculatory system. Indian J Geo-Marine Sci. 2014;43(4):528–537.
  • Patila S, Pandit R, Lali A. Responses of algae to high light exposure: prerequisite for species selection for outdoor cultivation. J Algal Biomass Utln. 2017;8:75–83.
  • Ting H, Haifeng L, Shanshan M, et al. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agric Biol Eng. 2017;10(1):1–29.
  • Gupta SK, Bux F. Application of microalgae in wastewater treatment: volume 2: biorefinery approaches of wastewater treatment. Cham: Springer; 2019.
  • Judd SJ, Al Momani F, Znad H, et al. The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renew Sustain Energy Rev. 2017;71:379–387.
  • Bansal A, Shinde O, Sarkar S. Industrial wastewater treatment using phycoremediation technologies and coproduction of value-added products. J Bioremed Biodegrad. 2018;9(1):1–10.
  • Gani P, Mohamed N, Matias-Peralta H, et al. Application of phycoremediation technology in the treatment of food processing wastewater by freshwater microalgae Botryococcus sp. J Eng Appl Sci. 2016;11:7288–7292.
  • Varjani SJ, Parameswaran B, Kumar S, et al. Biosynthetic technology and environmental challenges. Singapore: Springer; 2018.
  • Ejike CE, Collins SA, Balasuriya N, et al. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci Technol. 2017;59:30–36.
  • González-Delgado Á, Peralta-Ruíz Y. Thermodynamic modeling of microalgae oil extraction using supercritical fluids. Contemp Eng Sci. 2017;10:503–511. DOI:10.12988/ces.2017.7334
  • Sathasivam R, Radhakrishnan R, Hashem A, et al. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2019;26(4):709–722.
  • Shah MR, Lutzu GA, Alam A, et al. Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol. 2018;30(1):197–213.
  • Patnaik S, Samocha T, Davis D, et al. The use of HUFA-rich algal meals in diets for Litopenaeus vannamei. Aquac Nutr. 2006;12(5):395–401.
  • Palmegiano GB, Agradi E, Forneris G, et al. Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquac Res. 2005;36(2):188–195.
  • Regunathan C, Wesley S. Pigment deficiency correction in shrimp broodstock using Spirulina as a carotenoid source. Aquac Nutr. 2006;12(6):425–432.
  • Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol. 2013;33(2):172–215.
  • Wollmann F, Dietze S, Ackermann JU, et al. Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci. 2019;19(12):860–871.
  • EC. Commission Regulation (EC) No 68/2013. OJEC L. 2013;29:1–64.
  • Van Den Hende S. (2014). Microalgal bacterial flocs for wastewater treatment: from concept to pilot scale. Ph.D. dissertation. Ghent: Ghent University.
  • EC. Commission Regulation (EC) No 767/2009. OJEC L. 2009;229:1–28.
  • White D, Silkina A, Skill S, et al. (2015). Best practices for the pilot-scale cultivation of microalgae, public output report of the EnAlgae project. p. 1–34. Swansea.
  • EC. Commission Directive 91/271/EEC of 21 May 1991. OJEC L. 1991;271:1–16.
  • Maizatul A, Mohamed RMSR, Al-Gheethi AA, et al. An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. Int Aquat Res. 2017;9(3):177–193.
  • Craggs R, Sutherland D, Campbell H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol. 2012;24(3):329–337.
  • Bouteleux C, Saby S, Tozza D, et al. Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals. Appl Environ Microbiol 2005;71(2):734–740.
  • Yeo SE, Binkowski FP, Morris JE. (2004). Aquaculture effluents and waste by-products characteristics, potential recovery, and beneficial reuse.
  • Olguín EJ. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv. 2012;30(5):1031–1046.
  • Lavrinovičs A, Juhna T. Review on challenges and limitations for algae-based wastewater treatment. Constr Sci. 2017;20(1):17–25.
  • Shpigel, M., Neori, A. Microalgae, macroalgae, and bivalves as biofilters in land-based mariculture in Israel. In: Bert TM, editor. Ecological and genetic implications of aquaculture activities. Dordrecht: Springer; 2007. p. 433–446.
  • Han P, Lu Q, Fan L, et al. A review on the use of microalgae for sustainable aquaculture. Appl Sci. 2019;9(11):2377.
  • Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio/Technol. 2013;12(2):165–178.
  • El-Esawi, M. A. Genetic technologies and enhancement of algal utilization in wastewater treatment and bioremediation. In: Gupta S, Bux F, editors. Application of microalgae in wastewater treatment. Cham: Springer; 2019. p. 163–175.
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9(3):165–177.
  • Sunday ER, Uyi OJ, Caleb OO. Phycoremediation: an eco-solution to environmental protection and sustainable remediation. J Chem Environ Biol Eng. 2018;2(1):5.
  • Muñoz R, Temmink H, Verschoor AM, et al. Algal technologies for wastewater treatment and resource recovery. London: IWA Publishing; 2018.
  • De la Noue J, Picard G, Peiette J, et al. Utilisation de l’algueOocystispout le traitementtertiaire des eauxusees. II. Effet du conditionnementprealable des cellules en cyclostatsur la vitesse de prise en chanrge de l’azotelorsd’incubations de longue duree. Water Res. 1980;14:1115–1130.
  • Soo C-L, Chen C-A, Bojo O, et al. Feasibility of marine microalgae immobilization in alginate bead for marine water treatment: bead stability, cell growth, and ammonia removal. Int J Polym Sci. 2017;2017:6951212.
  • Miranda AF, Ramkumar N, Andriotis C, et al. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels. 2017;10(1):120.
  • Alderson R, Howell B. The effect of algae on the water conditions in fish rearing tanks in relation to the growth of juvenile sole, Solea solea (L.). Aquaculture. 1973;2:281–288.
  • Hammouda O, Gaber A, Abdelraouf N. Microalgae and wastewater treatment. Ecotoxicol Environ Saf. 1995;31(3):205–210.
  • Harlin MM, Thorne-Miller B, Thursby GB. Ammonium uptake by Gracilaria sp. (Florideophyceae) and Ulva lactuca (Chlorphyceae) in closed system fish culture. Kingston: University of Rhode Island; 1979.
  • Qian P-Y, Wu C, Wu M, et al. Integrated cultivation of the red alga Kappaphycus alvarezii and the pearl oyster Pinctada martensi. Aquaculture. 1996;147(1-2):21–35.
  • Vandermeulen H, Gordin H. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. J Appl Phycol. 1990;2(4):363–374.
  • Troell M, Rönnbäck P, Halling C, et al. (1999). Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. In: Sixteenth International Seaweed Symposium. Springer; 1999. p. 603–611.
  • Neori A, Shpigel M, Ben-Ezra D. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture. 2000;186(3-4):279–291.
  • Hernández I, Pérez-Pastor A, Vergara JJ, et al. Studies on the biofiltration capacity of Gracilariopsis longissima: from microscale to macroscale. Aquaculture. 2006;252(1):43–53.
  • Devi IRP, Gowri VS. Biological treatment of aquaculture discharge waters by seaweeds. J Indus Pollut Contr. 2007;23(1):135–140.
  • Marinho-Soriano E, Nunes S, Carneiro M, et al. Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenergy. 2009;33(2):327–331.
  • Mithra R, Sivaramakrishnan S, Santhanam P, et al. Investigation on nutrients and heavy metal removal efficacy of seaweeds, Caulerpa taxifolia and Kappaphycus alvarezii for wastewater remediation. J Algal Biomass Utilizat. 2012;3(1):21–27.
  • Lavania B, Azman S, Said MIM, et al. Biofiltration potential of macroalgae for ammonium removal in outdoor tank shrimp wastewater recirculation system. Biomass Bioenergy. 2014;66:103–109.
  • Al Azad S, Estim A, Mustafa S, et al. Assessment of nutrients in seaweed tank from land based integrated multitrophic aquaculture module. J Geosci Environ Protect. 2017;5(08):137.
  • Chopin T, Buschmann AH, Halling C, et al. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol. 2001;37(6):975–986.
  • Troell M, Halling C, Neori A, et al. Integrated mariculture: asking the right questions. Aquaculture. 2003;226(1-4):69–90.
  • Buschmann AH, Troell M, Kautsky N. Integrated algal farming: a review. Cah Biol Mar. 2001;42(1):83–90.
  • Caines S, Manríquez-Hernández JA, Duston J, et al. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent. J Appl Phycol. 2014;26(5):2173–2181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.