466
Views
3
CrossRef citations to date
0
Altmetric
Review

A review of technologies for bromide and iodide removal from water

, &
Pages 129-148 | Received 28 May 2022, Accepted 14 Feb 2023, Published online: 05 Mar 2023

References

  • Fehn U, Moran J, Snyder G, et al. The initial 129I/I ratio and the presence of ‘old’iodine in continental margins. Nucl Instrum Methods Phys Res Sect B. 2007;259:496–502. doi:10.1016/j.nimb.2007.01.191.
  • Greenwood NN, Earnshaw A. Chemistry of the elements. Oxford: Elsevier; 2012.
  • Allen T, Keefer R. The formation of hypoiodous acid and hydrated iodine cation by the hydrolysis of iodine. J Am Chem Soc. 1955;77:2957–2960.
  • Grgur BN. Electrochemical oxidation of bromides on DSA/RuO2 anode in the semi-industrial batch reactor for on-site water disinfection. J Electrochem Soc. 2019;166:E50–E61. doi:10.1149/2.1391902jes.
  • Fuge R, Johnson CC. The geochemistry of iodine—a review. Environ Geochem Health. 1986;8:31–54. doi:10.1007/BF02311063.
  • Bo A, Sarina S, Zheng Z, et al. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J Hazard Mater. 2013;246:199–205. doi:10.1016/j.jhazmat.2012.12.008.
  • Cui W, Hou H, Chen J, et al. The speciation analysis of iodate and iodide in high salt brine by high performance liquid chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2019;34:1374–1379. doi:10.1039/C9JA00121B.
  • Harkness JS, Dwyer GS, Warner NR, et al. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications. Environ Sci Technol. 2015;49:1955–1963. doi:10.1021/es504654n.
  • Parker KM, Zeng T, Harkness J, et al. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies. Environ Sci Technol. 2014;48:11161–11169. doi:10.1021/es5028184.
  • Mayfield EN, Norman CS. Moving away from methyl bromide: political economy of pesticide transition for California strawberries since 2004. J Environ Manag. 2012;106:93–101. doi:10.1016/j.jenvman.2012.04.009.
  • Sudoh M, Takuwa K, Iizuka H, et al. Effects of thermal and concentration boundary layers on vapor permeation in membrane distillation of aqueous lithium bromide solution. J Membr Sci. 1997;131:1–7. doi:10.1016/S0376-7388(97)00109-9.
  • Richardson SD. Disinfection by-products and other emerging contaminants in drinking water. TrAC, Trends Anal Chem. 2003;22:666–684. doi:10.1016/S0165-9936(03)01003-3.
  • Richardson SD, Fasano F, Ellington JJ, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environ Sci Technol. 2008;42:8330–8338. doi:10.1021/es801169k.
  • Dong H, Qiang Z, Richardson SD. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water: emerging concerns and current issues. Acc Chem Res. 2019a;52:896–905. doi:10.1021/acs.accounts.8b00641.
  • Plewa MJ, Wagner ED, Richardson SD, et al. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts. Environ Sci Technol. 2004;38:4713–4722. doi:10.1021/es049971v.
  • Phanthuwongpakdee J, Babel S, Kaneko T. Natural adsorbents for removal of different iodine species from aqueous environment: a review. In: Ghosh S, Saha P, Francesco Di M, editor. Recent trends in waste water treatment and water resource management. Singapore City: Springer; 2020. pp 171–198.
  • Theiss FL, Couperthwaite SJ, Ayoko GA, et al. A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. J Colloid Interface Sci. 2014;417:356–368. doi:10.1016/j.jcis.2013.11.040.
  • Watson K, Farré MJ, Knight N. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review. J Environ Manag. 2012;110:276–298. doi:10.1016/j.jenvman.2012.05.023.
  • Rivera-Utrilla J, Sánchez-Polo M, Polo A, et al. New technologies to remove halides from water: an overview. Adv Res Nanosci Water Technol. 2019: 147–180. doi:10.1007/978-3-030-02381-2_7.
  • Duranceau S. Determination of the total iodide content in desalinated seawater permeate. Desalination. 2010;261:251–254. doi:10.1016/j.desal.2010.06.039.
  • Bartels CR, Rybar S, Andes K, et al. Optimized removal of boron and other specific contaminants by SWRO membranes. IDA World Congress-Dubai UAE. 2009;9:7–12.
  • Harrison CJ, Le Gouellec YA, Cheng RC, et al. Bench-scale testing of nanofiltration for seawater desalination. J Environ Eng. 2007;133:1004–1014. doi:10.1061/(ASCE)0733-9372(2007)133:11(1004).
  • Valero F, Arbós R. Desalination of brackish river water using electrodialysis reversal (EDR): control of the THMs formation in the Barcelona (NE Spain) area. Desalination. 2010;253:170–174. doi:10.1016/j.desal.2009.11.011.
  • Chang H-M, Chen S-S, Cai Z-S, et al. Iodide recovery and boron removal from thin-film transistor liquid crystal display wastewater through forward osmosis. J Cleaner Prod. 2020;258:120587), doi:10.1016/j.jclepro.2020.120587.
  • Mohammad AW, Teow Y, Ang W, et al. Nanofiltration membranes review: recent advances and future prospects. Desalination. 2015;356:226–254. doi:10.1016/j.desal.2014.10.043.
  • Zuo K, Wang K, DuChanois RM, et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater Today. 2021;50:516–532. doi:10.1016/j.mattod.2021.06.013.
  • Liu J, Xie L, Wang Z, et al. Dual-stage nanofiltration seawater desalination: water quality, scaling and energy consumption. Desalin Water Treat. 2014a;52:134–144. doi:10.1080/19443994.2013.793991.
  • Hofmeister F. Zur lehre von der wirkung der salze. Arch Exp Pathol Pharmakol. 1888;24:247–260.
  • Diawara CK, Lô SM, Rumeau M, et al. A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water. J Membr Sci. 2003;219:103–112. doi:10.1016/S0376-7388(03)00189-3.
  • Hylling O, Fini MN, Ellegaard-Jensen L, et al. A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation. Sci Total Environ. 2019;694:133710. doi:10.1016/j.scitotenv.2019.133710.
  • Jin X, Li E, Lu S, et al. Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis. J Environ Sci. 2013;25:1565–1574. doi:10.1016/S1001-0742(12)60212-5.
  • Riley SM, Oliveira JM, Regnery J, et al. Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water. Sep Purif Technol. 2016;171:297–311. doi:10.1016/j.seppur.2016.07.008.
  • Xu P, Drewes JE. Viability of nanofiltration and ultra-low pressure reverse osmosis membranes for multi-beneficial use of methane produced water. Sep Purif Technol. 2006;52:67–76. doi:10.1016/j.seppur.2006.03.019.
  • Henthorne L, Boysen B. State-of-the-art of reverse osmosis desalination pretreatment. Desalination. 2015;356:129–139. doi:10.1016/j.desal.2014.10.039.
  • Al-Amshawee S, Yunus MYBM, Azoddein AAM, et al. Electrodialysis desalination for water and wastewater: A review. Chem Eng J. 2020;380:122231. doi:10.1016/j.cej.2019.122231.
  • Chua S-C, Isa MH, Ho Y-C. Electrodialysis (ED): A review on the fundamental concept, advantages, limitations and future trend. Platform A J Sci Technol. 2020;3:14–22.
  • Sata T, Mine K, Tagami Y, et al. Changing permselectivity between halogen ions through anion exchange membranes in electrodialysis by controlling hydrophilicity of the membranes. J Chem Soc, Faraday Trans. 1998;94:147–153. doi:10.1039/A704396A.
  • Ahmed FE, Lalia BS, Hashaikeh R, et al. Alternative heating techniques in membrane distillation: A review. Desalination. 2020;496:114713. doi:10.1016/j.desal.2020.114713.
  • Ali AHH. Design of a compact absorber with a hydrophobic membrane contactor at the liquid–vapor interface for lithium bromide–water absorption chillers. Appl Energy. 2010;87:1112–1121. doi:10.1016/j.apenergy.2009.05.018.
  • Wang Z, Feng S, Shi X et al. Experimental study on concentration of aqueous lithium bromide solution by vacuum membrane distillation process. International refrigeration and Air conditioning conference. 2008
  • Yao M, Tijing LD, Naidu G, et al. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination. 2020;479:114312. doi:10.1016/j.desal.2020.114312.
  • Nariyan E, Aravindakshan N, Yu Q, et al. Removal of iodides and bromides at parts per million concentrations using a novel bismuth composite material. Mater Today Sustain. 2020;10:100054. doi:10.1016/j.mtsust.2020.100054.
  • Seon J, Hwang Y. Cu/Cu2O-immobilized cellulosic filter for enhanced iodide removal from water. J Hazard Mater. 2021;409:124415. doi:10.1016/j.jhazmat.2020.124415.
  • Gong C, Zhang Z, Qian Q, et al. Removal of bromide from water by adsorption on silver-loaded porous carbon spheres to prevent bromate formation. Chem Eng J. 2013;218:333–340. doi:10.1016/j.cej.2012.12.059.
  • Chitrakar R, Tezuka S, Sonoda A, et al. A new method for synthesis of Mg− Al, Mg− Fe, and Zn− Al layered double hydroxides and their uptake properties of bromide ion. Ind Eng Chem Res. 2008;47:4905–4908. doi:10.1021/ie0716417
  • Inglezakis VJ, Satayeva A, Yagofarova A, et al. Surface interactions and mechanisms study on the removal of iodide from water by use of natural zeolite-based silver nanocomposites. Nanomaterials. 2020;10:1156. doi:10.3390/nano10061156.
  • Li J, Wang M, Liu G, et al. Enhanced iodide removal from water by nano-silver modified anion exchanger. Ind Eng Chem Res. 2018;57:17401–17408. doi:10.1021/acs.iecr.8b04635.
  • Zhang W, Li Q, Mao Q, et al. Cross-linked chitosan microspheres: An efficient and eco-friendly adsorbent for iodide removal from waste water. Carbohydr Polym. 2019;209:215–222. doi:10.1016/j.carbpol.2019.01.032.
  • Pishko AL, Serkiz SM, Rao AM. Removal and sequestration of iodide from alkaline solutions using silver-doped carbon nanotubes. J South Carolina Academy Sci. 2011;9:12.
  • Yang D, Liu H, Liu L, et al. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale. 2013;5:11011–11018. doi:10.1039/C3NR02412A.
  • Lefevre G, Walcarius A, Ehrhardt J-J, et al. Sorption of iodide on cuprite (Cu2O). Langmuir. 2000;16:4519–4527. doi:10.1021/la9903999.
  • Mao P, Liu Y, Jiao Y, et al. Enhanced uptake of iodide on Ag@ Cu2O nanoparticles. Chemosphere. 2016a;164:396–403. doi:10.1016/j.chemosphere.2016.08.116.
  • Lefèvre G, Alnot M, Ehrhardt J, et al. Uptake of iodide by a mixture of metallic copper and cupric compounds. Environ Sci Technol. 1999;33:1732–1737. doi:10.1021/es981034y.
  • Liu S, Kang S, Wang H, et al. Nanosheets-built flowerlike micro/nanostructured Bi2O2. 33 and its highly efficient iodine removal performances. Chem Eng J. 2016;289:219–230. doi:10.1016/j.cej.2015.12.101
  • Xiong Y, Dang B, Wang C, et al. Cellulose fibers constructed convenient recyclable 3D graphene-formicary-like δ-Bi2O3 aerogels for the selective capture of iodide. ACS Appl Mater Interfaces. 2017;9:20554–20560. doi:10.1021/acsami.7b03516.
  • Chen C, Apul OG, Karanfil T. Removal of bromide from surface waters using silver impregnated activated carbon. Water Res. 2017;113:223–230. doi:10.1016/j.watres.2017.01.019.
  • Polo A, Lopez-Peñalver J, Rivera-Utrilla J, et al. Halide removal from waters by silver nanoparticles and hydrogen peroxide. Sci Total Environ. 2017;607:649–657. doi:10.1016/j.scitotenv.2017.05.144.
  • Lee S-H, Takahashi Y. Selective immobilization of iodide onto a novel bismuth-impregnated layered mixed metal oxide: batch and EXAFS studies. J Hazard Mater. 2020;384:121223. doi:10.1016/j.jhazmat.2019.121223.
  • Zhang H, Gao X, Guo T, et al. Adsorption of iodide ions on a calcium alginate–silver chloride composite adsorbent. Colloids Surf, A. 2011;386:166–171. doi:10.1016/j.colsurfa.2011.07.014.
  • Polo A, Lopez-Peñalver J, Sánchez-Polo M, et al. Halide removal from water using silver doped magnetic-microparticles. J Environ Manag. 2020;253:109731. doi:10.1016/j.jenvman.2019.109731.
  • Liu L, Liu W, Zhao X, et al. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Appl Mater Interfaces. 2014b;6:16082–16090. doi:10.1021/am504000n.
  • Zhang T, Yue X, Gao L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: preparation, characterization and iodine adsorption. J Cleaner Prod. 2017a;144:220–227. doi:10.1016/j.jclepro.2017.01.030.
  • Pavlovic M, Rouster P, Oncsik T, et al. Tuning colloidal stability of layered double hydroxides: from monovalent ions to polyelectrolytes. ChemPlusChem. 2017;82:121–131. doi:10.1002/cplu.201600295.
  • Lv L, Wang Y, Wei M, et al. Bromide ion removal from contaminated water by calcined and uncalcined MgAl-CO3 layered double hydroxides. J Hazard Mater. 2008;152:1130–1137. doi:10.1016/j.jhazmat.2007.07.117.
  • Theiss FL, Ayoko GA, Frost RL. Sorption of iodide (I−) from aqueous solution using Mg/Al layered double hydroxides. Mater Sci Eng C. 2017;77:1228–1234. doi:10.1016/j.msec.2017.03.284
  • Mishra G, Dash B, Pandey S. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci. 2018;153:172–186. doi:10.1016/j.clay.2017.12.021.
  • Liang L, Li L. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. J Radioanal Nucl Chem. 2007;273:221–226.
  • Bergaya F, Lagaly G. General introduction: clays, clay minerals, and clay science. Develop Clay Sci. 2006;1:1–18. doi:10.1016/S1572-4352(05)01001-9.
  • Choung S, Kim M, Yang J-S, et al. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite. Environ Sci Technol. 2014;48:9684–9691. doi:10.1021/es501661z.
  • Warchoł J, Misaelides P, Petrus R, et al. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J Hazard Mater. 2006;137:1410–1416. doi:10.1016/j.jhazmat.2006.04.028.
  • Jang J, Lee DS. Magnetite nanoparticles supported on organically modified montmorillonite for adsorptive removal of iodide from aqueous solution: optimization using response surface methodology. Sci Total Environ. 2018;615:549–557. doi:10.1016/j.scitotenv.2017.09.324.
  • Buzetzky D, Nagy NM, Kónya J. Use of silver–bentonite in sorption of chloride and iodide ions. J Radioanal Nucl Chem. 2020;326:1795–1804. doi:10.1007/s10967-020-07457-2.
  • Bhatnagar A, Hogland W, Marques M, et al. An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J. 2013;219:499–511. doi:10.1016/j.cej.2012.12.038.
  • Rajaeian B, Allard S, Joll C, et al. Effect of preconditioning on silver leaching and bromide removal properties of silver-impregnated activated carbon (SIAC). Water Res. 2018;138:152–159. doi:10.1016/j.watres.2018.03.026.
  • Sánchez-Polo M, Rivera-Utrilla J, Salhi E, et al. Ag-doped carbon aerogels for removing halide ions in water treatment. Water Res. 2007;41:1031–1037. doi:10.1016/j.watres.2006.07.009.
  • Watson K, Farré MJ, Knight N. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal. Sci Total Environ. 2016;542:672–684. doi:10.1016/j.scitotenv.2015.10.125.
  • Yu F, Chen Y, Wang Y, et al. Enhanced removal of iodide from aqueous solution by ozonation and subsequent adsorption on Ag–Ag2O modified on carbon spheres. Appl Surf Sci. 2018;427:753–762. doi:10.1016/j.apsusc.2017.08.089.
  • Ateia M, Erdem CU, Ersan MS, et al. Selective removal of bromide and iodide from natural waters using a novel AgCl-SPAC composite at environmentally relevant conditions. Water Res. 2019;156:168–178. doi:10.1016/j.watres.2019.03.028.
  • Zhang X, Gu P, Li X, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem Eng J. 2017b;322:129–139. doi:10.1016/j.cej.2017.03.102.
  • Zhang X, Gu P, Zhou S, et al. Enhanced removal of iodide ions by nano Cu2O/Cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption. Sci Total Environ. 2018;626:612–620. doi:10.1016/j.scitotenv.2018.01.078.
  • Rong J, Zhao Z, Jing Z, et al. High-specific surface area hierarchical Al2O3 carbon fiber based on a waste paper fiber template: preparation and adsorption for iodide ions. J Wood Chem Technol. 2017;37:485–492. doi:10.1080/02773813.2017.1347684.
  • McNaught A, Wilkinson A. Compendium of chemical terminology. Oxford: Blackwell Science; 1997.
  • Phetrak A, Lohwacharin J, Sakai H, et al. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products. J Environ Sci. 2014;26:1294–1300. doi:10.1016/S1001-0742(13)60602-6.
  • Soyluoglu M, Ersan MS, Ateia M, et al. Removal of bromide from natural waters: bromide-selective vs. conventional ion exchange resins. Chemosphere. 2020;238:124583. doi:10.1016/j.chemosphere.2019.124583.
  • Hsu S, Singer PC. Removal of bromide and natural organic matter by anion exchange. Water Res. 2010;44:2133–2140. doi:10.1016/j.watres.2009.12.027.
  • Ding L, Deng H, Wu C, et al. Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chem Eng J. 2012;181:360–370. doi:10.1016/j.cej.2011.11.096`.
  • Mao P, Qi B, Liu Y, et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution. J Solid State Chem. 2016b;237:274–283. doi:10.1016/j.jssc.2016.02.030.
  • Saheed IO, Da OW, Suah FBM. Chitosan modifications for adsorption of pollutants – a review. J Hazard Mater. 2021;408:124889. doi:10.1016/j.jhazmat.2020.124889.
  • Zhao X, Han X, Li Z, et al. Enhanced removal of iodide from water induced by a metal-incorporated porous metal–organic framework. Appl Surf Sci. 2015;351:760–764. doi:10.1016/j.apsusc.2015.05.186.
  • Fan S, Huang Z, Zhang Y, et al. Magnetic chitosan-hydroxyapatite composite microspheres: preparation, characterization, and application for the adsorption of phenolic substances. Bioresour Technol. 2019;274:48–55. doi:10.1016/j.biortech.2018.11.078.
  • Li X, Zeng D, He Z, et al. Magnetic chitosan microspheres: an efficient and recyclable adsorbent for the removal of iodide from simulated nuclear wastewater. Carbohydr Polym. 2021;276:118729. doi:10.1016/j.carbpol.2021.118729.
  • Rao C, Cheetham A. Science and technology of nanomaterials: current status and future prospects. J Mater Chem. 2001;11:2887–2894. doi:10.1039/B105058N.
  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–592. doi:10.1039/b502142c.
  • Zhang X, Ji Z-Y, Liu F, et al. Investigation of electrochemical oxidation technology for selective bromine extraction in comprehensive utilization of concentrated seawater. Sep Purif Technol. 2020;248:117108. doi:10.1016/j.seppur.2020.117108.
  • Xu P, Drewes JE, Heil D, et al. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 2008;42:2605–2617. doi:10.1016/j.watres.2008.01.011.
  • Dorji P, Kim DI, Jiang J, et al. Bromide and iodide selectivity in membrane capacitive deionisation, and its potential application to reduce the formation of disinfection by-products in water treatment. Chemosphere. 2019;234:536–544. doi:10.1016/j.chemosphere.2019.05.266.
  • Lakshmanan S, Murugesan T. The chlor-alkali process: work in progress. Clean Technol Environ Policy. 2014;16:225–234. doi:10.1007/s10098-013-0630-6.
  • Sun M, Lowry GV, Gregory KB. Selective oxidation of bromide in wastewater brines from hydraulic fracturing. Water Res. 2013;47:3723–3731. doi:10.1016/j.watres.2013.04.041.
  • Kimbrough DE, Suffet I. Electrochemical removal of bromide and reduction of THM formation potential in drinking water. Water Res. 2002;36:4902–4906. doi:10.1016/S0043-1354(02)00210-5.
  • Qi J, Savinell R. Analysis of flow-through porous electrode cell with homogeneous chemical reactions: application to bromide oxidation in brine solutions. J Appl Electrochem. 1993;23:873–886. doi:10.1007/BF00251022.
  • Yalçin H, Koç T, Pamuk V. Hydrogen and bromine production from concentrated sea-water. Int J Hydrogen Energy. 1997;22:967–970. doi:10.1016/S0360-3199(96)00214-5.
  • Tang HL, Tang L, Xie YF. Aerated electrolysis for reducing impacts of shale gas production wastewater on water sources regarding disinfection byproduct formation. Environ Sci Technol Lett. 2018;5:681–686. doi:10.1021/acs.estlett.8b00482.
  • Martínez-Huitle CA, Rodrigo MA, Sires I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev. 2015;115:13362–13407. doi:10.1021/acs.chemrev.5b00361.
  • Grgur B, Gvozdenović M, Stevanović J, et al. Electrochemical oxidation of iodide in aqueous solution. Chem Eng J. 2006;124:47–54. doi:10.1016/j.cej.2006.08.028.
  • Jung S-H, Yeon J-W, Song K. Study on the electrochemical behavior of iodide at platinum electrode in potassium chlorate solution. Transactions of the Korean nuclear society spring meeting. 2012
  • Porada S, Zhao R, Van Der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci. 2013;58:1388–1442. doi:10.1016/j.pmatsci.2013.03.005.
  • Ying T-Y, Yang K-L, Yiacoumi S, et al. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J Colloid Interface Sci. 2002;250:18–27. doi:10.1006/jcis.2002.8314.
  • AlMarzooqi FA, Al Ghaferi AA, Saadat I, et al. Application of capacitive deionisation in water desalination: a review. Desalination. 2014;342:3–15. doi:10.1016/j.desal.2014.02.031.
  • Chen Z, Zhang H, Wu C, et al. A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization. Desalination. 2015;369:46–50. doi:10.1016/j.desal.2015.04.022.
  • Gamaethiralalage J, Singh K, Sahin S, et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ Sci. 2021;14:1095–1120. doi:10.1021/ed200055t.
  • Dorji P, Phuntsho S, Kim DI, et al. Electrode for selective bromide removal in membrane capacitive deionisation. Chemosphere. 2021;287:132169. doi:10.1016/j.chemosphere.2021.132169.
  • Chen J-J, Yeh H-H. The mechanisms of potassium permanganate on algae removal. Water Res. 2005;39:4420–4428. doi:10.1016/j.watres.2005.08.032.
  • Mouchet P, Bonnelye V. Solving algae problems: French expertise and world-wide applications. J Water Supply Res Technol—AQUA. 1998;47:125–141. doi:10.2166/aqua.1998.19.
  • Huang KZ, Zhang H. Highly efficient bromide removal from shale gas produced water by unactivated peroxymonosulfate for controlling disinfection byproduct formation in impacted water supplies. Environ Sci Technol. 2020;54:5186–5196. doi:10.1021/acs.est.9b06825.
  • Wang M, Qiu S, Yang H, et al. Spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of potassium iodide and its applications to hydroxylamine-involved Fenton and Fenton-like systems. Chemosphere. 2021;270:129448. doi:10.1016/j.chemosphere.2020.129448.
  • Jones DB, Song H, Karanfil T. The effects of selected preoxidation strategies on I-THM formation and speciation. Water Res. 2012;46:5491–5498. doi:10.1016/j.watres.2012.07.018.
  • Thompson KM, Griffith WP, Spiro M. Mechanism of peroxide bleaching at high pH. J Chem Soc, Chem Commun. 1992;21:1600–1601. doi:10.1039/C39920001600.
  • Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. 2018;334:1502–1517. doi:10.1016/j.cej.2017.11.059.
  • Devi P, Das U, Dalai AK. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Sci Total Environ. 2016;571:643–657. doi:10.1016/j.scitotenv.2016.07.032.
  • Dong Z, Jiang C, Yang J, et al. Transformation of iodide by Fe (II) activated peroxydisulfate. J Hazard Mater. 2019b;373:519–526. doi:10.1016/j.jhazmat.2019.03.063.
  • Wang L, Kong D, Ji Y, et al. Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process. Chemosphere. 2017;181:400–408. doi:10.1016/j.chemosphere.2017.04.076.
  • Sharma VK, Mishra SK, Nesnas N. Oxidation of sulfonamide antimicrobials by ferrate (VI)[FeVIO42-]. Environ Sci Technol. 2006;40:7222–7227. doi:10.1021/es060351z.
  • Zhang M-S, Xu B, Wang Z, et al. Formation of iodinated trihalomethanes after ferrate pre-oxidation during chlorination and chloramination of iodide-containing water. J Taiwan Inst Chem Eng. 2016;60:453–459. doi:10.1016/j.jtice.2015.11.007.
  • Shin J, von Gunten U, Reckhow DA, et al. Reactions of ferrate (VI) with iodide and hypoiodous acid: kinetics, pathways, and implications for the fate of iodine during water treatment. Environ Sci Technol. 2018;52:7458–7467. doi:10.1021/acs.est.8b01565.
  • Huang X, Deng Y, Liu S, et al. Formation of bromate during ferrate (VI) oxidation of bromide in water. Chemosphere. 2016;155:528–533. doi:10.1016/j.chemosphere.2016.04.093.
  • Fukutomi H, Gordon G. Kinetic study of the reaction between chlorine dioxide and potassium iodide in aqueous solution. J Am Chem Soc. 1967;89:1362–1366.
  • Ikari M, Matsui Y, Suzuki Y, et al. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon. Water Res. 2015;68:227–237. doi:10.1016/j.watres.2014.10.021.
  • Acero JL, Piriou P, Von Gunten U. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development. Water Res. 2005;39:2979–2993. doi:10.1016/j.watres.2005.04.055.
  • Cowman GA, Singer PC. Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances. Environ Sci Technol. 1995;30:16–24. doi:10.1021/es9406905.
  • Li JW, Yu Z, Cai X, et al. Trihalomethanes formation in water treated with chlorine dioxide. Water Res. 1996;30:2371–2376. doi:10.1016/0043-1354(96)00146-7.
  • Hoigné J, Bader H. Kinetics of reactions of chlorine dioxide (OClO) in water — I. rate constants for inorganic and organic compounds. Water Res. 1994;28:45–55. doi:10.1016/0043-1354(94)90118-X.
  • Criquet J, Allard S, Salhi E, et al. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide. Environ Sci Technol. 2012;46:7350–7357. doi:10.1021/es301301g.
  • Lawani SA, Sutter JR. Kinetic studies of permanganate oxidation reactions. IV. Reaction with bromide ion. J Phys Chem. 1973;77:1547–1551. doi:10.1021/j100631a013.
  • Kirschenbaum LJ, Sutter JR. Kinetic studies of permanganate oxidation reactions. I. Reaction with Iodide ion. J Phys Chem. 1966;70:3863–3866. doi:10.1021/j100884a020.
  • Zhang T-Y, Xu B, Hu C-Y, et al. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes. Water Res. 2015;68:394–403. doi:10.1016/j.watres.2014.09.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.