300
Views
1
CrossRef citations to date
0
Altmetric
Review

Endocrine disrupting chemicals (EDCs): chemical fate, distribution, analytical methods and promising remediation strategies – a critical review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 286-315 | Received 14 Jun 2022, Accepted 19 Mar 2023, Published online: 03 May 2023

References

  • Kumar M, Sarma DK, Shubham S, et al. Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Front Public Health. 2020;8:549. DOI:10.3389/fpubh.2020.553850
  • Lauretta R, Sansone A, Sansone M, et al. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol (Lausanne). 2019;10:178. DOI:10.3389/fendo.2019.00178
  • Gałązka A, Jankiewicz U. Endocrine disrupting compounds (nonylphenol and bisphenol A) – sources, harmfulness and laccase-assisted degradation in the aquatic environment. Microorganisms. 2022;10(11):2236. DOI:10.3390/microorganisms10112236
  • Mishra S, Lin Z, Pang S, et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol. 2021;9:632059. DOI:10.3389/fbioe.2021.632059
  • Bhatt P, Huang Y, Zhan H, et al. Insight into microbial applications for the biodegradation of pyrethroid insecticides. Front Microbiol. 2019;10:1778. DOI:10.3389/fmicb.2019.01778
  • Díaz E. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol. 2004;7(3):173–180.
  • Kumar M, Prasad R, Goyal P, et al. Environmental biodegradation of xenobiotics: role of potential microflora. In: Xenobiotics in the soil environment. Vo. 49. Cham: Springer; 2017. p. 319–334. DOI:10.1007/978-3-319-47744-2_21
  • Fragkou E, Antoniou E, Daliakopoulos I, et al. In situ aerobic bioremediation of sediments polluted with petroleum hydrocarbons: a critical review. J Marine Sci Eng. 2021;9(9):1003. DOI:10.3390/jmse9091003
  • Daghio M, Vaiopoulou E, Patil SA, et al. Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. Appl Environ Microbiol. 2016;82(1):297–307. DOI:10.1128/AEM.02250-15
  • Yuan H, Yuan J, You Y, et al. Simultaneous ammonium and sulfate biotransformation driven by aeration: nitrogen/sulfur metabolism and metagenome-based microbial ecology. Sci Total Environ. 2021;794:148650. DOI:10.1016/j.scitotenv.2021.148650
  • Li S, Sun K, Yan X, et al. Identification of novel catabolic genes involved in 17β-estradiol degradation by Novosphingobium sp. ES2-1. Environ Microbiol. 2021a;23(5):2550–2563. DOI:10.1111/1462-2920.15475
  • Joy S, Butalia T, Sharma S, et al. Biosurfactant producing bacteria from hydrocarbon contaminated environment. In: Biodegradation and bioconversion of hydrocarbons. Singapore: Springer; 2017. p. 259–305. DOI:10.1007/978-981-10-0201-4_8
  • Gogoi A, Mazumder P, Tyagi VK, et al. Occurrence and fate of emerging contaminants in water environment: a review. Groundwater Sustainable Dev. 2018;6:169–180. DOI:10.1016/j.gsd.2017.12.009
  • Wee SY, Aris AZ. Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water. NPJ Clean Water. 2019;2(1):1–14. DOI:10.1038/s41545-018-0029-3
  • Heindel JJ, Blumberg B, Cave M, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33. DOI:10.1016/j.reprotox.2016.10.001
  • Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health Part B. 2017;20(8):447–469. DOI:10.1080/10937404.2017.1399306
  • Holme JA, Brinchmann BC, Refsnes M, et al. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health. 2019;18(1):1–18. DOI:10.1186/s12940-019-0514-2
  • Fransway AF, Fransway PJ, Belsito DV, et al. Paraben toxicology. Dermatitis. 2019;30(1):32–45. DOI:10.1097/DER.0000000000000428
  • AL-Ani MA, Hmoshi RM, Kanaan IA, et al. Effect of pesticides on soil microorganisms. J Phys Conf Ser. IOP Publishing. 2019;1294(7):072007. DOI:10.1088/1742-6596/1294/7/072007
  • Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2):21. DOI:10.3390/toxics7020021
  • Gupta P, Thompson BL, Wahlang B, et al. The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res. 2018a;8(3):740–759. DOI:10.1007/s13346-017-0429-9
  • Lin Z, Wang L, Jia Y, et al. A study on environmental bisphenol A pollution in plastics industry areas. Water Air Soil Pollut. 2017;228(3):98. DOI:10.1007/s11270-017-3277-9
  • Alonso-Magdalena P, Tudurí E, Marroquí L, et al. Toxic effects of common environmental pollutants in pancreatic β-cells and the onset of diabetes mellitus. Ref Module Biomed Sci. 2019: 764–775. DOI:10.1016/B978-0-12-801238-3.64325-8
  • Joshi DR, Adhikari N. An overview on common organic solvents and their toxicity. J Pharm Res Int. 2019;28(3):1–18. DOI:10.9734/jpri/2019/v28i330203
  • Poston RG, Saha RN. Epigenetic effects of polybrominated diphenyl ethers on human health. Int J Environ Res Public Health. 2019;16(15):2703. DOI:10.3390/ijerph16152703
  • Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq. 2019;290:111197. DOI:10.1016/j.molliq.2019.111197
  • Foresta C, Tescari S, Di Nisio A. Impact of perfluorochemicals on human health and reproduction: a male’s perspective. J Endocrinol Investig. 2018;41(6):639–645. DOI:10.1007/s40618-017-0790-z
  • Chang WH, Chen HL, Lee CC. Dietary exposure assessment to perchlorate in the Taiwanese population: a risk assessment based on the probabilistic approach. Environ Pollut. 2020;267:115–486. DOI:10.1016/j.envpol.2020.115486
  • Hiller J, Klotz K, Meyer S, et al. Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. Environ Int. 2019;132:105068. DOI:10.1016/j.envint.2019.105068
  • Rosenfeld CS. Effects of phytoestrogens on the developing brain, gut microbiota, and risk for neurobehavioral disorders. Front Nutr. 2019;6:142. DOI:10.3389/fnut.2019.00142
  • Moses SK, Harley JR, Lieske CL, et al. Variation in bioaccumulation of persistent organic pollutants based on octanol–air partitioning: influence of respiratory elimination in marine species. Mar Pollut Bull. 2015;100(1):122–127. DOI:10.1016/j.marpolbul.2015.09.020
  • Gobas FA, Kelly BC, Arnot JA. Quantitative structure activity relationships for predicting the bioaccumulation of POPs in terrestrial food-webs. QSAR Comb Sci. 2003;22(3):329–336. DOI:10.1002/qsar.200390022
  • Carvalho IT, Santos L. Antibiotics in the aquatic environments: a review of the European scenario. Environ Int. 2016;94:736–757. DOI:10.1016/j.envint.2016.06.025
  • Balaguer P, Delfosse V, Grimaldi M, et al. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses. C R Biol. 2017;340(9-10):414–420. DOI:10.1016/j.crvi.2017.08.002
  • Pironti C, Ricciardi M, Proto A, et al. Endocrine-disrupting compounds: an overview on their occurrence in the aquatic environment and human exposure. Water (Basel). 2021;13(10):1347. DOI:10.3390/w13101347
  • Sonne C, Siebert U, Gonnsen K, et al. Health effects from contaminant exposure in Baltic Sea birds and marine mammals: a review. Environ Int. 2020;139:105725. DOI:10.1016/j.envint.2020.105725
  • Maddela NR, Ramakrishnan B, Kakarla D, et al. Major contaminants of emerging concern in soils: a perspective on potential health risks. Royal Soc Chem Adv. 2022;12(20):12396–12415. DOI:10.1039/D1RA09072K
  • Klamerus-Iwan A, Błońska E, Lasota J, et al. Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water Air Soil Pollut. 2015;226(11):1–9. DOI:10.1007/s11270-015-2649-2
  • Chuchkalov S, Fadeev I, Alekseev V. Effect of synthetic detergents on soil erosion resistance. KnE Life Sci. 2020;5(1):489–496. DOI:10.18502/kls.v5i1.6113
  • Xu Y, Hu A, Li Y, et al. Determination and occurrence of bisphenol A and thirteen structural analogs in soil. Chemosphere. 2021;277:130232. DOI:10.1016/j.chemosphere.2021.130232
  • Wang X, Xu J, Xu M, et al. High-efficient removal of arsenite by coagulation with titanium xerogel coagulant. Sep Purif Technol. 2021a;258:118047. DOI:10.1016/j.seppur.2020.118047
  • Wang J, Lv S, Zhang M, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere. 2016;151:171–177. DOI:10.1016/j.chemosphere.2016.02.076
  • Chen S, Chee-Sanford JC, Yang WH, et al. Effects of triclosan and triclocarban on denitrification and N2O emissions in paddy soil. Sci Total Environ. 2019;695:133782. DOI:10.1016/j.scitotenv.2019.133782
  • Sosa-Ferrera Z, Mahugo-Santana C, Santana-Rodríguez JJ. Analytical methodologies for the determination of endocrine disrupting compounds in biological and environmental samples. BioMed Res Int. 2013. DOI:10.1155/2013/674838
  • Boix C, Ibáñez M, Sancho JV, et al. Fast determination of 40 drugs in water using large volume direct injection liquid chromatography–tandem mass spectrometry. Talanta. 2015;131:719–727. DOI:10.1016/j.talanta.2014.08.005
  • Rodríguez-Hernández JA, Araújo RG, López-Pacheco IY, et al. Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies. Environ Sci: Adv. 2022;1:680–704. DOI:10.1039/D2VA00179A
  • Lu X, Sun J, Sun X. Recent advances in biosensors for the detection of estrogens in the environment and food. Trends Anal Chem. 2020;127:115882. DOI:10.1016/j.trac.2020.115882
  • González-González RB, Flores-Contreras EA, González-González E, et al. Biosensor constructs for the monitoring of persistent emerging pollutants in environmental matrices. Ind Eng Chem Res. 2022. 62, 11, 4503–4520. https://doi.org/10.1021/acs.iecr.2c00421
  • Yang S, Hai FI, Nghiem LD, et al. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol. 2013;141:97–108.
  • Vallero DA. Hazardous wastes. In: Waste. Academic Press; 2019. p. 585–630. DOI:10.1016/B978-0-12-815060-3.00031-1
  • Vieira WT, de Farias MB, Spaolonzi MP, et al. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ Chem Lett. 2020;18(4):1113–1143. DOI:10.1007/s10311-020-01000-1
  • Choong CE, Ibrahim S, Basirun WJ. Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen. J Colloid Interface Sci. 2019;541:12–17. DOI:10.1016/j.jcis.2019.01.071
  • Rakhym AB, Seilkhanova GA, Mastai Y. Physicochemical evaluation of the effect of natural zeolite modification with didodecyldimethylammonium bromide on the adsorption of bisphenol A and propranolol hydrochloride. Microporous Mesoporous Mater. 2021;318:111020. DOI:10.1016/j.micromeso.2021.111020
  • Velkova Z, Kirova G, Stoytcheva M, et al. Immobilized microbial biosorbents for heavy metals removal. Eng Life Sci. 2018;18(12):871–881.
  • Qureshi UA, Hameed BH, Ahmed MJ. Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: a review. J Water Process Eng. 2020;38:101380. DOI:10.1016/j.jwpe.2020.101380
  • Zbair M, Bottlinger M, Ainassaari K, et al. Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste Biomass Valorization. 2018;11(4):1565–1584. DOI:10.1007/s12649-018-00554-0
  • Al-Musawi TJ, Mengelizadeh N, Ganji F, et al. Preparation of multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their adsorption performance for bisphenol A compound. Adv Powder Technol. 2022;33(2):103438. DOI:10.1016/j.apt.2022.103438
  • Lee MY, Ahmed I, Yu K, et al. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. Chemosphere. 2021;265:129161. DOI:10.1016/j.chemosphere.2020.129161
  • Srivastava A, Singh M, Karsauliya K, et al. Effective elimination of endocrine disrupting bisphenol A and S from drinking water using phenolic resin-based activated carbon fiber: adsorption, thermodynamic and kinetic studies. Environ Nanotechnol Monit Manage. 2020;14:100316. DOI:10.1016/j.enmm.2020.100316
  • Huang T, Pan B, Ji H, et al. Removal of 17β-estradiol by activated charcoal supported titanate nanotubes (TNTs@ AC) through initial adsorption and subsequent photo-degradation: intermediates, DFT calculation, and mechanisms. Water (Basel). 2020;12(8):2121. DOI:10.3390/w12082121
  • Tang Y, Chen Q, Li W, et al. Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability. J Hazard Mater. 2020;388:122059. DOI:10.1016/j.jhazmat.2020.122059
  • Sobhanardakani S, Zandipak R. Cerium dioxide nanoparticles decorated on CuFe2O4 nanofibers as an effective adsorbent for removal of estrogenic contaminants (bisphenol A and 17-α ethinylestradiol) from water. Sep Sci Technol. 2018;53(15):2339–2351. DOI:10.1080/01496395.2018.1457053
  • Mohd Khori NKE, Hadibarata T, Elshikh MS, et al. Triclosan removal by adsorption using activated carbon derived from waste biomass: isotherms and kinetic studies. J Chin Chem Soc. 2018;65(8):951–959. DOI:10.1002/jccs.201700427
  • Wang Z, Zhang P, Hu F, et al. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydr Polym. 2017;177:224–231. DOI:10.1016/j.carbpol.2017.08.059
  • He J, Dai J, Zhang T, et al. Preparation of highly porous carbon from sustainable α-cellulose for superior removal performance of tetracycline and sulfamethazine from water. Royal Soc Chem Adv. 2016;6(33):28023–28033. DOI:10.1039/C6RA00277C
  • Yaqub M, Lee SH. Micellar enhanced ultrafiltration (MEUF) of mercury-contaminated wastewater: experimental and artificial neural network modeling. J Water Process Eng. 2020;33:101046. DOI:10.3390/w12051269
  • Muhamad MS, Hamidon N, Salim MR, et al. Response surface methodology for modeling bisphenol A removal using ultrafiltration membrane system. Water Air Soil Pollut. 2018;229(7):1–11. DOI:10.1007/s11270-018-3875-1
  • Wu H, Niu X, Yang J, et al. Retentions of bisphenol A and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment. Chem Eng J. 2016;294:410–416. DOI:10.1016/j.cej.2016.02.117
  • Soriano A, Gorri D, Urtiaga A. Selection of high flux membrane for the effective removal of short-chain perfluorocarboxylic acids. Ind Eng Chem Res. 2019;58(8):3329–3338. DOI:10.1021/acs.iecr.8b05506
  • Guo H, Peng LE, Yao Z, et al. Non-polyamide based nanofiltration membranes using green metal–organic coordination complexes: implications for the removal of trace organic contaminants. Environ Sci Technol. 2019;53(5):2688–2694. DOI:10.1021/acs.est.8b06422
  • Guo H, Yao Z, Yang Z, et al. A one-step rapid assembly of thin film coating using green coordination complexes for enhanced removal of trace organic contaminants by membranes. Environ Sci Technol. 2017;51(21):12638–12643. DOI:10.1021/acs.est.7b03478
  • Sun J, Jiang X, Zhou Y, et al. Microfiltration membranes for the removal of bisphenol A from aqueous solution: adsorption behavior and mechanism. Water (Basel). 2022;14(15):2306. DOI:10.3390/w14152306
  • Zielińska M, Bułkowska K, Cydzik-Kwiatkowska A, et al. Removal of bisphenol A (BPA) from biologically treated wastewater by microfiltration and nanofiltration. Int J Environ Sci Technol. 2016;13(9):2239–2248. DOI:10.1007/s13762-016-1056-6
  • Zielińska M, Cydzik-Kwiatkowska A, Bułkowska K, et al. Treatment of bisphenol a-containing effluents from aerobic granular sludge reactors with the use of microfiltration and ultrafiltration ceramic membranes. Water Air Soil Pollut. 2017;228(8):1–9. DOI:10.1007/s11270-017-3450-1
  • Baransi-Karkaby K, Bass M, Freger V. In situ modification of reverse osmosis membrane elements for enhanced removal of multiple micropollutants. Membranes. 2019;9(2):28. DOI:10.3390/membranes9020028
  • You S, Lu J, Tang CY, et al. Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane. Chem Eng J. 2017;320:532–538. DOI:10.1016/j.cej.2017.03.064
  • Huang M, Chen Y, Huang CH, et al. Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO2. Chem Eng J. 2015;279:904–911. DOI:10.1016/j.cej.2015.05.078
  • Katibi KK, Yunos KF, Che Man H, et al. Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: a review. Polymers (Basel). 2021;13(3):392. DOI:10.3390/polym13030392
  • Gul A, Hruza J, Yalcinkaya F. Fouling and chemical cleaning of microfiltration membranes: a mini-review. Polymers (Basel). 2021;13(6):846. DOI:10.3390/polym13060846
  • Cuerda-Correa EM, Alexandre-Franco MF, Fernández-González C. Advanced oxidation processes for the removal of antibiotics from water: an overview. Water (Basel). 2020;12(1):102. DOI:10.3390/w12010102
  • Precious Sibiya N, Rathilal S, Kweinor Tetteh E. Coagulation treatment of wastewater: kinetics and natural coagulant evaluation. Molecules. 2021;26(3):698. DOI:10.3390/molecules26030698
  • Owodunni AA, Ismail S. Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment – a review. J Water Process Eng. 2021;42:102096. DOI:10.1016/j.jwpe.2021.102096
  • Wang D, Xi Y, Shi XY, et al. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environ Pollut. 2021b;286:117546. DOI:10.1016/j.envpol.2021.117546
  • Zhang W, Wei Q, Xiao J, et al. The key factors and removal mechanisms of sulfadimethoxazole and oxytetracycline by coagulation. Environ Sci Pollut Res. 2020;27(14):16167–16176. DOI:10.1007/s11356-019-06884-3
  • Lee SH, Kim KH, Lee M, et al. Detection status and removal characteristics of pharmaceuticals in wastewater treatment effluent. J Water Process Eng. 2019;31:100828. DOI:10.1016/j.jwpe.2019.100828
  • Doná G, Carpiné D, Leifeld V, et al. Efficient remove methylparaben by ozonation process. Int J Environ Sci Technol. 2019;16(5):2441–2454. DOI:10.1007/s13762-018-1886-5
  • Ben Fredj S, Novakoski RT, Tizaoui C, et al. Two-phase ozonation for the removal of estrone, 17β-estradiol and 17α-ethinylestradiol in water using ozone-loaded decamethylcyclopentasiloxane. Ozone Sci Eng. 2017;39(5):343–356. DOI:10.1080/01919512.2017.1322896
  • Orhon KB, Orhon AK, Dilek FB, et al. Triclosan removal from surface water by ozonation-kinetics and by-products formation. J Environ Manag. 2017;204:327–336. DOI:10.1016/j.jenvman.2017.09.025
  • Hamdaoui O, Merouani S. Impact of seawater salinity on the sonochemical removal of emerging organic pollutants. Environ Technol. 2019: 2305–2313. DOI:10.1080/09593330.2018.1564071
  • Shokri A, Hosseini J. Treatment of synthetic wastewater containing diethyl phthalate through photo-Fenton method by box-Behnken design. Arch Hygiene Sci. 2020;9(2):121–131. DOI:10.29252/ArchHygSci.9.2.121
  • Zhao M, Cheng M, Zeng G, et al. Degradation of di (2-ethylhexyl) phthalate in sediment by a surfactant-enhanced Fenton-like process. Chemosphere. 2018;198:327–333. DOI:10.1016/j.chemosphere.2018.01.16
  • Wang M, Su X, Yang S, et al. Bisphenol A degradation by Fenton advanced oxidation process and operation parameters optimization. E3S Web of Conf. 2020a;144:01014. DOI:10.1051/e3sconf/202014401014
  • Liu F, Liang J, Chen L, et al. Photocatalytic removal of diclofenac by Ti doped BiOI microspheres under visible light irradiation: kinetics, mechanism, and pathways. J Mol Liq. 2019;275:807–814. DOI:10.1016/j.molliq.2018.11.119
  • Chinnaiyan P, Thampi SG, Kumar M, et al. Photocatalytic degradation of metformin and amoxicillin in synthetic hospital wastewater: effect of classical parameters. Int J Environ Sci Technol. 2019;16(10):5463–5474. DOI:10.1007/s13762-018-1935-0
  • Liu Y, Sun H, Zhang L, et al. Photodegradation behaviors of 17β-estradiol in different water matrixes. Process Saf Environ Prot. 2017;112:335–341. DOI:10.1016/j.psep.2017.08.044
  • Sharma J, Mishra IM, Dionysiou DD, et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway. Chem Eng J. 2015;276:193–204. DOI:10.1016/j.cej.2015.04.021
  • Castellanos RM, Bassin JP, Dezotti M, et al. Tube-in-tube membrane reactor for heterogeneous TiO2 photocatalysis with radial addition of H2O2. Chem Eng J. 2020;395:124998. DOI:10.1016/j.cej.2020.124998
  • Peng M, Li H, Kang X, et al. Photo-degradation ibuprofen by UV/H2O2 process: response surface analysis and degradation mechanism. Water Sci Technol. 2017;75(12):2935–2951. DOI:10.2166/wst.2017.149
  • Barik AJ, Gogate PR. Degradation of 4-chloro 2-aminophenol using combined strategies based on ultrasound, photolysis and ozone. Ultrason Sonochem. 2016;28:90–99. DOI:10.1016/j.ultsonch.2015.07.001
  • Xu LJ, Chu W, Graham N. Degradation of di-n-butyl phthalate by a homogeneous sono–photo–Fenton process with in situ generated hydrogen peroxide. Chem Eng J. 2014;240:541–547. DOI:10.1016/j.cej.2013.10.087
  • Garrido-Cardenas JA, Esteban-García B, Agüera A, et al. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int J Environ Res Public Health. 2020;17(1):170. DOI:10.3390/ijerph17010170
  • Malakootian M, Shahesmaeili A, Faraji M, et al. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis. Process Saf Environ Prot. 2020;134:292–307. DOI:10.1016/j.psep.2019.12.004
  • Rekhate CV, Srivastava JK. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater – a review. Chem Eng J Adv. 2020;3:100031. DOI:10.1016/j.ceja.2020.100031
  • Du J, Zhang B, Li J, et al. Decontamination of heavy metal complexes by advanced oxidation processes: a review. Chin Chem Lett. 2020;31(10):2575–2582. DOI:10.1016/j.cclet.2020.07.050
  • Sharma I. Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In: Trace metals in the environment-new approaches and recent advances. IntechOpen; 2020. DOI:10.5772/intechopen.90453
  • Hu H, Li X, Wu S, et al. Sustainable livestock wastewater treatment via phytoremediation: current status and future perspectives. Bioresour Technol. 2020;315:123809. DOI:10.1016/j.biortech.2020.123809
  • Yan A, Wang Y, Tan SN, et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020;11:359. DOI:10.3389/fpls.2020.00359
  • Zhao C, Zhang G, Jiang J. Enhanced phytoremediation of bisphenol A in polluted lake water by seedlings of Ceratophyllum demersum and Myriophyllum spicatum from in vitro culture. Int J Environ Res Public Health. 2021;18(2):810. DOI:10.3390/ijerph18020810
  • Loffredo E, Picca G, Parlavecchia M. Single and combined use of Cannabis sativa L. and carbon-rich materials for the removal of pesticides and endocrine-disrupting chemicals from water and soil. Environ Sci Pollut Res. 2021;28(3):3601–3616. DOI:10.1007/s11356-020-10690-7
  • Panja S, Sarkar D, Datta R. Removal of tetracycline and ciprofloxacin from wastewater by vetiver grass (Chrysopogon zizanioides (L.) Roberty) as a function of nutrient concentrations. Environ Sci Pollut Res. 2020;27(28):34951–34965. DOI:10.1007/s11356-020-09762-5
  • Raj D, Kumar A, Maiti SK. Brassica juncea (L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int J Phytoremediation. 2020;22(7):733–744. DOI:10.1080/15226514.2019.1708861
  • Sánchez V, López-Bellido J, Rodrigo MA, et al. Enhancing the removal of atrazine from soils by electrokinetic-assisted phytoremediation using ryegrass (Lolium perenne L.). Chemosphere. 2019;232:204–212. DOI:10.1016/j.chemosphere.2019.05.216
  • Anjos ML, Isique WD, Albertin LL, et al. Parabens removal from domestic sewage by free-floating aquatic macrophytes. Waste Biomass Valorization. 2019;10(8):2221–2226. DOI:10.1007/s12649-018-0245-6
  • Zhang Q, Xue C, Owens G, et al. Isolation and identification of 17β-estradiol degrading bacteria and its degradation pathway. J Hazard Mater. 2022;423:127185. DOI:10.1016/j.jhazmat.2021.127185
  • Thathola P, Agnihotri V, Pandey A, et al. Biodegradation of bisphenol A using psychrotolerant bacterial strain Pseudomonas palleroniana GBPI_508. Arch Microbiol. 2022;204(5):1–12. DOI:10.1007/s00203-022-02885-y
  • Noszczyńska M, Chodór M, Jałowiecki Ł, et al. A comprehensive study on bisphenol A degradation by newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12. Biodegradation. 2021;32(1):1–15. DOI:10.1007/s10532-020-09919-6
  • Wang X, Song L, Li Z, et al. The remediation of chlorpyrifos-contaminated soil by immobilized white-rot fungi. J Serb Chem Soc. 2020b;85(7):857–868. DOI:10.2298/JSC190822130W
  • Juárez-Jiménez B, Pesciaroli C, Maza-Márquez P, et al. Biodegradation of methyl and butylparaben by bacterial strains isolated from amended and non-amended agricultural soil. Identification, behavior and enzyme activities of microorganisms. J Environ Manag. 2019;245:245–254. DOI:10.1016/j.jenvman.2019.05.122
  • Moussavi G, Haddad FA. Bacterial peroxidase-mediated enhanced biodegradation and mineralization of bisphenol A in a batch bioreactor. Chemosphere. 2019;222:549–555. DOI:10.1016/j.chemosphere.2019.01.190
  • Jia Y, Khanal SK, Shu H, et al. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways. Water Res. 2018;136:64–74. DOI:10.1016/j.watres.2018.02.057
  • Tran TN, Kim DG, Ko SO. Synergistic effects of biogenic manganese oxide and Mn (II)-oxidizing bacterium pseudomonas putida strain MnB1 on the degradation of 17α-ethinylestradiol. J Hazard Mater. 2018;344:350–359. DOI:10.1016/j.jhazmat.2017.10.045
  • Ge H, Yang L, Li B, et al. A comparative study on the biodegradation of 17β-estradiol by Candida utilis CU-2 and Lactobacillus casei LC-1. Front Energy Res. 2021;9:131. DOI:10.3389/fenrg.2021.661850
  • De Rossi A, Rigueto CV, Dettmer A, et al. Synthesis, characterization, and application of Saccharomyces cerevisiae/alginate composites beads for adsorption of heavy metals. J Environ Chem Eng. 2020;8(4):104009. DOI:10.1016/j.jece.2020.104009
  • Han Y, Tang Z, Bao H, et al. Degradation of pendimethalin by the yeast YC2 and determination of its two main metabolites. Royal Soc Chem Adv. 2019;9(1):491–497. DOI:10.1039/C8RA07872F
  • Wan L, Wu Y, Ding H, et al. Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii. J Agric Food Chem. 2020;68(6):1645–1653. DOI:10.1021/acs.jafc.9b05765
  • Bai X, Acharya K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ Pollut. 2019;247:534–540. DOI:10.1016/j.envpol.2019.01.075
  • Ruksrithong C, Phattarapattamawong S. Removals of estrone and 17β-estradiol by microalgae cultivation: kinetics and removal mechanisms. Environ Technol. 2019;40(2):163–170. DOI:10.1080/09593330.2017.1384068
  • Piyaviriyakul P, Boontanon N, Boontanon SK. Bioremoval and tolerance study of sulfamethoxazole using whole cell Trichoderma harzianum isolated from rotten tree bark. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(8):920–927. DOI:10.1080/10934529.2021.1941558
  • Jasińska A, Soboń A, Różalska S, et al. Bisphenol A removal by the fungus Myrothecium roridum IM 6482 – analysis of the cellular and subcellular level. Int J Mol Sci. 2021;22(19):10676. DOI:10.3390/ijms221910676
  • González-Márquez A, Loera-Corral O, Santacruz-Juárez E, et al. Biodegradation patterns of the endocrine disrupting pollutant di (2-ethyl hexyl) phthalate by Fusarium culmorum. Ecotoxicol Environ Saf. 2019;170:293–299. DOI:10.1016/j.ecoenv.2018.11.140
  • Nykiel-Szymańska J, Bernat P, Słaba M. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol Environ Saf. 2018;162:1–9. DOI:10.1016/j.ecoenv.2018.06.060
  • Brazkova M, Angelova G, Krastanov A. Biodegradation of bisphenol A during submerged cultivation of Trametes versicolor. J Microbiol, Biotechnol Food Sci. 2021;9(2):204–207. DOI:10.15414/jmbfs.2019.9.2.204-207
  • Rahmani H, Lakzian A, Karimi A, et al. Efficient removal of 2, 4-dinitrophenol from synthetic wastewater and contaminated soil samples using free and immobilized laccases. J Environ Manag. 2020;256:109740. DOI:10.1016/j.jenvman.2019.109740
  • Asgher M, Ramzan M, Bilal M. Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. Chin J Catal. 2016;37(4):561–570. DOI:10.1016/S1872-2067(15)61044-0
  • Dhiman N, Jasrotia T, Sharma P, et al. Immobilization interaction between xenobiotic and Bjerkandera adusta for the biodegradation of atrazine. Chemosphere. 2020;257:127060. DOI:10.1016/j.chemosphere.2020.127060
  • Brugnari T, Contato AG, Pereira MG, et al. Characterisation of free and immobilised laccases from Ganoderma lucidum: application on bisphenol A degradation. Biocatal Biotransform. 2021;39(1):71–80. DOI:10.1080/10242422.2020.1792448
  • Křesinová Z, Linhartová L, Filipová A, et al. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnol. 2018;43:53–61. DOI:10.1016/j.nbt.2017.05.004
  • Pezzella C, Macellaro G, Sannia G, et al. Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors. PloS One. 2017;12(6):e0178758. DOI:10.1371/journal.pone.0178758
  • Gassara F, Brar SK, Verma M, et al. Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere. 2013;92(10):1356–1360. DOI:10.1016/j.chemosphere.2013.02.071
  • Bilal M, Iqbal HM. Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. Case Studies Chem Environ Eng. 2020;2:100011. DOI:10.1016/j.cscee.2020.100011
  • Kumar Rajendran R, Huang SL, Lin CC, et al. Aerobic degradation of estrogenic alkylphenols by yeasts isolated from a sewage treatment plant. Royal Soc Chem Adv. 2016;6(86):82862–82871. DOI:10.1039/C6RA08839B
  • Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. Environ Sci Pollut Res. 2020;27:39958–39976. DOI:10.1007/s11356-020-10382-2
  • Li Y, Wu S, Wang S, et al. Anaerobic degradation of xenobiotic organic contaminants (XOCs): the role of electron flow and potential enhancing strategies. J Environ Sci. 2021b;101:397–412. DOI:10.1016/j.jes.2020.08.030
  • Alazaiza MY, Albahnasawi A, Ahmad Z, et al. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for a green circular economy. J Environ Manage. 2022 Dec 15;324:116415. https://doi.org/10.1016/j.jenvman.2022.116415
  • Bahafid W, Joutey NT, Asri M, et al. Yeast biomass: an alternative for bioremediation of heavy metals. Yeast-Industrial Appl. 2017;559; DOI:10.5772/intechopen.70559
  • Dhagat S, Eswari Jujjavarapu S. Utility of lignin-modifying enzymes: a green technology for organic compounds mycodegradation. J Chem Technol Biotechnol. 2021: 1–16. DOI:10.1002/jctb.6807
  • Furuno S, Päzolt K, Rabe C, et al. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol. 2010;12(6):1391–1398. DOI:10.1111/j.1462-2920.2009.02022.x
  • Janusz G, Pawlik A, Sulej J, et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41(6):941–962. DOI:10.1093/femsre/fux049
  • Bari E, Daniel G, Yilgor N, et al. Comparison of the decay behavior of two white-rot fungi in relation to wood type and exposure conditions. Microorganisms. 2020;8(12):1931. DOI:10.3390/microorganisms8121931
  • Rodríguez-Couto S. Industrial and environmental applications of white-rot fungi. Mycosphere. 2017;8(3):456–466. DOI:10.5943/mycosphere/8/3/7
  • Bulkan G, Ferreira JA, Taherzadeh MJ. Removal of organic micro-pollutants using filamentous fungi. Current Developments Biotechnol Bioeng. 2020: 363–395. DOI:10.1016/B978-0-12-819594-9.00015-2
  • Wang J, Xie Y, Hou J, et al. Biodegradation of bisphenol A by alginate immobilized Phanerochaete chrysosporium beads: continuous cyclic treatment and degradation pathway analysis. Biochem Eng J. 2022;177:108212. DOI:10.1016/j.bej.2021.108212
  • Maryskova M, Vrsanska M, Sevcu A, et al. Laminated PAA nanofibers as a practical support for crude laccase: a new perspective for biocatalytic treatment of micropollutants in wastewaters. Environ Technol Innovation. 2022;26:102316. DOI:10.1016/j.eti.2022.102316
  • Maryskova M, Rysova M, Novotny V, et al. Polyamide-laccase nanofiber membrane for degradation of endocrine-disrupting bisphenol A, 17α-ethinylestradiol, and triclosan. Polymers (Basel). 2019;11(10):1560. DOI:10.3390/polym11101560
  • Bilal M, Jing Z, Zhao Y, et al. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal Agr Biotechnol. 2019;19:101174. DOI:10.1016/j.bcab.2019.101174
  • Zdarta J, Antecka K, Frankowski R, et al. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. Sci Total Environ. 2018;615:784–795. DOI:10.1016/j.scitotenv.2017.09.213
  • Stenholm Å, Hedeland M, Arvidsson T, et al. Removal of nonylphenol polyethoxylates by adsorption on polyurethane foam and biodegradation using immobilized Trametes versicolor. Sci Total Environ. 2020;724:138159. DOI:10.1016/j.scitotenv.2020.138159
  • Dalecka B, Juhna T, Rajarao GK. Constructive use of filamentous fungi to remove pharmaceutical substances from wastewater. J Water Process Eng. 2020;33:100992. DOI:10.1016/j.jwpe.2019.100992
  • Sadeghzadeh S, Nejad ZG, Ghasemi S, et al. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. Bioresour Technol. 2020;306:123169. DOI:10.1016/j.biortech.2020.123169
  • Lassouane F, Aït-Amar H, Amrani S, et al. A promising laccase immobilization approach for bisphenol A removal from aqueous solutions. Bioresour Technol. 2019;271:360–367. DOI:10.1016/j.biortech.2018.09.129
  • Ji C, Nguyen LN, Hou J, et al. Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol. 2017;178:215–223. DOI:10.1016/j.seppur.2017.01.043
  • Bilal M, Asgher M, Iqbal HM, et al. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ Sci Pollut Res. 2017;24(8):7035–7041. DOI:10.1007/s11356-017-8369-y
  • Gupta S, Annepu SK, Summuna B, et al. Role of mushroom fungi in decolourization of industrial dyes and degradation of agrochemicals. In: Biology of macrofungi. Cham: Springer; 2018b. p. 177–190. DOI:10.1007/978-3-030-02622-6_8
  • Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6(2):e03170. DOI:10.1016/j.heliyon.2020.e03170
  • Mayolo-Deloisa K, González-González M, Rito-Palomares M. Laccases in food industry: bioprocessing, potential industrial and biotechnological applications. Front Bioeng Biotechnol. 2020;8:222. DOI:10.3389/fbioe.2020.00222
  • Singh D, Gupta N. Microbial laccase: a robust enzyme and its industrial applications. Biologia. 2020;75(8):1183–1193. DOI:10.2478/s11756-019-00414-9
  • Chandra R, Kumar V, Yadav S. Extremophilic ligninolytic enzymes. In: Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Cham: Springer; 2017. p. 115–154. DOI:10.1007/978-3-319-54684-1
  • Peralta RM, da Silva BP, Côrrea RCG, et al. Enzymes from basidiomycetes – peculiar and efficient tools for biotechnology. In: Biotechnology of microbial enzymes. Academic Press; 2017. p. 119–149. DOI:10.1016/B978-0-12-803725-6.00005-4
  • Ravichandran A, Rao RG, Gopinath MS. Purification and characterization of versatile peroxidase from Lentinus squarrosulus and its application in biodegradation of lignocellulosics. J Appl Biotechnol Bioeng. 2019;6(6):280–286. DOI:10.15406/jabb.2019.06.00205
  • González-González RB, Hernández JAR, Araújo RG, et al. Prospecting carbon-based nanomaterials for the treatment and degradation of endocrine-disrupting pollutants. Chemosphere. 2022a;297:134172. DOI:10.1016/j.chemosphere.2022.134172
  • González-González RB, Parra-Arroyo L, Parra-Saldívar R, et al. Nanomaterial-based catalysts for the degradation of endocrine-disrupting chemicals – a way forward to environmental remediation. Mater Lett. 2022b;308:131217. DOI:10.1016/j.matlet.2021.131217
  • Wojcieszyńska D, Marchlewicz A, Guzik U. Suitability of immobilized systems for microbiological degradation of endocrine disrupting compounds. Molecules. 2020;25(19):4473. DOI:10.3390/molecules25194473
  • Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic nanoparticle composites: synergistic effects and applications. Adv Sci. 2021;8:2004951. DOI:10.1002/advs.202004951
  • Borrirukwisitsak S, Keenan HE, Gauchotte-Lindsay C. Effects of salinity, pH and temperature on the octanol-water partition coefficient of bisphenol A. Int J Environ Sci Dev. 2012;3(5):460–464. DOI:10.7763/IJESD.2012.V3.267

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.