191
Views
0
CrossRef citations to date
0
Altmetric
Review

Hybrid configurations for brackish water desalination: a review of operational parameters and their impact on performance

, , ORCID Icon &
Pages 1-17 | Received 05 Apr 2022, Accepted 04 Jan 2023, Published online: 18 Jan 2023

References

  • Ras C, von Blottnitz H. A comparative life cycle assessment of process water treatment technologies at the Secunda industrial complex, South Africa. Water SA. 2012;38(4):549–554. doi:10.4314/wsa.v38i4.10.
  • Landaburu-aguirre J, et al. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. DES. 2016;393:16–30. doi:10.1016/j.desal.2016.04.002.
  • Hassan AM, et al. (1998). ‘ELSEVIER A new approach to membrane and thermal seawater desalination processes using nanofiltration membranes (Part 1)’, 9164(98).
  • A-sofi MAK, et al. (2000). ‘Optimization of hybridized seawater desalination process’, 131(October), pp. 147–156.
  • Panagopoulos A, Haralambous KJ, Loizidou M. Desalination brine disposal methods and treatment technologies - A review. Sci Total Environ. 2019;693:133545. doi:10.1016/j.scitotenv.2019.07.351.
  • Bordbar B, et al. Life cycle assessment of hybrid nanofiltration desalination plants in the Persian gulf. Membranes. 2022;12(5):467–416. doi:10.3390/membranes12050467.
  • Khosravi A, Bordbar B, Orkomi AA. Water science and technology library. Industrial Wastewater Treatment. 2022;106:369–398.
  • Tsai JH, et al. Membrane-based zero liquid discharge: Myth or reality? Journal of the Taiwan Institute of Chemical Engineers. 2017;80:192–202. doi:10.1016/j.jtice.2017.06.050.
  • Soti A, Gupta AB. ‘Uncorrected Proof Chemistry of alkaline and non-alkaline scaling in community RO for brackish water treatment operated with and without antiscalant doses Uncorrected Proof’. 2021;21:4030–4043. doi:10.2166/ws.2021.158.
  • Xiao H, et al. Zero liquid discharge hybrid membrane process for separation and recovery of ions with equivalent and similar molecular weights. Desalination. 2020;482(March):114387. doi:10.1016/j.desal.2020.114387.
  • Panagopoulos A, Haralambous KJ. Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery – Analysis, challenges and prospects. Journal of Environmental Chemical Engineering. 2020;8(5):104418. doi:10.1016/j.jece.2020.104418.
  • Luo J, Wan Y. Effects of pH and salt on nanofiltration—a critical review. J Memb Sci. 2013;438:18–28. doi:10.1016/j.memsci.2013.03.029.
  • Park K, et al. Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions. J Memb Sci. 2020;595(April 2019):117607. doi:10.1016/j.memsci.2019.117607.
  • Ang WL, et al. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination. 2015;363:2–18. doi:10.1016/j.desal.2014.03.008.
  • Mohammad AW, et al. Nanofiltration membranes review: Recent advances and future prospects. Desalination. 2015;356:226–254. doi:10.1016/j.desal.2014.10.043.
  • Qasim M, et al. Reverse osmosis desalination: A state-of-the-art review. Desalination. 2019;459:59–104. doi:10.1016/j.desal.2019.02.008.
  • Abdulgader HA, Kochkodan V, Hilal N. Hybrid ion exchange - Pressure driven membrane processes in water treatment: A review. Sep Purif Technol. 2013;116:253–264. doi:10.1016/j.seppur.2013.05.052.
  • Giwa A, et al. Brine management methods: Recent innovations and current status. Desalination. 2017;407:1–23. doi:10.1016/j.desal.2016.12.008.
  • Oatley-Radcliffe DL, et al. Nanofiltration membranes and processes: A review of research trends over the past decade. Journal of Water Process Engineering. 2017;19(July):164–171. doi:10.1016/j.jwpe.2017.07.026.
  • Shahmansouri A, Bellona C. Nanofiltration technology in water treatment and reuse: Applications and costs. Water Sci Technol. 2015;71(3):309–319. doi:10.2166/wst.2015.015.
  • Muhammad Y, Lee W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Sci Total Environ. 2019;681:551–563. doi:10.1016/j.scitotenv.2019.05.062.
  • Ghernaout D. Brine recycling: towards membrane processes as the best available technology. Applied Engineering. 2019;3(2):71–84. doi:10.11648/j.ae.20190302.11.
  • Tong T, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol. 2016;50(13):6846–6855. doi:10.1021/acs.est.6b01000.
  • Arabi S, et al. Membrane processes. Water Environ Res. 2020;92(10):1447–1498. doi:10.1002/wer.1385.
  • Lee S, et al. Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects. Desalination. 2019;454:104–111. doi:10.1016/j.desal.2018.02.002.
  • Ahmed FE, Hashaikeh R, Hilal N. Hybrid technologies: The future of energy efficient desalination – A review. Desalination. 2020;495:114659. doi:10.1016/j.desal.2020.114659.
  • Alghoul MA, et al. Review of brackish water reverse osmosis (BWRO) system designs. Renewable Sustainable Energy Rev. 2009;13(9):2661–2667. doi:10.1016/j.rser.2009.03.013.
  • Altaee A, Hilal N. High recovery rate NF-FO-RO hybrid system for inland brackish water treatment. Desalination. 2015;363:19–25. doi:10.1016/j.desal.2014.12.017.
  • Vanoppen M, et al. Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications. Water Res 2015;80(0):59–70. doi:10.1016/j.watres.2015.04.030.
  • Gando-Ferreira LM, et al. Studies on integration of ion exchange and nanofiltration for water desalination. Separation Science and Technology (Philadelphia). 2017;52(16):2600–2610. doi:10.1080/01496395.2017.1359625.
  • Hilal N, et al. ‘A comprehensive review of nanofiltration membranes : Treatment, pretreatment, modelling, and atomic force microscopy’. 2004;170:281–308. doi:10.1016/j.desal.2004.01.007.
  • Bouranene S, et al. Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. J Memb Sci. 2008;325(1):150–157. doi:10.1016/j.memsci.2008.07.018.
  • Murthy ZVP, Chaudhari LB. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model. Chem Eng J. 2009;150(1):181–187. doi:10.1016/j.cej.2008.12.023.
  • Ahmed S, et al. Performance of nanofiltration membrane in a vibrating module (VSEP-NF) for arsenic removal. Desalination. 2010;252(1–3):127–134. doi:10.1016/j.desal.2009.10.013.
  • Harisha RS, et al. Arsenic removal from drinking water using thin film composite nanofiltration membrane. Desalination. 2010;252(1–3):75–80. doi:10.1016/j.desal.2009.10.022.
  • Saitua H, Gil R, Padilla AP. Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater. Desalination. 2011;274(1–3):1–6. doi:10.1016/j.desal.2011.02.044.
  • Yu Y, et al. Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures. J Environ Sci (China). 2013;25(2):302–307. doi:10.1016/S1001-0742(12)60044-8.
  • Chang Ff, Liu Wj, Wang Xm. Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions. Desalination. 2014;334(1):10–16. doi:10.1016/j.desal.2013.11.002.
  • Elazhar F, et al. Nanofiltration-reverse osmosis hybrid process for hardness removal in brackish water with higher recovery rate and minimization of brine discharges. Process Saf Environ Prot. 2021;153:376–383. doi:10.1016/j.psep.2021.06.025.
  • Sengur-tasdemir R, Urper-bayram GM, Turken T. Hollow fiber nanofiltration membranes for surface water treatment: Performance evaluation at the pilot scale. Journal of Water Process Engineering. 2021;42(December 2020):102100. doi:10.1016/j.jwpe.2021.102100.
  • Garg MC, Joshi H. Optimization and economic analysis of small scale nanofiltration and reverse osmosis brackish water system powered by photovoltaics. Desalination. 2014;353:57–74. doi:10.1016/j.desal.2014.09.005.
  • Licona KPM, et al. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. Journal of Water Process Engineering. 2018;25(August):195–204. doi:10.1016/j.jwpe.2018.08.002.
  • Talaeipour M, et al. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. Journal of Environmental Health Science and Engineering. 2017;15(1):1–9. doi:10.1186/s40201-017-0279-x.
  • Du JR, et al. Desalination of high salinity brackish water by an NF-RO hybrid system. Desalination. 2020;491:114445), doi:10.1016/j.desal.2020.114445.
  • Alayemieka E, Lee SH, Kim D. Effect of membrane surface characteristics on hydraulic flux balance and feed stream translation in concentrate multi-stage system. Desalination. 2009;247:64–76. doi:10.1016/j.desal.2008.12.013.
  • Sarkar S, Sengupta AK. A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: Process concept and laboratory evaluation. Process Concept and Laboratory Evaluation’. 2008;324:76–84. doi:10.1016/j.memsci.2008.06.058.
  • Hilal N, et al. A combined ion exchange–nanofiltration process for water desalination: III. Pilot scale studies. Pilot Scale Studies’, Desalination. 2015;363:58–63. doi:10.1016/j.desal.2014.11.030.
  • Venkatesan A, Wankat PC. Simulation of ion exchange water softening pretreatment for reverse osmosis desalination of brackish water. DES. 2011;27122(1–131):122–131. doi:10.1016/j.desal.2010.12.022.
  • Vanoppen M, et al. A hybrid IEX-RO process with brine recycling for increased RO recovery without chemical addition: A pilot-scale study. Desalination. 2016;394:185–194. doi:10.1016/j.desal.2016.05.003.
  • Taylor P, Indarawis KA, Boyer TH. ‘Desalination and Water Treatment Evaluation of ion exchange pretreatment options to decrease fouling of a reverse osmosis membrane’. 2014;1(November):4603–4611. doi:10.1080/19443994.2013.867416.
  • Fan G, et al. Operating parameters optimization of combined UF/NF dual-membrane process for brackish water treatment and its application performance in municipal drinking water treatment plant. Journal of Water Process Engineering. 2020;38(July):101547. doi:10.1016/j.jwpe.2020.101547.
  • Su X, et al. Effect of feed water characteristics on nanofiltration separating performance for brackish water treatment in the Huanghuai region of China. Journal of Water Process Engineering. 2017;19(March):147–155. doi:10.1016/j.jwpe.2017.07.021.
  • Song Y, et al. Performance of UF–NF integrated membrane process for seawater softening. DES. 2011;276(1–3):109–116. doi:10.1016/j.desal.2011.03.064.
  • Zaviska F, et al. Using FO as pre-treatment of RO for high scaling potential brackish water: Energy and performance optimisation. J Memb Sci. 2015;492:430–438. doi:10.1016/j.memsci.2015.06.004.
  • Seo J, et al. An optimization strategy for a forward osmosis-reverse osmosis hybrid process for wastewater reuse and seawater desalination: A modeling study. Desalination. 2019;463:40–49. doi:10.1016/j.desal.2019.03.012.
  • Jeon J, et al. ‘An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination’. 2016;3994(June):26612–26620. doi:10.1080/19443994.2016.1189701.
  • Khanzada NK, Khan SJ, Davies PA. Performance evaluation of reverse osmosis (RO) pre-treatment technologies for in-land brackish water treatment. Desalination. 2017;406:44–50. doi:10.1016/j.desal.2016.06.030.
  • Liu J, et al. Semi batch dual-pass nanofiltration as scaling-controlled pretreatment for seawater purification and concentration with high recovery rate. Desalination. 2021;506(January):115015. doi:10.1016/j.desal.2021.115015.
  • Yoon J, et al. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere. 2009;77(2):228–235. doi:10.1016/j.chemosphere.2009.07.028.
  • Gamal Khedr M. Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration. Desalination. 2013;321:47–54. doi:10.1016/j.desal.2013.01.013.
  • Ebrahimzadeh S, et al. Quantification and modelling of organic micropollutant removal by reverse osmosis (RO) drinking water treatment. Journal of Water Process Engineering. 2021;42(June):102164. doi:10.1016/j.jwpe.2021.102164.
  • Cengeloglu Y, et al. (2008). ‘Removal of boron from water by using reverse osmosis’, 64, pp. 141–146. doi:10.1016/j.seppur.2008.09.006
  • Lopera AE, et al. Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant. Journal of Water Process Engineering. 2019;29(November 2018):100800. doi:10.1016/j.jwpe.2019.100800.
  • Richards LA, Richards BS, Schäfer AI. Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis. J Memb Sci. 2011;369(1–2):188–195. doi:10.1016/j.memsci.2010.11.069.
  • Abid MF, Zablouk MA, Abid-alameer AM. (2012). ‘ENVIRONMENTAL HEALTH Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration’, pp. 1–9.
  • Idrees MF. Performance analysis and treatment technologies of reverse osmosis plant – A case study. Case Studies in Chemical and Environmental Engineering. 2020;2(May):100007. doi:10.1016/j.cscee.2020.100007.
  • Shen J, Richards BS, Schäfer AI. Renewable energy powered membrane technology: Case study of St. Dorcas borehole in Tanzania demonstrating fluoride removal via nanofiltration/reverse osmosis. Sep Purif Technol. 2016;170:445–452. doi:10.1016/j.seppur.2016.06.042.
  • Li W, Van der Bruggen B, Luis P. Integration of reverse osmosis and membrane crystallization for sodium sulphate recovery. Process Intensification. 2014;85:57–68. doi:10.1016/j.cep.2014.08.003.
  • Sahinkaya E, et al. Performance of a pilot-scale reverse osmosis process for water recovery from biologically-treated textile wastewater. J Environ Manage 2019;249(August):109382. doi:10.1016/j.jenvman.2019.109382.
  • Aktaş, et al. Treatment of a chemical industry effluent by nanofiltration and reverse osmosis. Desalin Water Treat. 2017;75(September):274–283. doi:10.5004/dwt.2017.20482.
  • Gedam V. Performance evaluation of polyamide reverse osmosis membrane for removal of contaminants in ground water collected from chandrapur District. J Membr Sci Technol. 2012;02. doi:10.4172/2155-9589.1000117.
  • Chon K, Cho J, Shon HK. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: Removal of nutrients and micropollutants, and characterization of membrane foulants. Bioresour Technol 2013;141:109–116. doi:10.1016/j.biortech.2013.03.198.
  • Johnson BR, et al. High-Capacity and rapid removal of refractory NOM using nanoscale anion exchange resin. ACS Applied Materials and Interfaces. 2016;8(28):18540–18549. doi:10.1021/acsami.6b04368.
  • Allpike BP, et al. Size exclusion chromatography to characterize DOC removal in drinking water treatment. Environ Sci Technol. 2005;39(7):2334–2342. doi:10.1021/es0496468.
  • Apell JN, Boyer TH. Combined ion exchange treatment for removal of dissolved organic matter and hardness. Water Res 2010;44(8):2419–2430. doi:10.1016/j.watres.2010.01.004.
  • Bazri MM, et al. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors. Chemosphere. 2016;144:1988–1995. doi:10.1016/j.chemosphere.2015.10.086.
  • Hu J, et al. Anionic exchange for NOM removal and the effects on micropollutant adsorption competition on activated carbon. Sep Purif Technol. 2014;129:25–31. doi:10.1016/j.seppur.2014.03.019.
  • Boyer TH, Singer PC. A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions. Water Res 2006;40(15):2865–2876. doi:10.1016/j.watres.2006.05.022.
  • Hassan MM, Carr CM. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. 2018;209:201–219. doi:10.1016/j.chemosphere.2018.06.043.
  • Petruzzelli D. ‘Solvent Extraction and Ion Exchange lead removal and recovery from battery’. Solvent Extraction Andion Exchange. 1999;(June):677–694. doi:10.1080/07366299908934633.
  • Mihaiela A, et al. (2009). ‘Use of Ion Exchange Resin to Remove the Mercury from Contaminated Waters’, (January 2015).
  • Bai Y, Bartkiewicz B. Removal of cadmium from wastewater using Ion exchange resin amberjet 1200H. Columns’. 2009;18(6):1191–1195.
  • Taylor P, et al. ‘Desalination and Water Treatment Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon’. 2015;(December):2645–2654. doi:10.1080/19443994.2013.868832.
  • Rengaraj S, Yeon K, Moon S. ‘Removal of chromium from water and wastewater by ion exchange resins’. 2001;87:273–287.
  • Swelam AA, Salem AMA, Ayman AA. Copper (II) removal using three cation exchange resins. Ion Exchange Equilibrium and Kinetics’. 2015;207:1017–1027.
  • Abdelwahab O, Amin NK, El-ashtoukhy EZ. Removal of zinc ions from aqueous solution using a cation exchange resin. Chem Eng Res Des. 2013;91(1):165–173. doi:10.1016/j.cherd.2012.07.005.
  • Comstock SEH, Boyer TH. ‘Combined magnetic ion exchange and cation exchange for removal of DOC and hardness’. Chem Eng J. 2014.. doi:10.1016/j.cej.2013.10.073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.