496
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells

, ORCID Icon &
Pages 72-90 | Received 17 May 2021, Accepted 20 Mar 2022, Published online: 05 Apr 2022

References

  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L, et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci. 2013; doi:10.1039/c2ee23440h.
  • FAO. Food waste harms climate, water, land and biodiversity: FAO. ECOS. 2013; doi:10.1071/ec13213.
  • Li K, Wang K, Wang J, et al. Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment. J. Clean. Prod. 2020; doi:10.1016/j.jclepro.2020.121646.
  • Kiran UE, Trzcinski AP, Ng WJ, et al. Bioconversion of food waste to energy: A review. Fuel. 2014; doi:10.1016/j.fuel.2014.05.074.
  • Clercq DD, Wen Z, Gottfried O, et al. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renewable Sustainable Energy Rev. 2017; doi:10.1016/j.rser.2017.05.047.
  • Banu JR, Merrylin J, Usman TM, et al. Impact of pretreatment on food waste for biohydrogen production: A review. Int J Hydrogen Energy. 2020; doi:10.1016/j.ijhydene.2019.09.176.
  • WRAP. Household Food and Drink Waste in the United Kingdom 2012, 2012.
  • FAO. Food wastage footprint : Impact on natural resources, 2013.
  • Lee SH, Choi KI, Osako M, et al. Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea. Sci. Total Environ. 2007; doi:10.1016/j.scitotenv.2007.06.037.
  • Katami T, Yasuhara A, Shibamoto T. Formation of Dioxins from Incineration of Foods Found in Domestic Garbage. Environ. Sci. Technol. 2004; doi:10.1021/es030606y.
  • Ma C, Liu J, Ye M, et al. Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renewable Sustainable Energy Rev. 2018; doi:10.1016/j.rser.2018.03.110.
  • Karthikeyan OP, Trably E, Mehariya S, et al. Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresour Technol. 2018; doi:10.1016/j.biortech.2017.09.105.
  • Salemdeeb R, Font Vivanco D, Al-Tabbaa A, et al. A holistic approach to the environmental evaluation of food waste prevention. Waste Manag. 2017; doi:10.1016/j.wasman.2016.09.042.
  • Parkhey P, Sahu R. Microfluidic microbial fuel cells: Recent advancements and future prospects. Int J Hydrogen Energy. 2020; doi:10.1016/j.ijhydene.2020.07.019.
  • Jia J, Tang Y, Liu B, et al. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresour Technol. 2013; doi:10.1016/j.biortech.2013.06.072.
  • Zuo Y, Maness PC, Logan BE. Electricity production from steam-exploded corn stover biomass. Energy Fuels. 2006; doi:10.1021/ef060033l.
  • Moharir PV, Tembhurkar AR. Effect of recirculation on bioelectricity generation using microbial fuel cell with food waste leachate as substrate. Int J Hydrogen Energy. 2018; doi:10.1016/j.ijhydene.2018.04.072.
  • Ma J, Wang Z, Li X, et al. Bioelectricity generation through microbial fuel cell using organic matters recovered from municipal wastewater. Environ Prog Sustain Energy. 2014; doi:10.1002/ep.11745.
  • He L, Du P, Chen Y, et al. Advances in microbial fuel cells for wastewater treatment. Renewable Sustainable Energy Rev. 2017;71:388–403. doi:10.1016/j.rser.2016.12.069.
  • Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010; doi:10.1016/j.biortech.2009.10.017.
  • Reddy NC, Min B. Biological conversion of food waste to value addition in microbial fuel cell, Waste to Sustainable Energy, 2019.
  • Subha C, Dinesh Kumar M, Yukesh Kannah R, et al. Bioenergy recovery from food processing wastewater—Microbial fuel cell, Food Waste to Valuable Resources, 2020.
  • Khan MD, Khan N, Sultana S, et al. Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem. 2017; doi:10.1016/j.procbio.2017.04.001.
  • Bowen GA. Document analysis as a qualitative research method. Qual Res. J. 2009; doi:10.3316/QRJ0902027.
  • Kosseva MR. Sources, characterization, and composition of food industry wastes, In Food Industry Wastes, 2013.
  • Chen C, Chaudhary A, Mathys A. Nutritional and environmental losses embedded in global food waste. Resour Conserv Recycl 2020; doi:10.1016/j.resconrec.2020.104912.
  • Mshandete A, Björnsson L, Kivaisi AK, et al. Effect of particle size on biogas yield from sisal fibre waste. Renew Energy. 2006; doi:10.1016/j.renene.2005.10.015.
  • Rezaei F, Richard TL, Logan BE. Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells. J Power Sources. 2009; doi:10.1016/j.jpowsour.2009.03.023.
  • Chandrasekara A, Josheph Kumar T. Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. Int J Food Sci. 2016; doi:10.1155/2016/3631647.
  • Charalampopoulos D, Wang R, Pandiella SS, et al. Application of cereals and cereal components in functional foods: A review. Int J Food Microbiol. 2002; doi:10.1016/S0168-1605(02)00187-3.
  • Rao MS, Singh SP. Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation. Bioresour Technol. 2004; doi:10.1016/j.biortech.2004.02.013.
  • Uncu ON, Cekmecelioglu D. Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manag. 2011; doi:10.1016/j.wasman.2010.12.007.
  • Zhang L, Lee YW, Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour Technol. 2011; doi:10.1016/j.biortech.2011.01.082.
  • Banks CJ, Zhang Y, Jiang Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol. 2012; doi:10.1016/j.biortech.2011.10.068.
  • Zhang Y, Banks CJ, Heaven S. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol. 2012; doi:10.1016/j.biortech.2012.03.040.
  • Vavouraki AI, Volioti V, Kornaros ME. Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes. Waste Manag. 2014; doi:10.1016/j.wasman.2013.09.027.
  • Deublein D, Steinhauser A. Biogas from Waste and Renewable Resources. Focus Catal. 2011; doi:10.1016/s1351-4180(11)70392-0.
  • Pant D, Singh A, Van Bogaert G, et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012; doi:10.1039/c1ra00839k.
  • Huggins T, Fallgren PH, Jin S, et al. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater. J Microb Biochem Technol. 2013; doi:10.4172/1948-5948.s6-002.
  • Ali AEH, Gomaa Ola M, Fathey R, et al. Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production. Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol. 2015; doi:10.1016/s1872-5813(15)30032-3.
  • Das D. Microbial fuel cell: A bioelectrochemical system that converts waste to watts. 2017.
  • Flimban SGA, Ismail IMI, Kim T, et al. Overview of recent advancements in the microbial fuel cell from fundamentals to applications: Design, major elements, and scalability. Energies. 2019; doi:10.3390/en12173390.
  • Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources. 2017; doi:10.1016/j.jpowsour.2017.03.109.
  • Budihardjo MA, Effendi AJ, Hidayat S, et al. Waste valorization using solid-phase microbial fuel cells (SMFCs): Recent trends and status. J Environ Manag. 2021;277; doi:10.1016/j.jenvman.2020.111417.
  • Nimje VR, Chen CC, Chen HR. A single-chamber microbial fuel cell without an air cathode. Int J Mol Sci 2012;13(3): doi:10.3390/ijms13033933.
  • Watanabe K. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J Biosci Bioeng. 2008;106(6): doi:10.1263/jbb.106.528.
  • Janicek A, Fan Y, Liu H. Design of microbial fuel cells for practical application: A review and analysis of scale-up studies. Biofuels. 2014;5(1): doi:10.4155/bfs.13.69.
  • Ullah Z, Zeshan S. Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Sci Technol. 2020;81(7): doi:10.2166/wst.2019.387.
  • Li LH, Sun YM, Yuan ZH, et al. Effect of temperature change on power generation of microbial fuel cell. Environ Technol (United Kingdom). 2013;34(13–14): doi:10.1080/09593330.2013.828101.
  • Tremouli A, Martinos M, Lyberatos G. The Effects of Salinity, pH and Temperature on the Performance of a Microbial Fuel Cell. Waste Biomass Valorization. 2017;8(6): doi:10.1007/s12649-016-9712-0.
  • Kundu PP, Dutta K. Progress and recent trends in microbial fuel cells. 2018.
  • Wang X, Feng Y, Wang H, et al. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol. 2009; doi:10.1021/es900391b.
  • Mohanakrishna G, Venkata Mohan S, Sarma PN. Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: An integrative approach. Int J Hydrogen Energy. 2010; doi:10.1016/j.ijhydene.2010.01.084.
  • Mohan VS, Mohanakrishna G, Sarma PN. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour Technol. 2010; doi:10.1016/j.biortech.2009.09.005.
  • Cercado-Quezada B, Delia ML, Bergel A. Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour Technol. 2010; doi:10.1016/j.biortech.2009.11.076.
  • Kannaiah Goud R, Venkata Mohan S. Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (MFC). Int J Hydrogen Energy. 2011; doi:10.1016/j.ijhydene.2011.07.128.
  • Chen Y, Luo J, Yan Y, et al. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl Energy. 2013; doi:10.1016/j.apenergy.2012.06.056.
  • Adekunle A, Raghavan V. Evaluation of the suitability and performance of cassava waste (peel) extracts in a microbial fuel cell for supplementary and sustainable energy production. Waste Manag Res. 2017; doi:10.1177/0734242X16670487.
  • Ghasemi M, Daud WRW, Ismail M, et al. Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance. Int J Hydrogen Energy. 2013;38(13): doi:10.1016/j.ijhydene.2012.09.148.
  • Niessen J, Schröder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation - A bacterial fuel cell operating on starch. Electrochem commun. 2004; doi:10.1016/j.elecom.2004.07.010.
  • Velasquez-Orta SB, Yu E, Katuri KP, et al. Evaluation of hydrolysis and fermentation rates in microbial fuel cells. Appl Microbiol Biotechnol. 2011; doi:10.1007/s00253-011-3126-5.
  • Rahimnejad M, Adhami A, Darvari S, et al. Microbial fuel cell as new technol ogy for bioelectricity generation: A review. Alexandria Eng J. 2015; doi:10.1016/j.aej.2015.03.031.
  • Steidl RJ, Lampa-Pastirk S, Reguera G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nat Commun. 2016; doi:10.1038/ncomms12217.
  • Goud RK, Babu PS, Mohan SV. Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): Bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy. 2011; doi:10.1016/j.ijhydene.2011.02.056.
  • Asefi B, Li SL, Moreno HA, et al. Characterization of electricity production and microbial community of food waste-fed microbial fuel cells. Process Saf Environ Prot. 2019; doi:10.1016/j.psep.2019.03.016.
  • Choi JDR, Chang HN, Han JI. Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett. 2011; doi:10.1007/s10529-010-0507-2.
  • Pei H, Yang Z, Nie C, et al. Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of organics and ammonium removal. Bioresour Technol. 2018; doi:10.1016/j.biortech.2018.01.144.
  • Miran W, Nawaz M, Jang J, et al. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Sci Total Environ. 2016; doi:10.1016/j.scitotenv.2016.01.004.
  • Li XM, Cheng KY, Wong JWC. Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH. Bioresour Technol. 2013; doi:10.1016/j.biortech.2013.09.037.
  • Han W, Liu Y, Xu X, et al. A novel combination of enzymatic hydrolysis and microbial fuel cell for electricity production from bakery waste. Bioresour Technol. 2020; doi:10.1016/j.biortech.2019.122387.
  • Wang Z, Lee T, Lim B, et al. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol Biofuels. 2014; doi:10.1186/1754-6834-7-9.
  • Yoshimura Y, Nakashima K, Kato M, et al. Electricity generation from rice bran by a microbial fuel cell and the influence of hydrodynamic cavitation pretreatment. ACS omega. 2018;3(11):15267–15271.
  • Hassan SH, El-Rab SMG, Rahimnejad M, et al. Electricity generation from rice straw using a microbial fuel cell. Int J Hydrogen Energy. 2014; doi:10.1016/j.ijhydene.2014.03.259.
  • Sun M, Sheng GP, Mu ZX. Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J Power Sources. 2009; doi:10.1016/j.jpowsour.2009.01.087.
  • Zhao Q, Yu H, Zhang W, et al. Microbial fuel cell with high content solid wastes as substrates: a review. Front Environ Sci Eng. 2017; doi:10.1007/s11783-017-0918-6.
  • Rikame SS, Mungray AA, Mungray AK. Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int Biodeterior Biodegrad. 2012; doi:10.1016/j.ibiod.2012.09.006.
  • Antonopoulou G, Stamatelatou K, Bebelis S, et al. Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J. 2010; doi:10.1016/j.bej.2010.02.008.
  • Mohan SV, Chandrasekhar K. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity. Bioresour Technol. 2011; doi:10.1016/j.biortech.2011.04.039.
  • Durruty I, Bonanni PS, González JF, et al. Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresour Technol. 2012; doi:10.1016/j.biortech.2011.11.095.
  • Frattini D, Falcucci G, Minutillo M, et al. On the effect of different configurations in air-cathode MFCs fed by composite food waste for energy harvesting. Chem Eng Trans. 2016; doi:10.3303/CET1649015.
  • Kurian KJ, Raveendran Nair G, Hussain A, et al. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renewable Sustainable Energy Rev. 2013; doi:10.1016/j.rser.2013.04.019.
  • Oh SE, Yoon JY, Gurung A, et al. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresour Technol. 2014; doi:10.1016/j.biortech.2014.03.018.
  • Mirmasoumi S, Ebrahimi S, Saray RK. Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions. Energy. 2018; doi:10.1016/j.energy.2018.06.003.
  • Fei X, Chen T, Jia W. Enhancement effect of ionizing radiation pretreatment on biogas production from anaerobic fermentation of food waste. Radiat Phys Chem. 2020; doi:10.1016/j.radphyschem.2019.108534.
  • Li X, Mettu S, Martin GJO, et al. Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrason Sonochem. 2019; doi:10.1016/j.ultsonch.2018.12.035.
  • Proctor A. Alternatives to Conventional Food Processing 2nd Edition, vol. 53. Royal Society of Chemistry; 2018.
  • Nitayavardhana S, Rakshit SK, Grewell D, et al. Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. Biotechnol Bioeng. 2008; doi:10.1002/bit.21922.
  • Khanal SK, Montalbo M, Van Leeuwen J, et al. Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnol Bioeng. 2007; doi:10.1002/bit.21497.
  • Pejin DJ, Mojović LV, Pejin JD, et al. Increase in bioethanol production yield from triticale by simultaneous saccharification and fermentation with application of ultrasound. J Chem Technol Biotechnol. 2012; doi:10.1002/jctb.2675.
  • Bundhoo ZMA, Mohee R. Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. Ultrason Sonochem. 2018; doi:10.1016/j.ultsonch.2017.07.025.
  • Tao K, Quan X, Quan Y. Composite vegetable degradation and electricity generation in microbial fuel cell with ultrasonic pretreatment. Environ Eng Manag J. 2013; doi:10.30638/eemj.2013.175.
  • Tian Y, Mei X, Liang Q, et al. Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells. RSC Adv. 2017; doi:10.1039/c6ra27385h.
  • Song Z, Yang G, Guo Y, et al. Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 2012; doi:10.15376/biores.7.3.3223-3236.
  • Kang KE, Jeong GT, Sunwoo C, et al. Pretreatment of rapeseed straw by soaking in aqueous ammonia. Bioprocess Biosyst Eng. 2012; doi:10.1007/s00449-011-0606-z.
  • Xiao B, Yang F, Liu J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell. J Hazard Mater. 2013; doi:10.1016/j.jhazmat.2013.03.039.
  • Xiao B, Yang F, Liu J. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. J Hazard Mater. 2011; doi:10.1016/j.jhazmat.2011.02.058.
  • Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol. 2005; doi:10.1021/es050316c.
  • Kiran UE, Trzcinski AP, Liu Y. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresour Technol. 2015; doi:10.1016/j.biortech.2015.02.033.
  • Xin X, Ma Y, Liu Y. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion. Bioresour Technol. 2018; doi:10.1016/j.biortech.2018.01.099.
  • Ma Y, Yin Y, Liu Y. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery. Bioresour Technol. 2017; doi:10.1016/j.biortech.2016.12.090.
  • Kiran UE, Liu Y. Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel. 2015; doi:10.1016/j.fuel.2015.06.101.
  • Kiran EU, Trzcinski AP, Liu Y. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste. Biofuel Res J. 2014; doi:10.18331/BRJ2015.1.3.7.
  • Melikoglu M. Production of sustainable alternatives to petrochemicals and fuels using waste bread as a raw material, Dr. Diss. Manchester, 2008, [Online]. Available: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488783.
  • Yin Y, Liu YJ, Meng SJ, et al. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Appl Energy. 2016; doi:10.1016/j.apenergy.2016.07.083.
  • Kannah RY, Merrylin J, Devi TP, et al. Food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports. 2020; doi:10.1016/j.biteb.2020.100524.
  • Shahriari H, Warith M, Hamoda M, et al. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment. J. Environ. Manage. 2013; doi:10.1016/j.jenvman.2013.03.042.
  • Bordeleau ÉL, Droste RL. Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion. Water Sci Technol. 2011; doi:10.2166/wst.2011.052.
  • Geng YK, Yuan L, Liu T, et al. Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery. Appl Energy. 2020; doi:10.1016/j.apenergy.2020.115291.
  • Menon A, Ren F, Wang JY, et al. Effect of pretreatment techniques on food waste solubilization and biogas production during thermophilic batch anaerobic digestion. J Mater Cycles Waste Manag. 2016; doi:10.1007/s10163-015-0395-6.
  • Ma J, Duong TH, Smits M, et al. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol. 2011; doi:10.1016/j.biortech.2010.07.122.
  • Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2009; doi:10.1016/j.biortech.2008.05.027.
  • Elbeshbishy E, Hafez H, Dhar BR, et al. Single and combined effect of various pretreatment methods for biohydrogen production from food waste. Int J Hydrogen Energy. 2011; doi:10.1016/j.ijhydene.2011.02.067.
  • Zhao MX, Yan Q, Ruan WQ, et al. Enhancement of substrate solubilization and hydrogen production from kitchen wastes by pH pretreatment. Environ Technol. 2011; doi:10.1080/09593330.2010.482596.
  • Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass - An overview. Bioresour Technol. 2016; doi:10.1016/j.biortech.2015.08.030.
  • Park C, Lee C, Kim S, et al. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J Biosci Bioeng. 2005; doi:10.1263/jbb.100.164.
  • Talan A, Tiwari B, Yadav B, et al. Food waste valorization: Energy production using novel integrated systems. Bioresour Technol. 2021;322:124538), doi:10.1016/j.biortech.2020.124538.
  • Ma Y, Cai W, Liu Y. An integrated engineering system for maximizing bioenergy production from food waste. Appl Energy. 2017; doi:10.1016/j.apenergy.2017.08.190.
  • Li H, Tian Y, Zuo W. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresour Technol. 2016; doi:10.1016/j.biortech.2016.01.042.
  • Chandrasekhar K, Amulya K, Venkata Mohan S. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Manag. 2014; doi:10.1016/j.wasman.2015.06.001.
  • Xin X, Hong J, Liu Y. Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate. Sci Total Environ. 2019; doi:10.1016/j.scitotenv.2019.03.213.
  • Pant D, Arslan D, Van Bogaert G, et al. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environ Technol (United Kingdom). 2013; doi:10.1080/09593330.2013.828763.
  • Md Khudzari J, Tartakovsky B, Raghavan GSV. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells. Waste Manag. 2016; doi:10.1016/j.wasman.2015.11.022.
  • Jannelli N, Anna Nastro R, Cigolotti V, et al. Low pH, high salinity: Too much for microbial fuel cells? Appl Energy. 2017; doi:10.1016/j.apenergy.2016.07.079.
  • Logroño W, Ramírez G, Recalde C, et al. Bioelectricity Generation from Vegetables and Fruits Wastes by Using Single Chamber Microbial Fuel Cells with High Andean Soils. Energy Procedia. 2015; doi:10.1016/j.egypro.2015.07.259.
  • Moqsud MA, Omine K, Yasufuku N, et al. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manag Res. 2014; doi:10.1177/0734242X13517160.
  • Adekunle A, Gariepy Y, Lyew D, et al. Energy recovery from cassava peels in a single-chamber microbial fuel cell. Energy Sources, Part A Recover. Util. Environ. Eff. 2016; doi:10.1080/15567036.2015.1086909.
  • Colombo A, Schievano A, Trasatti SP, et al. Signal trends of microbial fuel cells fed with different food-industry residues. Int J Hydrogen Energy. 2017; doi:10.1016/j.ijhydene.2016.09.069.
  • Li XM, Cheng KY, Selvam A, et al. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochem. 2013; doi:10.1016/j.procbio.2012.10.001.
  • Miran W, Nawaz M, Jang J, et al. Sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int Biodeterior Biodegrad. 2016; doi:10.1016/j.ibiod.2015.10.009.
  • Fogg A, Gadhamshetty V, Franco D, et al. Can a microbial fuel cell resist the oxidation of Tomato pomace? J Power Sources. 2015; doi:10.1016/j.jpowsour.2015.01.031.
  • Chatzikonstantinou D, Tremouli A, Papadopoulou K, et al. Bioelectricity production from fermentable household waste in a dual-chamber microbial fuel cell. Waste Manag Res. 2018; doi:10.1177/0734242X18796935.
  • Hou Q, Pei H, Hu W, et al. Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production. Bioresour Technol. 2016; doi:10.1016/j.biortech.2015.12.049.
  • Du H, Li F. Effects of varying the ratio of cooked to uncooked potato on the microbial fuel cell treatment of common potato waste. Sci Total Environ. 2016; doi:10.1016/j.scitotenv.2016.07.023.
  • Du H, Li F. Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge. J Clean Prod. 2017; doi:10.1016/j.jclepro.2016.12.104.
  • Javed MM, Nisar MA, Muneer B, et al. Production of bioelectricity from vegetable waste extract by designing a U-shaped microbial fuel cell. Pak J Zool. 2017; doi:10.17582/journal.pjz/2017.49.2.711.716.
  • Bridier A, Desmond-Le Quemener E, Bureau C, et al. Successive bioanode regenerations to maintain efficient current production from biowaste. Bioelectrochemistry. 2015; doi:10.1016/j.bioelechem.2015.05.007.
  • Du H, Li F. Size effects of potato waste on its treatment by microbial fuel cell. Environ Technol (United Kingdom). 2016;37(10): doi:10.1080/09593330.2015.1114027.
  • Tremouli A, Karydogiannis I, Pandis PK. Bioelectricity production from fermentable household waste extract using a single chamber microbial fuel cell. Energy Procedia. 2019; doi:10.1016/j.egypro.2019.02.051.
  • Antonopoulou G, Ntaikou I, Pastore C, et al. An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue. Appl Energy. 2019; doi:10.1016/j.apenergy.2019.03.082.
  • Du H, Li F, Feng C. Comparison of the performance of microbial fuel cell for treatment of different vegetable liquids and potato solid with different sizes. J. Japan Soc. Civ. Eng. Ser. G (Environmental Res.). 2015;71(7): doi:10.2208/jscejer.71.iii_379.
  • Kamau JM, Mbui DN, Mwaniki JM, et al. Utilization of rumen fluid in production of bio–energy from market waste using microbial fuel cells technology. J Appl Biotechnol Bioeng. 2018; doi:10.15406/jabb.2018.05.00142.
  • Kondaveeti S, Mohanakrishna G, Kumar A, et al. Exploitation of Citrus Peel Extract as a Feedstock for Power Generation in Microbial Fuel Cell (MFC). Indian J Microbiol. 2019; doi:10.1007/s12088-019-00829-7.
  • Karluvali A, Köroğlu EO, Manav N, et al. Electricity generation from organic fraction of municipal solid wastes in tubular microbial fuel cell. Sep Purif Technol. 2015;156; doi:10.1016/j.seppur.2015.10.042.
  • Wang CT, Liao FY, Liu KS. Electrical analysis of compost solid phase microbial fuel cell. Int J Hydrogen Energy. 2013; doi:10.1016/j.ijhydene.2013.02.120.
  • Kebaili H, Kameche M, Innocent C, et al. Treatment of fruit waste leachate using microbial fuel cell: Preservation of agricultural environment. Acta Ecol. Sin. 2021;41(2): doi:10.1016/j.chnaes.2020.09.004.
  • Riau V, De la Rubia MA, Pérez M. Upgrading the temperature-phased anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Chem Eng J. 2015; doi:10.1016/j.cej.2014.08.032.
  • Jiang J, Zhao Q, Wei L, et al. Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresour Technol. 2011; doi:10.1016/j.biortech.2010.04.066.
  • Zhang L, Loh KC, Zhang J. Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports. 2019; doi:10.1016/j.biteb.2018.07.005.
  • Marin J, Kennedy KJ, Eskicioglu C. Effect of microwave irradiation on anaerobic degradability of model kitchen waste. Waste Manag. 2010;30(10): doi:10.1016/j.wasman.2010.01.033.
  • Xin X, Hong J, He J, et al. An integrated approach for waste activated sludge management towards electric energy production/resource reuse. Bioresour Technol. 2019; doi:10.1016/j.biortech.2018.11.092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.