1,544
Views
3
CrossRef citations to date
0
Altmetric
Review

Waste bone char-derived adsorbents: characteristics, adsorption mechanism and model approach

, , &
Pages 175-204 | Received 06 Nov 2022, Accepted 19 Mar 2023, Published online: 13 Apr 2023

References

  • Hart A, Ebiundu K, Peretomode E, et al. Value-added materials recovered from waste bone biomass: technologies and applications. RSC Adv. 2022;12(34):22302–22330. doi:10.1039/d2ra03557j.
  • A. Hart and E. Aliu, Materials from eggshells and animal bones and their catalytic applications. In: Minh Doan Pham, editor. Design and applications of hydroxyapatite-based catalysts. Boschstr. 12, 69469 Weinheim, Germany: John Wiley & Sons; 2022. p. 437–479.
  • A. Hart and H. Onyeaka, Carbon capture. In: Khan SAR, editor. Eggshell and seashells biomaterials sorbent for carbon dioxide capture. London: IntechOpen; 2020. p. 83–94.
  • Rojas-Mayorga CK, et al. Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. J Anal Appl Pyrolysis. 2013;104:10–18. doi:10.1016/j.jaap.2013.09.018.
  • Hart A. Mini-review of waste shell-derived materials’ applications. Waste Manag Res. 2020;38(5):514–527. doi:10.1177/0734242X19897812.
  • Hart A. Circular economy : closing the catalyst loop with metal reclamation from spent catalysts, industrial waste, waste shells and animal bones. Biomass Convers Biorefinery. 2021. doi:10.1007/s13399-021-01942-8.
  • Azeem M, et al. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. J Hazard Mater. 2022;427:128131, doi:10.1016/j.jhazmat.2021.128131.
  • Bennett MC, Abram JC. Adsorption from solution on the carbon and hydroxyapatite components of bone char. J Colloid Interface Sci. 1967;23(4):513–521. doi:10.1016/0021-9797(67)90198-1.
  • Hyder AHMG, Begum SA, Egiebor NO. Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J Environ Chem Eng. 2015;3(2):1329–1336. doi:10.1016/j.jece.2014.12.005.
  • Rojas-Mayorga CK, Mendoza-Castillo DI, Bonilla-Petriciolet A, et al. Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution. Adsorpt Sci Technol. 2016;34(6):368–387. doi:10.1177/0263617416658891.
  • Yami TL, Du J, Brunson LR, et al. Life cycle assessment of adsorbents for fluoride removal from drinking water in East Africa. Int J Life Cycle Assess. 2015;20(9):1277–1286. doi:10.1007/s11367-015-0920-9.
  • Someus E, Pugliese M. Concentrated phosphorus recovery from food grade animal bones. Sustain. 2018;10(7):1–17. doi:10.3390/su10072349.
  • Medellin-Castillo NA, et al. Adsorption of fluoride from water solution on bone char. Ind Eng Chem Res. 2007;46(26):9205–9212. doi:10.1021/ie070023n.
  • Alkurdi SSA, Al-Juboori RA, Bundschuh J, et al. Bone char as a green sorbent for removing health threatening fluoride from drinking water. Environ Int. 2019;127:704–719. doi:10.1016/j.envint.2019.03.065.
  • Iriarte-Velasco U, Sierra I, Zudaire L, et al. Preparation of a porous biochar from the acid activation of pork bones. Food Bioprod Process. 2016;98:341–353. doi:10.1016/j.fbp.2016.03.003.
  • Rezaee A, Rangkooy H, Jonidi-Jafari A, et al. Surface modification of bone char for removal of formaldehyde from air. Appl Surf Sci. 2013;286:235–239. doi:10.1016/j.apsusc.2013.09.053.
  • Wang M, Liu Y, Yao Y, et al. Comparative evaluation of bone chars derived from bovine parts: physicochemical properties and copper sorption behavior. Sci Total Environ. 2020;700:134470, doi:10.1016/j.scitotenv.2019.134470.
  • Wang J, Guo X. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere. 2020;258:127279, doi:10.1016/j.chemosphere.2020.127279.
  • Abe I, Iwasaki S, Tokimoto T, et al. Adsorption of fluoride ions onto carbonaceous materials. J Colloid Interface Sci. 2004;275:35–39. doi:10.1016/j.jcis.2003.12.031.
  • Rezaee A, Ghanizadeh G, Behzadiyannejad G, et al. Adsorption of endotoxin from aqueous solution using bone char. Bull Environ Contam Toxicol. 2009;82(6):732–737. doi:10.1007/s00128-009-9690-z.
  • Medellin-Castillo NA, et al. Removal of fluoride from aqueous solution using acid and thermally treated bone char. Adsorption. 2016;22:951–961. doi:10.1007/s10450-016-9802-0.
  • Kennedy AM, Arias-Paic M. Fixed-bed adsorption comparisons of bone char and activated alumina for the removal of fluoride from drinking water. J Environ Eng. 2020;146(1):04019099, doi:10.1061/(asce)ee.1943-7870.0001625.
  • Chen YN, Chai LY, De Shu Y. Study of arsenic(V) adsorption on bone char from aqueous solution. J Hazard Mater. 2008;160(1):168–172. doi:10.1016/j.jhazmat.2008.02.120.
  • Liu J, Huang X, Liu J, et al. Adsorption of arsenic(V) on bone char: batch, column and modeling studies. Environ Earth Sci. 2014;72(6):2081–2090. doi:10.1007/s12665-014-3116-x.
  • Alkurdi SSA, Al-juboori RA, Bundschuh J, et al. Inorganic arsenic species removal from water using bone char : a detailed study on adsorption kinetic and isotherm models using error functions analysis. J Hazard Mater. 2021;405(July 2020):124112, doi:10.1016/j.jhazmat.2020.124112.
  • Moreno JC, Gómez R, Giraldo L. Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal. Materials (Basel). 2010;3(1):452–466. doi:10.3390/ma3010452.
  • Hassan SSM, Awwad NS, Aboterika AHA. Removal of mercury(II) from wastewater using camel bone charcoal. J Hazard Mater. 2008;154(1–3):992–997. doi:10.1016/j.jhazmat.2007.11.003.
  • Slimani R, El Ouahabi I, Elmchaouri A, et al. Adsorption of copper (II) and zinc (II) onto calcined animal bone meal. Part I: kinetic and thermodynamic parameters. Chem Data Collect. 2017;9–10:184–196. doi:10.1016/j.cdc.2017.06.006.
  • Ghaneian MT, Ghanizadeh G, Alizadeh MTH, et al. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution. Environ Technol. 2014;35(7):882–890. doi:10.1080/09593330.2013.854838.
  • Kasim NZ, Abd Malek NAA, Hairul Anuwar NS, et al. Adsorptive removal of phosphate from aqueous solution using waste chicken bone and waste cockle shell. Mater Today Proc. 2020;31:A1–A5. doi:10.1016/j.matpr.2020.09.687.
  • Yang Y, Sun C, Lin B, et al. Surface modified and activated waste bone char for rapid and efficient VOCs adsorption. Chemosphere. 2020;256:127054, doi:10.1016/j.chemosphere.2020.127054.
  • Becerra-Pérez O, et al. Energy-saving and sustainable separation of bioalcohols by adsorption on bone char. Adsorpt Sci Technol. 2021;2021(Article ID 6615766):16, doi:10.1155/2021/6615766.
  • Jia P, Tan H, Liu K, et al. Removal of methylene blue from aqueous solution by bone char. Appl Sci. 2018;8(10):1903, doi:10.3390/app8101903.
  • Jia P, Tan H, Liu K, et al. Enhanced photocatalytic performance of ZnO/bone char composites. Mater Lett. 2017;205:233–235. doi:10.1016/j.matlet.2017.06.099.
  • Zhou X, et al. Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media. Chem Eng J. 2020;383:123091, doi:10.1016/j.cej.2019.123091.
  • Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A. Relevance of anionic dye properties on water decolorization performance using bone char: adsorption kinetics, isotherms and breakthrough curves. J Mol Liq. 2016;219:425–434. doi:10.1016/j.molliq.2016.03.051.
  • Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017(Article ID 3039817):11, doi:10.1155/2017/3039817.
  • Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10. doi:10.1016/j.cej.2009.09.013.
  • Ko DCK, Cheung CW, Choy KKH, et al. Sorption equilibria of metal ions on bone char. Chemosphere. 2004;54(3):273–281. doi:10.1016/j.chemosphere.2003.08.004.
  • Amiri MJ, Bahrami M, Nekouee N. Analysis of breakthrough curve performance using theoretical and empirical models: Hg2+ removal by bone char from synthetic and real water. Arab J Sci Eng. 2022. doi:10.1007/s13369-022-07432-x.
  • Amiri MJ, Bahrami M, Dehkhodaie F. Optimization of Hg(II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies. J Water Health. 2019;17(4):556–567. doi:10.2166/wh.2019.039.
  • Cruz-Briano SA, Medellín-Castillo NA, Torres‑Dosal A, et al. Bone char from an invasive aquatic specie as a green adsorbent for fluoride removal in drinking water. Water Air Soil Pollut. 2021;232(9):346, doi:10.1007/s11270-021-05286-x.
  • Zhu L, Shen D, Luo KH. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. J Hazard Mater. 2020;389(5 May 2020):122102, doi:10.1016/j.jhazmat.2020.122102.
  • Saffari M, Moazallahi M. Evaluation of slow-pyrolysis process effect on adsorption characteristics of cow bone for Ni ion removal from Ni- contaminated aqueous solutions. Pollution. 2022;8(3):1076–1087. doi:10.22059/POLL.2022.339417.1377.
  • Hu J, Wu D, Rao R, et al. Adsorption kinetics of fluoride on bone char and its regeneration. Environ Prot Eng. 2017;43(3):93–112. doi:10.5277/epe170306.
  • Yang W, Luo W, Sun T, et al. Adsorption performance of Cd(II) by chitosan-Fe3O4-modified fish bone char. Int J Environ Res Public Health. 2022;19:1260.
  • Patel S, Han J, Qiu W, et al. Journal of Environmental Chemical Engineering Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. Biochem Pharmacol. 2015;3(4):2368–2377. doi:10.1016/j.jece.2015.07.031.
  • Dela Piccolla C, Hesterberg D, Muraoka T, et al. Optimizing pyrolysis conditions for recycling pig bones into phosphate fertilizer. Waste Manag. 2021;131(November 2020):249–257. doi:10.1016/j.wasman.2021.06.012.
  • Alkurdi S, Al-Juboori R, Bundschuh J, et al. Evaluating the ability of bone char/nTiO2 composite and UV radiation for simultaneous oxidation and adsorption of arsenite. Sustain Chem. 2022;3(1):19–34. doi:10.3390/suschem3010002.
  • Malla KP, et al. Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone. Int J Biomater. 2020;2020:1690178, doi:10.1155/2020/1690178.
  • Abifarin JK, Obada DO, Dauda ET, et al. Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data Br. 2019;26:104485, doi:10.1016/j.dib.2019.104485.
  • Guo Q, Tang H, Jiang L, et al. Sorption of Cd2 + on bone chars with or without hydrogen peroxide treatment under various pyrolysis temperatures: comparison of mechanisms and performance. Processes. 2022;10(4):618, doi:10.3390/pr10040618.
  • Hernández-Barreto DF, Hernández-Cocoletzi H, Moreno-Piraján JC. Biogenic hydroxyapatite obtained from bone wastes using CO2 – assisted pyrolysis and its interaction with glyphosate : a computational and experimental study. ACS Omega. 2022;7:23265–23275. doi:10.1021/acsomega.2c01379.
  • Choy KKH, Ko DCK, Cheung CW, et al. Film and intraparticle mass transfer during the adsorption of metal ions onto bone char. J Colloid Interface Sci. 2004;271:284–295. doi:10.1016/j.jcis.2003.12.015.
  • Inglezakis VJ, Balsamo M, Montagnaro F. Liquid − solid mass transfer in adsorption systems−an overlooked resistance ? Ind Eng Chem Res. 2020;59(50):22007–22016. doi:10.1021/acs.iecr.0c05032.
  • Gai WZ, Deng ZY. A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism. Environ Sci Water Res Technol. 2021;7(8):1362–1386. doi:10.1039/d1ew00232e.
  • Nasrollahzadeh M, Soheili Bidgoli NS, Shafiei N, et al. Low-cost and sustainable (nano)catalysts derived from bone waste: catalytic applications and biofuels production. Biofuels, Bioprod Biorefining. 2020;14(6):1197–1227. doi:10.1002/bbb.2138.
  • Chojnacka K. Equilibrium and kinetic modelling of chromium(III) sorption by animal bones. Chemosphere. 2005;59(3):315–320. doi:10.1016/j.chemosphere.2004.10.052.
  • Deydier E, Guilet R, Sharrock P. Beneficial use of meat and bone meal combustion residue: ‘an efficient low cost material to remove lead from aqueous effluent’. J Hazard Mater. 2003;101(1):55–64. doi:10.1016/S0304-3894(03)00137-7.
  • Elvir-padilla LG, Mendoza-castillo DI. Adsorption of dental clinic pollutants using bone char : adsorbent preparation, assessment and mechanism analysis. Chem Eng Res Des. 2022;183:192–202. doi: 10.1016/j.cherd.2022.05.003.
  • Villela-Martínez DE, Leyva-Ramos R, Aragón-Piña A, et al. Arsenic elimination from water solutions by adsorption on bone char. Effect of operating conditions and removal from actual drinking water. Water Air Soil Pollut. 2020;231(5):201, doi:10.1007/s11270-020-04596-w.
  • Alkurdi SSA, Herath I, Bundschuh J, et al. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research? Environ Int. 2019;127(June 2019):52–69. doi:10.1016/j.envint.2019.03.012.
  • Al-Sou’od K. Kinetics of the adsorption of hexavalent chromium from aqueous solutions on low cost material. African J Pure Appl Chem. 2012;6:190–197. doi:10.5897/AJPAC12.064.
  • Wang J, Guo X. Adsorption kinetic models : physical meanings, applications, and solving methods. J Hazard Mater. 2020;390(November 2019):122156, doi:10.1016/j.jhazmat.2020.122156.
  • Chu KH. Revisiting the Temkin isotherm : dimensional inconsistency and approximate forms. Ind Eng Chem Res. 2021;60(35):13140–13147. doi:10.1021/acs.iecr.1c01788.
  • Cheung CW, Porter JF, Mckay G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res. 2001;35(3):605–612. doi:10.1016/S0043-1354(00)00306-7.
  • Nigri EM, Cechinel PAM, Mayer AD, et al. Cow bones char as a green sorbent for fluorides removal from aqueous solutions : batch and fixed-bed studies. Environ Sci Pollut Res. 2017;24:2364–2380. doi:10.1007/s11356-016-7816-5.
  • Bedin KC, de Azevedo SP, Leandro PKT, et al. Bone char prepared by CO2 atmosphere: preparation optimization and adsorption studies of Remazol Brilliant Blue R. J Clean Prod. 2017;161:288–298. doi:10.1016/j.jclepro.2017.05.093.
  • Pan X, Wang J, Zhang D. Sorption of cobalt to bone char: kinetics, competitive sorption and mechanism. Desalination. 2009;249(2):609–614. doi:10.1016/j.desal.2009.01.027.
  • de Melo NH, de Oliveira Ferreira ME, Silva Neto EM, et al. Evaluation of the adsorption process using activated bone char functionalized with magnetite nanoparticles. Environ Nanotechnol Monit Manag. 2018;10(December 2018):427–434. doi:10.1016/j.enmm.2018.10.005.
  • Patel S, Han J, Gao W. Sorption of 17β-estradiol from aqueous solutions on to bone char derived from waste cattle bones: kinetics and isotherms. J Environ Chem Eng. 2015;3(3):1562–1569. doi:10.1016/j.jece.2015.04.027.
  • Cheung CW, Porter JF, McKay G. Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir. 2002;18(3):650–656.
  • Li Y, Wang M, Liu J, et al. Adsorption/desorption behavior of ionic dyes on sintered bone char. Mater Chem Phys. 2023;297(January):127405. doi:10.1016/j.matchemphys.2023.127405.
  • Moussavi SP, et al. Superior removal of humic acid from aqueous stream using novel calf bones charcoal nanoadsorbent in a reversible process. Chemosphere. 2022;301(March):134673. doi:10.1016/j.chemosphere.2022.134673.
  • Subramanyam B, Das A. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J Environ Heal Sci Eng. 2014;12:19.
  • Sreńscek-Nazzal J, Narkiewicz U, Morawski AW, et al. Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. J Chem Eng Data. 2015;60(11):3148–3158. doi:10.1021/acs.jced.5b00294.
  • Kumar KV, Porkodi K, Rocha F. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J Hazard Mater. 2008;150(1):158–165. doi:10.1016/j.jhazmat.2007.09.020.
  • Tovar-Gómez R, Moreno-Virgen MR, Dena-Aguilar JA, et al. Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chem Eng J. 2013;228:1098–1109. doi:10.1016/j.cej.2013.05.080.
  • Mesquita PDL, Souza CR, Santos NTG, et al. Fixed-bed study for bone char adsorptive removal of refractory organics from electrodialysis concentrate produced by petroleum refinery. Environ Technol (United Kingdom). 2018;39(12):1544–1556. doi:10.1080/09593330.2017.1332691.
  • Amiri MJ, Mahmoudi MR, Khozaei M. Fixed bed column modeling of Cd(II) adsorption on bone char using backward Bayesian multiple linear regression. Pollution. 2020;6(2):441–451. doi:10.22059/POLL.2020.294364.727.
  • Li G, Zhang J, Liu J, et al. Investigation of the transport characteristics of Pb(II) in sand-bone char columns. Sci Prog. 2021;104(2):1–19. doi:10.1177/00368504211023665.
  • Milovac D, Weigand I, Kovačić M, et al. Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support. Process Appl Ceram. 2018;12(2):136–142.
  • Rojas-Mayorga CK, Bonilla-Petriciolet A, Silvestre-Albero J, et al. Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl Surf Sci. 2015;355:748–760. doi:10.1016/j.apsusc.2015.07.163.
  • Zúñiga-Muro NM, Bonilla-Petriciolet A, Mendoza-Castillo DI, et al. Fluoride adsorption properties of cerium-containing bone char. J Fluor Chem. 2017;197:63–73. doi:10.1016/j.jfluchem.2017.03.004.
  • Hossini H, Darvishi Cheshmeh Soltani R, Safari M, et al. The application of a natural chitosan/bone char composite in adsorbing textile dyes from water. Chem Eng Commun. 2017;204(9):1082–1093. doi:10.1080/00986445.2017.1340274.
  • Liu J, He L, Dong F, et al. The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: implications for permeable reactive barrier technologies. Chemosphere. 2016;153:146–154. doi:10.1016/j.chemosphere.2016.03.044.
  • Wang H, Luo P. Preparation, kinetics, and adsorption mechanism study of microcrystalline cellulose-modified bone char as an efficient Pb (II) adsorbent. Water Air Soil Pollut. 2020;231(7):328, doi:10.1007/s11270-020-04687-8.
  • Soltani DCR, et al. Decontamination of arsenic(V)-contained liquid phase utilizing Fe3O4/bone char nanocomposite encapsulated in chitosan biopolymer. Environ Sci Pollut Res. 2017;24(17):15157–15166. doi:10.1007/s11356-017-9128-9.
  • Kim J, Hwang J, Choi Y, et al. Effects of pyrolysis temperature of the waste cattle bone char on the fluoride adsorption characteristics. J Korean Soc Water Wastewater. 2020;34(1):1–8. doi:10.11001/jksww.2020.34.1.001.
  • Brunson LR, Sabatini DA. An evaluation of fish bone char as an appropriate arsenic and fluoride removal technology for emerging regions. Environ Eng Sci. 2009;26(12):1777–1784.
  • Iriarte-Velasco U, Sierra I, Zudaire L, et al. Conversion of waste animal bones into porous hydroxyapatite by alkaline treatment: effect of the impregnation ratio and investigation of the activation mechanism. J Mater Sci. 2015;50(23):7568–7582. doi:10.1007/s10853-015-9312-6.
  • Iriarte-Velasco U, Ayastuy JL, Zudaire L, et al. An insight into the reactions occurring during the chemical activation of bone char. Chem Eng J. 2014;251:217–227. doi:10.1016/j.cej.2014.04.048.
  • Feng L, Xu W, Liu T, et al. Heat regeneration of hydroxyapatite/attapulgite composite beads for defluoridation of drinking water. J Hazard Mater. 2012;221–222:228–235. doi:10.1016/j.jhazmat.2012.04.040.
  • Kaseva ME. Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania. J Water Health. 2006;4(1):139–147. doi:10.2166/wh.2005.062.
  • Nigri EM, Bhatnagar A, Rocha SDF. Thermal regeneration process of bone char used in the fluoride removal from aqueous solution. J Clean Prod. 2017;142:3558–3570. doi:10.1016/j.jclepro.2016.10.112.
  • Herath HMAS, Kawakami T, Tafu M. Repeated heat regeneration of bone char for sustainable use in fluoride removal from drinking water. Healthcare. 2018;6(4):143, doi:10.3390/healthcare6040143.
  • Nigri EM, Santos ALA, Bhatnagar A, et al. Chemical regeneration of bone char associated with a continuous system for defluoridation of water. Brazilian J Chem Eng. 2019;36(4):1631–1643. doi:10.1590/0104-6632.20190364s20180258.
  • Kanyora A, Kinyanjui TK, Kariuki SM, et al. Efficiency of various sodium solutions in regeneration of fluoride saturated bone char for de-fluoridation. IOSR J Environ Sci Toxicol Food Technol. 2014;8(10):10–16. doi:10.9790/2402-081031016.
  • Coltre DSC, Cionek AC, Meneguin GJ, et al. Study of dye desorption mechanism of bone char utilizing different regenerating agents. SN Appl Sci. 2020;2(12):1–14. doi:10.1007/s42452-020-03911-8.
  • Jia P, Tan H, Liu K, et al. Synthesis and photocatalytic performance of ZnO/bone char composite. Materials (Basel. 2018;11(10):1–8. doi:10.3390/ma11101981.
  • Jia P, Tan H, Liu K, et al. Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite. Mater Res Bull. 2018;102(February):45–50. doi:10.1016/j.materresbull.2018.02.018.
  • Rezaee A, Rangkooy H, Khavanin A, et al. High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char. Environ Chem Lett. 2014;12(2):353–357. doi:10.1007/s10311-014-0453-7.